Results with power series

Revision: Key formula

Let f be a function which is analytic in a domain D and let Γ be a positively orientated loop in D and let z be a point inside D.

The generalised Cauchy integral formula giving $f^{(n)}\left(z_{0}\right)$

$$
\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, \quad n=0,1,2, \cdots
$$

Taylor's series

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

If $f(z)$ is analytic in $\left|z-z_{0}\right|<R$ then we have uniform convergence to $f(z)$ in $\left|z-z_{0}\right| \leq R^{\prime}<R$ for all $R^{\prime}<R$.

Power series

A series of the form

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The terms a_{0}, a_{1}, \ldots are the coefficients of the power series.
The series always converges at $z=z_{0}$. When it converges at other points the region where it converges is a disk $\left\{z:\left|z-z_{0}\right|<R\right\}$ and it is analytic in the disk. A proof was given last week.
The largest R is the radius of convergence. When $R<\infty$ $\left\{z:\left|z-z_{0}\right|=R\right\}$ is the circle of convergence. In all cases

$$
R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}}
$$

In our examples we obtain R using the ratio test or the root test.
$R=0$ when we only have convergence at $z=z_{0}$.
$R=\infty$ when we have convergence for all z.
MA3614 2023/4 Week 22, Page 3 of 16
$f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, \quad a_{n}=\frac{f^{(n)}(0)}{n!}=\frac{1}{2 \pi r^{n}} \int_{-\pi}^{\pi} f\left(r e^{i t}\right) \mathrm{e}^{-i n t} \mathrm{~d} t$.

- Odd functions only involve odd powers. Even functions only involve even powers. Real valued functions have real coefficients.
- In the region where the series converges we can do the following.
We can differentiate and integrate term-by-term.
We can multiply two series, i.e.

$$
c_{0}+c_{1} z+c_{2} z^{2}+\cdots=\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right)\left(b_{0}+b_{1} z+b_{2} z^{2}+\cdots\right)
$$

$$
\begin{aligned}
& c_{0}=a_{0} b_{0} \\
& c_{1}=a_{1} b_{0}+a_{0} b_{1} \\
& c_{2}=a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}
\end{aligned}
$$

The formula for c_{n} is known as the Caychy product. 2 MA3614 202344 eek 22 , Page 2 or

Some examples of power series

1.

$$
\sum_{n=0}^{\infty}(n z)^{n}, \quad \sum_{n=0}^{\infty} \frac{2^{n}}{n!} z^{n}
$$

The first series only converges at $z=0$. The terms are not bounded when $z \neq 0$.
By the ratio test the second series converges for all z.
2.

$$
\sum_{n=0}^{\infty} \frac{n+1}{n^{2}+2}(z-1)^{n}
$$

By the ratio test the circle of convergence is $|z-1|=1$.

$$
\begin{equation*}
\sum_{n=0}^{\infty}(2+\sin (n)) z^{n} \tag{3.}
\end{equation*}
$$

With $a_{n}=2+\sin (n) \in[1,3], a_{n}^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$ and by the root test the circle of convergence is $|z|=1$.

MA3614 2023/4 Week 22, Page 4 of 16

Comments about the "general case"

Suppose the sequence $\left(\left|a_{n}\right|^{1 / n}\right)$ does not converge and thus the root test cannot be used. If the sequence $\left(\left|a_{n}\right|^{1 / n}\right)$ is not bounded then for all $z \neq z_{0}$ we have for some sufficiently large n

$$
\left|a_{n}\right|^{1 / n}>\frac{1}{\left|z-z_{0}\right|} \quad \text { and hence }\left|a_{n}\right|\left|z-z_{0}\right|^{n}>1
$$

and the terms $\left(a_{n}\left(z-z_{0}\right)^{n}\right)$ cannot tend to 0 as $n \rightarrow \infty$. Thus the series only converges at $z=z_{0}$.
If the sequence is bounded then we can define

$$
b_{n}=\sup \left\{\left|a_{m}\right|^{1 / m}: m \geq n\right\} \geq 0
$$

This is a decreasing sequence bounded below by 0 and converges by the monotone convergence theorem. We label the limit as $\alpha \geq 0$. There is a theorem known as the Cauchy-Hadamard theorem which is briefly that

$$
\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { has radius of convergence } R=\frac{1}{\alpha}
$$

MA3614 2023/4 Week 22, Page 5 of 16

Laurent series

A Laurent series is a series of the form

$$
\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
$$

When it converges the region is an annulus $\left\{z: r<\left|z-z_{0}\right|<R\right\}$.

$$
\begin{aligned}
& \sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}, \quad \text { converges in }\left|z-z_{0}\right|>r \\
& \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad \text { converges in }\left|z-z_{0}\right|<R
\end{aligned}
$$

To be a function defined at some points we need the coefficients a_{n} to be such that $r<R$.

