Several isolated singularities of $f(z)$ inside Γ

MA3614 2023/4 Week 24 and 25, Page 1 of 24

Earlier results with 0 or 1 isolated singularities

Week 13: Cauchy-Goursat theorem: If f is analytic in a simply connected domain D and Γ is any loop (i.e. a closed contour) in D then

$$
\oint_{\Gamma} f(z) \mathrm{d} z=0
$$

No singularities inside Γ.
Week 18: The generalised Cauchy integral formula: If f is analytic in a simply connected domain D and Γ is any loop and z_{0} is inside Γ then

$$
\frac{f^{(m)}\left(z_{0}\right)}{m!}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{m+1}} \mathrm{~d} z, \quad m=0,1,2, \ldots
$$

1 singularity inside Γ.

The Residue Theorem

If $z_{1}, z_{2}, \ldots, z_{n}$ are isolated singularities inside Γ and $C_{1}, C_{2}, \ldots, C_{n}$ are non-intersecting circles traversed once in the anti-clockwise direction then $\Gamma \cup\left(-C_{1}\right) \cup \cdots \cup\left(-C_{n}\right)$ is the boundary of a region in which $f(z)$ is analytic and

$$
\begin{aligned}
\oint_{\Gamma} f(z) \mathrm{d} z & =\sum_{k=1}^{n} \oint_{C_{k}} f(z) \mathrm{d} z \\
& =2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right)
\end{aligned}
$$

With the knowledge of Laurent series to describe the behaviour of $f(z)$ in the vicinity of each point z_{k} we get the above result.

The earlier results as a special case of the Residue Theorem

$$
\oint_{\Gamma} f(z) \mathrm{d} z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) .
$$

- When $f(z)$ is analytic inside Γ we have no isolated singularities inside Г, i.e. $n=0$.
- When $n=1$ and we have a pole at z_{1} of order m

$$
\operatorname{Res}\left(g, z_{1}\right)=\frac{f^{(m)}\left(z_{1}\right)}{m!}, \quad \text { when } g(z)=\frac{f(z)}{\left(z-z_{1}\right)^{(m+1)}}
$$

The earlier results were of course needed to establish the residue theorem result.

Techniques to calculate the residue

In the case of a simple pole of $f(z)$ at z_{0} most examples for calculating the residue have involved calculating the limit

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

In many of the examples L'Hopital's rule has been used.
More generally when we have a pole of order $m \geq 1$ we can calculate the residue by using

$$
\operatorname{Res}\left(f, z_{0}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{\mathrm{~d}^{m-1}}{\mathrm{~d} z^{m-1}}\left(\left(z-z_{0}\right)^{m} f(z)\right)
$$

We need to know the order of the pole to use the above.
It is sometimes possible to simplify the expression for $\left(z-z_{0}\right)^{m} f(z)$ before differentiation is done.

MA3614 2023/4 Week 24 and 25, Page 5 of 24

Examples in the lectures

In week 23.

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{x^{2}+2 x+2}=\pi \\
I=\int_{-\infty}^{\infty} \frac{1}{x^{4}+16} \mathrm{~d} x=\frac{\pi \sqrt{2}}{16} .
\end{gathered}
$$

In week 24 (this week). The first integral is on the exercise sheet. Let $a>0$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\mathrm{e}^{i a x}}{1+x^{2}} \mathrm{~d} x=\pi \mathrm{e}^{-a} \\
& \int_{-\infty}^{\infty} \frac{x \sin (x)}{1+x^{2}} \mathrm{~d} x=\pi \mathrm{e}^{-1}
\end{aligned}
$$

The last example will need Jordan's lemma to justify that the contribution from C_{R}^{+}tends to 0 as $R \rightarrow \infty$.

Integrals on $(-\infty, \infty)$ evaluated using residue theory

With $P(z)$ and $Q(z)$ being polynomials we consider

$$
\begin{equation*}
f(z)=\frac{P(z)}{Q(z)} \quad \text { (week 23) and } \quad f(z)=\frac{P(z)}{Q(z)} e^{i m z} \tag{week24}
\end{equation*}
$$

Suppose that $f(z)$ has poles at points z_{1}, \ldots, z_{n} in the upper half plane. Suppose that $Q(z)$ has no zeros on the real axis.

