
Revision: Key formula
Let f be a function which is analytic in a domain D and let Γ be a
positively orientated loop in D and let z be a point inside D.

The generalised Cauchy integral formula giving f (n)(z0)

f (n)(z0)

n!
=

1

2πi

∮
Γ

f (z)

(z − z0)n+1
dz , n = 0, 1, 2, · · ·

Taylor’s series

f (z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

If f (z) is analytic in |z − z0| < R then we have uniform
convergence to f (z) in |z − z0| ≤ R ′ < R for all R ′ < R.

MA3614 2023/4 Week 22, Page 1 of 16

Results with power series

f (z) =
∞∑
n=0

anz
n, an =

f (n)(0)

n!
=

1

2πrn

∫ π

−π
f (reit) e−int dt.

I Odd functions only involve odd powers. Even functions only
involve even powers. Real valued functions have real
coefficients.

I In the region where the series converges we can do the
following.
We can differentiate and integrate term-by-term.
We can multiply two series, i.e.

c0+c1z+c2z
2+· · · = (a0+a1z+a2z

2+· · · )(b0+b1z+b2z
2+· · · ),

c0 = a0b0,

c1 = a1b0 + a0b1,

c2 = a2b0 + a1b1 + a0b2.

The formula for cn is known as the Cauchy product.
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Power series
A series of the form

∞∑
n=0

an(z − z0)n.

The terms a0, a1, . . . are the coefficients of the power series.

The series always converges at z = z0. When it converges at other
points the region where it converges is a disk {z : |z − z0| < R}
and it is analytic in the disk. A proof was given last week.

The largest R is the radius of convergence. When R <∞
{z : |z − z0| = R} is the circle of convergence. In all cases

R =
1

lim sup |an|1/n
.

In our examples we obtain R using the ratio test or the root test.

R = 0 when we only have convergence at z = z0.

R =∞ when we have convergence for all z .
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Some examples of power series

1.
∞∑
n=0

(nz)n,
∞∑
n=0

2n

n!
zn.

The first series only converges at z = 0. The terms are not
bounded when z 6= 0.
By the ratio test the second series converges for all z .

2.
∞∑
n=0

n + 1

n2 + 2
(z − 1)n.

By the ratio test the circle of convergence is |z − 1| = 1.

3.
∞∑
n=0

(2 + sin(n))zn.

With an = 2 + sin(n) ∈ [1, 3], a
1/n
n → 1 as n→∞ and by the

root test the circle of convergence is |z | = 1.
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Comments about the “general case”
Suppose the sequence (|an|1/n) does not converge and thus the
root test cannot be used. If the sequence (|an|1/n) is not bounded
then for all z 6= z0 we have for some sufficiently large n

|an|1/n >
1

|z − z0|
and hence |an||z − z0|n > 1

and the terms (an(z − z0)n) cannot tend to 0 as n→∞. Thus the
series only converges at z = z0.

If the sequence is bounded then we can define

bn = sup{|am|1/m : m ≥ n} ≥ 0.

This is a decreasing sequence bounded below by 0 and converges
by the monotone convergence theorem. We label the limit as
α ≥ 0. There is a theorem known as the Cauchy-Hadamard
theorem which is briefly that

∞∑
n=0

an(z − z0)n has radius of convergence R =
1

α
.
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Properties of a function defined by a power series
Let

f (z) =
∞∑
n=0

an(z − z0)n, R =
1

lim sup |an|1/n
.

When R > 0 this defines an analytic function in |z − z0| < R.

One way to relate the coefficients an to the derivatives of f (z) is
to use the generalised Cauchy integral formula. We take a loop Γ
in the disk with z0 inside the loop.

f (m)(z0)

m!
=

1

2πi

∮
Γ

f (z)

(z − z0)m+1
dz

=
1

2πi

∞∑
n=0

an

∮
Γ
(z − z0)n−(m+1) dz .