Properties of a function defined by a power series

Let

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad R=\frac{1}{\lim \sup \left|a_{n}\right|^{1 / n}} .
$$

When $R>0$ this defines an analytic function in $\left|z-z_{0}\right|<R$.
One way to relate the coefficients a_{n} to the derivatives of $f(z)$ is to use the generalised Cauchy integral formula. We take a loop 「 in the disk with z_{0} inside the loop.

$$
\begin{aligned}
\frac{f^{(m)}\left(z_{0}\right)}{m!} & =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{m+1}} d z \\
& =\frac{1}{2 \pi i} \sum_{n=0}^{\infty} a_{n} \oint_{\Gamma}\left(z-z_{0}\right)^{n-(m+1)} \mathrm{d} z
\end{aligned}
$$

The only integral in the last line which is non-zero is when $n-(m+1)=-1$, i.e. when $n=m$ and we get

$$
\frac{f^{(m)}\left(z_{0}\right)}{m!}=a_{m}
$$

MA3614 2023/4 Week 22, Page 6 of 16

Example: construction of a Laurent series

$$
f(z)=\frac{1}{(1-z)(2-z)}=\frac{A}{1-z}+\frac{B}{2-z}
$$

$$
\frac{1}{1-z}
$$

This has a geometric series representation in $|z|<1$. It has a series representation in $|z|>1$ involving powers of $1 / z$.
This has a geometric series representation in $|z|<2$
$\frac{1}{2-z}$ involving powers of $z / 2$.
$\overline{2-z} \quad$ It has a series representation in $|z|>2$ involving powers of $2 / z$.
Laurent series for $f(z)$ in different regions.
$|z|<1 \quad$ Combine the geometric series.
$1<|z|<2$ Combine the power series for the $1 /(2-z)$ term with the series with negative powers for the $1 /(1-z)$ term.
$|z|>2 \quad$ Combine the series involving only negative powers for both parts. Ma3614 2023/4 Week 22, Page 8 of 16

Steps in proving the Laurent series representation

Some points about the manipulation

$$
\begin{gathered}
g(z)=\frac{1}{c-z} . \\
c-z=c\left(1-\frac{z}{c}\right)=-z\left(1-\frac{c}{z}\right) .
\end{gathered}
$$

When $|z / c|<1$ we have the geometric series

$$
g(z)=\left(\frac{1}{c}\right)\left(1+\left(\frac{z}{c}\right)+\left(\frac{z}{c}\right)^{2}+\cdots\right)
$$

When $|z / c|>1,|c / z|<1$ and we have

$$
g(z)=-\left(\frac{1}{z}\right)\left(1+\frac{c}{z}+\left(\frac{c}{z}\right)^{2}+\cdots\right)
$$

We get the representation involving negative powers.

Steps in proving ... continued

Let z be inside Γ and outside Γ^{\prime}. By the Cauchy integral formula

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\frac{1}{2 \pi i} \oint_{\Gamma \cup \Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta+\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta .
\end{aligned}
$$

As in the Taylor series proof the non-negative powers part is $\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}, \quad a_{k}=\frac{1}{2 \pi i} \oint_{C_{2}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \mathrm{~d} \zeta$.
The negative powers come from re-writing the term

$$
\begin{gathered}
\frac{1}{2 \pi i} \oint_{C_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\sum_{k=1}^{\infty} a_{-k}\left(z-z_{0}\right)^{-k} \\
a_{-k}=-\frac{1}{2 \pi i} \oint_{C_{1}} f(\zeta)\left(\zeta-z_{0}\right)^{k-1} \mathrm{~d} \zeta, \quad k=1,2, \ldots
\end{gathered}
$$

Further effort enables C_{2} and $-C_{1}$ to be replaced by a curve C. MA3614 2023/4 Week 22, Page 11 of 16

$C_{1} \cup C_{2}$ is the boundary of an annulus
where $f(z)$ is analytic in a slightly larger annulus. Note that C_{1} is clockwise, C_{2} is anti-clockwise.
The loop Γ is such that z is inside Γ.

Due to cancellation on the radial lines we have for any function g

$$
\oint_{\Gamma} g(\zeta) \mathrm{d} \zeta+\oint_{\Gamma^{\prime}} g(\zeta) \mathrm{d} \zeta=\oint_{C_{1}} g(\zeta) \mathrm{d} \zeta+\oint_{C_{2}} g(\zeta) \mathrm{d} \zeta
$$

ma3614 2023/4 Week 22, Page 10 of 16

Laurent series representation

Let $f(z)$ be analytic in an annulus $r<\left|z-z_{0}\right|<R$. Then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

The series converge uniformly in any closed sub-annulus $r<\rho_{1} \leq\left|z-z_{0}\right| \leq \rho_{2}<R$. The coefficients a_{n} are given by

$$
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

where C is any positively orientated simple closed curve lying in the annulus which has z_{0} as an interior point. This indicates that the representation is unique.