With $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$denoting the closed contour

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f, z_{k}\right) .
$$

When the integral involving C_{R}^{+}tends to 0 as $R \rightarrow \infty$ we get

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x \text { or p.v. } \int_{-\infty}^{\infty} f(x) \mathrm{d} x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) \mathrm{d} x .
$$

Other loops in the exercises

$$
f(z)=\frac{1}{z^{4}+16}
$$

has one simple pole at $z_{0}=2 \mathrm{e}^{\pi i / 4}$ inside this loop when $R>2$. With an upper half circle instead as the loop we have 2 simple poles inside the loop at z_{0} and $2 \mathrm{e}^{3 \pi i / 4}$ as in the slide 7 .

MA3614 2023/4 Week 24 and 25, Page 8 of 24

A square as a loop in the exercises

In the context of the sum of a series

$$
\sum_{n=1}^{N} f(n), \quad f(z) \text { being even, }
$$

the following loop Γ_{N}, which is a square, is used.

This has length $L_{N}=4(2 N+1) . M_{N}=\max \left\{|f(z)|: z \in \Gamma_{N}\right\}$.
We need $M_{N} L_{N} \rightarrow 0$ as $N \rightarrow \infty$.
MA3614 2023/4 Week 24 and 25, Page 9 of 24

A sufficient condition for the C_{R}^{+}part to tend to 0

In week 23 we proved the following.
Suppose that $f(z)$ is a rational function of the form

$$
f(z)=\frac{P(z)}{Q(z)}
$$

with

$$
\begin{aligned}
P(z) & =a_{p} z^{p}+\cdots+a_{1} z+a_{0} \\
Q(z) & =b_{q} z^{q}+\cdots+b_{1} z+b_{0}
\end{aligned}
$$

where $a_{p} \neq 0, b_{q} \neq 0$. When $|z|=R$ is large

$$
|f(z)|=\mathcal{O}\left(R^{p-q}\right)=\mathcal{O}\left(\frac{1}{R^{q-p}}\right)
$$

$R M_{R} \rightarrow 0$ as $R \rightarrow \infty$ when $q-p \geq 2$, i.e. $q \geq p+2$.

Singularities on \mathbb{R} and Cauchy principal values

In the lectures and in the exercises of this week and next week we will also consider integrals of the form

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x
$$

when $f(x)$ has poles on the real axis. The integrals need to be considered in a principal valued sense. In the case of a singularity at 1 the indented contour is illustrated below.

The knowledge of the Laurent series enables us to determine the contribution from the smaller half circle.

MA3614 2023/4 Week 24 and 25, Page 10 of 24

The integrals on C_{R}^{+}when we have a e ${ }^{i m z}$ term With $z=x+i y, i m z=-m y+i m x, \mathrm{e}^{i m z}=\mathrm{e}^{-m y} \mathrm{e}^{i m x}$. When $m>0,\left|\mathrm{e}^{i m z}\right|=\mathrm{e}^{-m y} \leq 1$ when $y \geq 0$.
When $\operatorname{deg}(Q) \geq \operatorname{deg}(P)+2$ we have

$$
\int_{C_{R}^{+}} \frac{P(z)}{Q(z)} \mathrm{d} z \rightarrow 0 \text { and } \int_{C_{R}^{+}} \frac{P(z)}{Q(z)} \mathrm{e}^{i m z} \mathrm{~d} z \rightarrow 0
$$

as $R \rightarrow \infty$ by using the $M L$ inequality.
When $\operatorname{deg}(Q)=\operatorname{deg}(P)+1$ Jordan's lemma also gives

$$
\int_{C_{R}^{+}} \frac{P(z)}{Q(z)} e^{i m z} \mathrm{~d} z \rightarrow 0
$$

as $R \rightarrow \infty$.

Jordan lemma comments

When $\operatorname{deg}(Q)=\operatorname{deg}(P)+1$ there is a constant $A \geq 0$ such that for part of the integrand

$$
\left|\frac{P\left(R \mathrm{e}^{i \theta}\right) i R \mathrm{e}^{i \theta}}{Q\left(R \mathrm{e}^{i \theta}\right)}\right| \leq A, \quad \text { for sufficiently large } R
$$

Much of the detail is showing that for the other part to be considered

$$
\int_{0}^{\pi} \exp (-m R \sin \theta) \mathrm{d} \theta \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

Firstly, $\sin (\theta)=\sin (\pi-\theta)$ and

$$
\int_{0}^{\pi} \exp (-m R \sin \theta) \mathrm{d} \theta=2 \int_{0}^{\pi / 2} \exp (-m R \sin \theta) \mathrm{d} \theta
$$

