
Several isolated singularities of f (z) inside Γ
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The Residue Theorem
If z1, z2, . . . , zn are isolated singularities inside Γ and C1,C2, . . . ,Cn

are non-intersecting circles traversed once in the anti-clockwise
direction then Γ ∪ (−C1) ∪ · · · ∪ (−Cn) is the boundary of a region
in which f (z) is analytic and∮

Γ
f (z) dz =

n∑
k=1

∮
Ck

f (z) dz

= 2πi
n∑

k=1

Res(f , zk).

With the knowledge of Laurent series to describe the behaviour of
f (z) in the vicinity of each point zk we get the above result.
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Earlier results with 0 or 1 isolated singularities
Week 13: Cauchy-Goursat theorem: If f is analytic in a simply
connected domain D and Γ is any loop (i.e. a closed contour) in D
then ∮

Γ
f (z) dz = 0.

No singularities inside Γ.

Week 18: The generalised Cauchy integral formula:
If f is analytic in a simply connected domain D and Γ is any loop
and z0 is inside Γ then

f (m)(z0)

m!
=

1

2πi

∮
Γ

f (z)

(z − z0)m+1
dz , m = 0, 1, 2, . . .

1 singularity inside Γ.
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The earlier results as a
special case of the Residue Theorem

∮
Γ
f (z) dz = 2πi

n∑
k=1

Res(f , zk).

I When f (z) is analytic inside Γ we have no isolated
singularities inside Γ, i.e. n = 0.

I When n = 1 and we have a pole at z1 of order m

Res(g , z1) =
f (m)(z1)

m!
, when g(z) =

f (z)

(z − z1)(m+1)
.

The earlier results were of course needed to establish the
residue theorem result.
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Techniques to calculate the residue
In the case of a simple pole of f (z) at z0 most examples for
calculating the residue have involved calculating the limit

Res(f , z0) = lim
z→z0

(z − z0)f (z).

In many of the examples L’Hopital’s rule has been used.

More generally when we have a pole of order m ≥ 1 we can
calculate the residue by using

Res(f , z0) =
1

(m − 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)mf (z)) .

We need to know the order of the pole to use the above.

It is sometimes possible to simplify the expression for
(z − z0)mf (z) before differentiation is done.
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Integrals on (−∞,∞) evaluated using residue theory
With P(z) and Q(z) being polynomials we consider

f (z) =
P(z)

Q(z)
(week 23) and f (z) =

P(z)

Q(z)
eimz . (week 24)

x

y

−R 0 R

C+
R

Suppose that f (z) has poles at
points z1, . . . , zn in the upper
half plane. Suppose that Q(z)
has no zeros on the real axis.

With ΓR = [−R,R] ∪ C+
R denoting the closed contour∮

ΓR

f (z) dz =

∫ R

−R
f (x) dx +

∫
C+
R

f (z) dz = 2πi
n∑

k=1

Res(f , zk).

When the integral involving C+
R tends to 0 as R →∞ we get∫ ∞

−∞
f (x) dx or p.v.

∫ ∞
−∞

f (x) dx = lim
R→∞

∫ R

−R
f (x) dx .
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Examples in the lectures
In week 23. ∫ ∞

−∞

dx

x2 + 2x + 2
= π.

I =

∫ ∞
−∞

1

x4 + 16
dx =

π
√

2

16
.

In week 24 (this week). The first integral is on the exercise sheet.
Let a > 0. ∫ ∞

−∞

eiax

1 + x2
dx = πe−a.

∫ ∞
−∞

x sin(x)

1 + x2
dx = πe−1.

The last example will need Jordan’s lemma to justify that the
contribution from C+

R tends to 0 as R →∞.
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Other loops in the exercises

R

Ri

γR

0

Cq
R

x

y

f (z) =
1

z4 + 16

has one simple pole at z0 = 2eπi/4 inside this loop when R > 2.
With an upper half circle instead as the loop we have 2 simple
poles inside the loop at z0 and 2e3πi/4 as in the slide 7.
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A square as a loop in the exercises
In the context of the sum of a series

N∑
n=1

f (n), f (z) being even,

the following loop ΓN , which is a square, is used.