Also note that in none of the examples that have been done did we obtain a_{n} by evaluating this integral.

MA3614 2023/4 Week 22, Page 12 of 16

Laurent series: Classifying zeros and poles When $f(z)$ has a zero of multiplicity $m \geq 1$ at z_{0} we have

$$
f(z)=a_{m}\left(z-z_{0}\right)^{m}+a_{m+1}\left(z-z_{0}\right)^{m+1}+\cdots=\left(z-z_{0}\right)^{m} g(z)
$$

with $g(z)$ being analytic at z_{0} and $g\left(z_{0}\right)=a_{m} \neq 0$.
If $f(z)$ has a removable singularity at z_{0} then it has a Laurent series valid in $0<\left|z-z_{0}\right|<R$ with no negative powers, i.e.

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { and } \quad \lim _{z \rightarrow z_{0}} f(z)=a_{0}
$$

If $f(z)$ has a pole of order m then in $0<\left|z-z_{0}\right|<R$ we have

$$
f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}
$$

with $\phi(z)$ being analytic at z_{0} and $\phi\left(z_{0}\right)=a_{-m} \neq 0$.
An essential singularity at z_{0} has infinitely many negative powers

$$
f(z)=\sum_{n=-\infty}^{\infty} \begin{array}{r}
\text { MA3614 } \\
a_{n}\left(z-z_{0}\right)^{n}, \quad 0<\left|z-z_{0}\right|<R . \\
\text { 2023/4 Week 22, Page } 13 \text { of } 16
\end{array}
$$

Complex identity and the related real relation

The isolated zeros property of non-zero analytic functions is a way to quickly explain why many identities are also true in the complex plane. For example,

$$
\begin{aligned}
\cos ^{2}(x)+\sin ^{2}(x) & =1 \\
\sin (2 x) & =2 \sin (x) \cos (x)
\end{aligned}
$$

being true for all $x \in \mathbb{R}$ also hold for all $z \in \mathbb{C}$, i.e.

$$
\begin{aligned}
\cos ^{2}(z)+\sin ^{2}(z) & =1 \\
\sin (2 z) & =2 \sin (z) \cos (z)
\end{aligned}
$$

Isolated zeros of non-zero analytic functions

When $f(z)$ has a zero of multiplicity $m \geq 1$ at z_{0} we have

$$
f(z)=a_{m}\left(z-z_{0}\right)^{m}+a_{m+1}\left(z-z_{0}\right)^{m+1}+\cdots=\left(z-z_{0}\right)^{m} g(z)
$$

with $g(z)$ being analytic at z_{0} and $g\left(z_{0}\right)=a_{m} \neq 0$. These properties of $g(z)$ imply that in a neighbourhood $\left\{z:\left|z-z_{0}\right|<\delta\right\}$, for some $\delta>0, g(z)$ is non-zero and thus $f(z)$ is non-zero. The zeros of $f(z)$ are isolated.
As an example suppose that the Cauchy Riemann equations are used to show that the following is analytic.

$$
\begin{gathered}
f(x+i y)=\left(-2 x^{2}-10 x y+6 x+2 y^{2}+15 y\right)+i\left(5 x^{2}-4 x y-15 x-5 y^{2}+6 y\right) \\
f(x)=\left(-2 x^{2}+6 x\right)+i\left(5 x^{2}-15 x\right) \\
g(z)=\left(-2 z^{2}+6 z\right)+i\left(5 z^{2}-15 z\right)
\end{gathered}
$$

$f(x+i y)$ and $g(z)$ are both analytic with $f(z)-g(z)=0$ on the real line. Hence $f(z)=g(z)$ for all z.

MA3614 2023/4 Week 22, Page 14 of 16

Integrating a Laurent Series

Let $f(z)$ be analytic in an annulus with the following Laurent series representation.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad 0<\left|z-z_{0}\right|<R
$$

The coefficient a_{-1} is called the residue at z_{0}. We write $\operatorname{Res}\left(f, z_{0}\right)$. Let Γ denote a loop traversed once in the anti-clockwise sense with z_{0} inside Γ. Then term-by-term integration gives

$$
\oint_{\Gamma} f(z) d z=2 \pi i a_{-1}
$$

This is one of properties we need to show residue theorem which is in chapter 8 of the main notes.