A lower bound for $\sin (\theta)$ on $[0, \pi / 2]$

$\sin (\theta)$ is above the linear interpolant using $x=0, x=\pi / 2$.

$$
\sin (\theta) \geq \frac{2}{\pi} \theta
$$

MA3614 2023/4 Week 24 and 25, Page 15 of 24

Jordan's lemma, completing the detail

$$
\begin{aligned}
\sin (\theta) & \geq \frac{2}{\pi} \theta, \quad 0 \leq \theta \leq \frac{\pi}{2} \\
\exp (-R \sin (\theta)) & \leq \exp (-k \theta), \quad \text { with } k=\frac{2 R}{\pi} \\
\int_{0}^{\pi / 2} \exp (-R \sin \theta) \mathrm{d} \theta & \leq \int_{0}^{\pi / 2} \exp (-k \theta) \mathrm{d} \theta \\
& \leq \int_{0}^{\infty} \exp (-k \theta) \mathrm{d} \theta=\frac{1}{k} \rightarrow 0 \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

The value is 1 at $\theta=0$ and $\theta=\pi$ but small in the middle part.
MA3614 2023/4 Week 24 and 25, Page 14 of 24

Singularities on \mathbb{R} and Cauchy principal values

Suppose $f(z)$ has a simple pole on \mathbb{R} and we want to evaluate

$$
\int_{-\infty}^{\infty} f(x) d x
$$

The integrals need to be considered in a principal valued sense. In the case of a pole at $z=0$ we need an indented contour as illustrated below.

The knowledge of the Laurent series enables us to determine the contribution from the smaller half circle

MA3614 2023/4 Week 24 and 25, Page 17 of 24

The C_{r}^{+}contribution as $r \rightarrow 0$
When $f(z)$ has a simple pole at 0 it has a Laurent series of the following form for z sufficiently close to 0 .

$$
f(z)=\frac{a_{-1}}{z}+g(z) \text { where } g(z)=\text { analytic function. }
$$

$$
\int_{C_{r}^{+}} f(z) \mathrm{d} z=a_{-1} \int_{C_{r}^{+}} \frac{\mathrm{d} z}{z}+\int_{C_{r}^{+}} g(z) \mathrm{d} z
$$

$z(\theta)=r \mathrm{e}^{i \theta}, 0 \leq \theta \leq \pi$ describes C_{r}^{+}and the length of C_{r}^{+}is πr.

$$
\int_{C_{r}^{+}} \frac{\mathrm{d} z}{z}=\int_{0}^{\pi} \frac{i r \mathrm{e}^{i \theta}}{r \mathrm{e}^{i \theta}} \mathrm{~d} \theta=i \int_{0}^{\pi} \mathrm{d} \theta=\pi i
$$

As a function $g(z)$ analytic on and near C_{r}^{+}it is bounded there exists K such that $|g(z)| \leq K$ in the region. $(K=2|g(0)|$ will do if $g(0) \neq 0$ when r is sufficiently small.) Using the $M L$ inequality we have
$\left|\int_{C_{r}^{+}} g(z) \mathrm{d} z\right| \leq K \pi r \rightarrow 0 \quad$ as $r \rightarrow 0 . \quad \lim _{r \rightarrow 0} \int_{C_{r}^{+}} f(z) \mathrm{d} z=\pi i \operatorname{Res}(f, 0)$.

The principal value for a singularity on \mathbb{R}
When we have a singularity of $f(z)$ at $x_{0} \in \mathbb{R}$ the principal value means

$$
\text { p.v. } \int_{-R}^{R} f(x) \mathrm{d} x=\lim _{r \rightarrow 0}\left(\int_{-R}^{x_{0}-r} f(x) \mathrm{d} x+\int_{x_{0}+r}^{R} f(x) \mathrm{d} x\right)
$$

In the above the part of the real line can be described as $[-R, R] \backslash\left(x_{0}-r, x_{0}+r\right)$. The part of $[-R, R]$ that we are excluding has x_{0} exactly in the middle.