(N + 1
2 ,N + 1

2)

This has length LN = 4(2N + 1). MN = max{|f (z)| : z ∈ ΓN} .
We need MNLN → 0 as N →∞.
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Singularities on R and Cauchy principal values
In the lectures and in the exercises of this week and next week we
will also consider integrals of the form∫ ∞

−∞
f (x) dx

when f (x) has poles on the real axis. The integrals need to be
considered in a principal valued sense. In the case of a singularity
at 1 the indented contour is illustrated below.

x

y

1−R 0 R

C+
R

The knowledge of the Laurent series enables us to determine the
contribution from the smaller half circle.

MA3614 2023/4 Week 24 and 25, Page 10 of 24

A sufficient condition for the C+
R part to tend to 0

In week 23 we proved the following.

Suppose that f (z) is a rational function of the form

f (z) =
P(z)

Q(z)
,

with

P(z) = apz
p + · · ·+ a1z + a0,

Q(z) = bqz
q + · · ·+ b1z + b0

where ap 6= 0, bq 6= 0. When |z | = R is large

|f (z)| = O
(
Rp−q) = O

(
1

Rq−p

)
.

RMR → 0 as R →∞ when q − p ≥ 2, i.e. q ≥ p + 2.
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The integrals on C+
R when we have a eimz term

With z = x + iy , imz = −my + imx , eimz = e−myeimx . When
m > 0, |eimz | = e−my ≤ 1 when y ≥ 0.

When deg(Q) ≥ deg(P) + 2 we have∫
C+
R

P(z)

Q(z)
dz → 0 and

∫
C+
R

P(z)

Q(z)
eimz dz → 0

as R →∞ by using the ML inequality.

When deg(Q) = deg(P) + 1 Jordan’s lemma also gives∫
C+
R

P(z)

Q(z)
eimz dz → 0

as R →∞.
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Jordan lemma comments
When deg(Q) = deg(P) + 1 there is a constant A ≥ 0 such that
for part of the integrand∣∣∣∣∣P(Reiθ)iReiθ

Q(Reiθ)

∣∣∣∣∣ ≤ A, for sufficiently large R.

Much of the detail is showing that for the other part to be
considered ∫ π

0
exp(−mR sin θ) dθ → 0 as R →∞.

Firstly, sin(θ) = sin(π − θ) and∫ π

0
exp(−mR sin θ) dθ = 2

∫ π/2

0
exp(−mR sin θ) dθ.
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Graphs of exp(−mR sin(θ)), mR = 1, 2 and 4
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Graphs of exp(-mR sin(t)), 0<t<pi
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The value is 1 at θ = 0 and θ = π but small in the middle part.
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A lower bound for sin(θ) on [0, π/2]
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sin(θ) is above the linear interpolant using x = 0, x = π/2.

sin(θ) ≥ 2

π
θ.
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Jordan’s lemma, completing the detail

sin(θ) ≥ 2

π
θ, 0 ≤ θ ≤ π

2
.

exp(−R sin(θ)) ≤ exp(−kθ), with k =
2R

π
.

∫ π/2

0
exp(−R sin θ) dθ ≤

∫ π/2

0
exp(−kθ) dθ

≤
∫ ∞

0
exp(−kθ) dθ =

1

k
→ 0 as R →∞.
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Singularities on R and Cauchy principal values
Suppose f (z) has a simple pole on R and we want to evaluate∫ ∞

−∞
f (x) dx .

The integrals need to be considered in a principal valued sense. In
the case of a pole at z = 0 we need an indented contour as
illustrated below.

x

y

−R −r 0 r R

−C+
r

C+
R

The knowledge of the Laurent series enables us to determine the
contribution from the smaller half circle.
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The principal value for a singularity on R
When we have a singularity of f (z) at x0 ∈ R the principal value
means

p.v.

∫ R

−R
f (x)dx = lim

r→0

(∫ x0−r

−R
f (x)dx +

∫ R

x0+r
f (x)dx

)
In the above the part of the real line can be described as
[−R,R] \ (x0 − r , x0 + r). The part of [−R,R] that we are
excluding has x0 exactly in the middle.
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The C+
r contribution as r → 0

When f (z) has a simple pole at 0 it has a Laurent series of the
following form for z sufficiently close to 0.

f (z) =
a−1

z
+ g(z) where g(z) =analytic function.∫

C+
r

f (z) dz = a−1

∫
C+
r

dz

z
+

∫
C+
r

g(z) dz .

z(θ) = reiθ, 0 ≤ θ ≤ π describes C+
r and the length of C+

r is πr .∫
C+
r

dz

z
=

∫ π

0

ireiθ

reiθ
dθ = i

∫ π

0
dθ = πi .