Examples which use indented contours

We show the following.

$$
I_{1}=\int_{-\infty}^{\infty} \frac{\sin (x)}{x} \mathrm{~d} x=\pi, \quad I_{2}=\int_{-\infty}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} \mathrm{~d} x=\pi
$$

We do these by using an indented contour and the following expressions.

$$
\begin{gathered}
I_{1}=\operatorname{Im}\left\{\operatorname{p.v} \int_{-\infty}^{\infty} \frac{e^{i x}}{x} \mathrm{~d} x\right\} . \\
I_{2}=\operatorname{Re}\left\{\operatorname{p.v} \int_{-\infty}^{\infty} \frac{1-\mathrm{e}^{2 i x}}{2 x^{2}} \mathrm{~d} x\right\} .
\end{gathered}
$$

I_{1} and I_{2} exist in the usual sense, it is just intermediate quantities which need the principal value meaning.

Term 1 exercises involving $p_{n}^{\prime} / p_{n}, q^{\prime} / q$
Let $z_{1}, z_{2}, \ldots, z_{n}$ be points in the complex plane and let

$$
p_{n}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

Prove by induction on n that

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\frac{1}{z-z_{1}}+\frac{1}{z-z_{2}}+\cdots+\frac{1}{z-z_{n}}
$$

Let

$$
q(z)=\left(z-z_{1}\right)^{r_{1}}\left(z-z_{2}\right)^{r_{2}} \cdots\left(z-z_{n}\right)^{r_{n}}
$$

where z_{1}, \ldots, z_{n} are distinct points. What can you say about the multiplicity of the zeros of $q^{\prime}(z)$ at the points z_{1}, \ldots, z_{n} ? Using a derivation based on partial fractions show that

$$
\frac{q^{\prime}(z)}{q(z)}=\frac{r_{1}}{z-z_{1}}+\frac{r_{2}}{z-z_{2}}+\cdots+\frac{r_{n}}{z-z_{n}}
$$

Note that the rational functions p_{n}^{\prime} / p_{n} and q^{\prime} / q have simple poles and the residues are positive integers. We generalise this next. of 24

The fundamental theorem of algebra

Let

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad a_{n} \neq 0
$$

denote a polynomial of degree n. Let

$$
f(z)=a_{n} z^{n}, \quad g(z)=a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

For R sufficiently large $|f(z)|>|g(z)|$ on the circle $|z|=R$. As $f(z)$ has a zero at $z=0$ of multiplicity n the use of Rouche's theorem implies that $p(z)=f(z)+g(z)$ also has n zeros inside $|z|=R$. This is the fundamental theorem of algebra and the proof here is independent of the proof given in chapter 6 .

Counting zeros and poles

Suppose that $f(z)$ is analytic in a domain except for a finite number of poles. Let

$$
G(z)=\frac{f^{\prime}(z)}{f(z)}
$$

Let z_{0} be a zero of $f(z)$ of multiplicity m and let z_{p} be a pole of $f(z)$ of order n. It can quickly be shown that

$$
\operatorname{Res}\left(G, z_{0}\right)=m, \quad \text { and } \quad \operatorname{Res}\left(G, z_{p}\right)=-n .
$$

Let $f(z)$ be analytic inside a simple loop Γ and let $N_{0}(f)$ be the number of zeros of $f(z)$ inside Γ. By the residue theorem

$$
N_{0}(f)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z .
$$

If $g(z)$ is also analytic inside C and $|g(z)|<|f(z)|$ on Γ then

$$
N_{0}(f+g)=N_{0}(f) .
$$

This is Rouche's theorem. A smaller enough change to $f(z)$ on 「 does not change the integer.

Another example using Rouche's theorem

 Let$$
\begin{aligned}
h(z) & =z^{5}+3 z^{3}-1=z^{5}\left(1+\frac{3}{z^{2}}-\frac{1}{z^{5}}\right) \\
& =z^{5} \tilde{h}(w), \quad \tilde{h}(w)=1+3 w^{2}-w^{5}, \quad w=\frac{1}{z}
\end{aligned}
$$

$$
h(z)=f(z)+g(z), \quad \text { with } \quad f(z)=z^{5}, \quad g(z)=3 z^{3}-1
$$

On the circle $|z|=2$ we have
$|g(z)| \leq 3(8)+1=25<32=|f(z)| . f(z)$ has one zero of multiplicity 5 at 0 . Thus by Rouche's theorem $h(z)$ has 5 zeros inside the circle $|z|=2$.
Similary by considering $\tilde{h}(w)$ with $\tilde{f}(w)=-w^{5}, \tilde{g}(w)=1+w^{2}$ and the circle $|w|=2$ we get all the roots of $\tilde{h}(w)$ satisfy $|w|<2$. Conclusion: All the roots of $f(z)$ satisfy $1 / 2<|z|<2$.