As a function g(z) analytic on and near C+
r it is bounded there

exists K such that |g(z)| ≤ K in the region. (K = 2|g(0)| will do
if g(0) 6= 0 when r is sufficiently small.) Using the ML inequality
we have∣∣∣∣∫

C+
r

g(z) dz

∣∣∣∣ ≤ Kπr → 0 as r → 0. lim
r→0

∫
C+
r

f (z) dz = πiRes(f , 0).
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Examples which use indented contours
We show the following.

I1 =

∫ ∞
−∞

sin(x)

x
dx = π, I2 =

∫ ∞
−∞

sin2(x)

x2
dx = π.

We do these by using an indented contour and the following
expressions.

I1 = Im

{
p.v

∫ ∞
−∞

eix

x
dx

}
.

I2 = Re

{
p.v

∫ ∞
−∞

1− e2ix

2x2
dx

}
.

I1 and I2 exist in the usual sense, it is just intermediate quantities
which need the principal value meaning.
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Term 1 exercises involving p′n/pn, q
′/q

Let z1, z2, . . . , zn be points in the complex plane and let

pn(z) = (z − z1)(z − z2) · · · (z − zn).

Prove by induction on n that

p′n(z)

pn(z)
=

1

z − z1
+

1

z − z2
+ · · ·+ 1

z − zn
.

Let
q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn

where z1, . . . , zn are distinct points. What can you say about the
multiplicity of the zeros of q′(z) at the points z1, . . . , zn? Using a
derivation based on partial fractions show that

q′(z)

q(z)
=

r1
z − z1

+
r2

z − z2
+ · · ·+ rn

z − zn
.

Note that the rational functions p′n/pn and q′/q have simple poles
and the residues are positive integers. We generalise this next.
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Counting zeros and poles
Suppose that f (z) is analytic in a domain except for a finite
number of poles. Let

G (z) =
f ′(z)

f (z)
.

Let z0 be a zero of f (z) of multiplicity m and let zp be a pole of
f (z) of order n. It can quickly be shown that

Res(G , z0) = m, and Res(G , zp) = −n.

Let f (z) be analytic inside a simple loop Γ and let N0(f ) be the
number of zeros of f (z) inside Γ. By the residue theorem

N0(f ) =
1

2πi

∮
Γ

f ′(z)

f (z)
dz .

If g(z) is also analytic inside C and |g(z)| < |f (z)| on Γ then

N0(f + g) = N0(f ).

This is Rouche’s theorem. A smaller enough change to f (z) on Γ
does not change the integer.
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The fundamental theorem of algebra
Let

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, an 6= 0

denote a polynomial of degree n. Let

f (z) = anz
n, g(z) = an−1z

n−1 + · · ·+ a1z + a0.

For R sufficiently large |f (z)| > |g(z)| on the circle |z | = R. As
f (z) has a zero at z = 0 of multiplicity n the use of Rouche’s
theorem implies that p(z) = f (z) + g(z) also has n zeros
inside |z | = R. This is the fundamental theorem of algebra and the
proof here is independent of the proof given in chapter 6.
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Another example using Rouche’s theorem
Let

h(z) = z5 + 3z3 − 1 = z5

(
1 +

3

z2
− 1

z5

)
= z5h̃(w), h̃(w) = 1 + 3w2 − w5, w =

1

z
.

h(z) = f (z) + g(z), with f (z) = z5, g(z) = 3z3 − 1.

On the circle |z | = 2 we have
|g(z)| ≤ 3(8) + 1 = 25 < 32 = |f (z)|. f (z) has one zero of
multiplicity 5 at 0. Thus by Rouche’s theorem h(z) has 5 zeros
inside the circle |z | = 2.

Similary by considering h̃(w) with f̃ (w) = −w5, g̃(w) = 1 + w2

and the circle |w | = 2 we get all the roots of h̃(w) satisfy |w | < 2.

Conclusion: All the roots of f (z) satisfy 1/2 < |z | < 2.
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