The only integral in the last line which is non-zero is when
n − (m + 1) = −1, i.e. when n = m and we get

f (m)(z0)

m!
= am.
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Laurent series
A Laurent series is a series of the form

∞∑
n=−∞

an(z − z0)n.

When it converges the region is an annulus {z : r < |z − z0| < R}.

−1∑
n=−∞

an(z − z0)n, converges in |z − z0| > r .

∞∑
n=0

an(z − z0)n, converges in |z − z0| < R.

To be a function defined at some points we need the coefficients
an to be such that r < R.

MA3614 2023/4 Week 22, Page 7 of 16

Example: construction of a Laurent series

f (z) =
1

(1− z)(2− z)
=

A

1− z
+

B

2− z
.

1

1− z

This has a geometric series representation in |z | < 1.
It has a series representation in |z | > 1 involving pow-
ers of 1/z .

1

2− z

This has a geometric series representation in |z | < 2
involving powers of z/2.
It has a series representation in |z | > 2 involving pow-
ers of 2/z .

Laurent series for f (z) in different regions.

|z | < 1 Combine the geometric series.
1 < |z | < 2 Combine the power series for the 1/(2 − z)

term with the series with negative powers for the
1/(1− z) term.

|z | > 2 Combine the series involving only negative powers
for both parts.
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Some points about the manipulation

g(z) =
1

c − z
.

c − z = c
(

1− z

c

)
= −z

(
1− c

z

)
.

When |z/c | < 1 we have the geometric series

g(z) =

(
1

c

)(
1 +

(z
c

)
+
(z
c

)2
+ · · ·

)
When |z/c | > 1, |c/z | < 1 and we have

g(z) = −
(

1

z

)(
1 +

c

z
+
(c
z

)2
+ · · ·

)
.

We get the representation involving negative powers.
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Steps in proving the Laurent series representation

z0 C1 C2

C1 ∪ C2 is the boundary of an annulus
where f (z) is analytic in a slightly larger annulus.
Note that C1 is clockwise, C2 is anti-clockwise.

The loop Γ is such that z is inside Γ.

z0

z

Γ z0

z

Γ′

Due to cancellation on the radial lines we have for any function g∮
Γ
g(ζ) dζ +

∮
Γ′

g(ζ) dζ =

∮
C1

g(ζ) dζ +

∮
C2

g(ζ) dζ.
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Steps in proving · · · continued
Let z be inside Γ and outside Γ′. By the Cauchy integral formula

f (z) =
1

2πi

∮
Γ

f (ζ)

ζ − z
dζ =

1

2πi

∮
Γ∪Γ′

f (ζ)

ζ − z
dζ

=
1

2πi

∮
C1

f (ζ)

ζ − z
dζ +

1

2πi

∮
C2

f (ζ)

ζ − z
dζ.

As in the Taylor series proof the non-negative powers part is
1

2πi

∮
C2

f (ζ)

ζ − z
dζ =

∞∑
k=0

ak(z−z0)k , ak =
1

2πi

∮
C2

f (ζ)

(ζ − z0)k+1
dζ.

The negative powers come from re-writing the term
1

2πi

∮
C1

f (ζ)

ζ − z
dζ =

∞∑
k=1

a−k(z − z0)−k ,

a−k = − 1

2πi

∮
C1

f (ζ)(ζ − z0)k−1 dζ, k = 1, 2, . . .

Further effort enables C2 and −C1 to be replaced by a curve C .
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Laurent series representation
Let f (z) be analytic in an annulus r < |z − z0| < R. Then

f (z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n.

The series converge uniformly in any closed sub-annulus
r < ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients an are given by

an =
1

2πi

∮
C

f (z)

(z − z0)n+1
dz ,

where C is any positively orientated simple closed curve lying in
the annulus which has z0 as an interior point.
This indicates that the representation is unique.

Also note that in none of the examples that have been done did we
obtain an by evaluating this integral.
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Laurent series: Classifying zeros and poles
When f (z) has a zero of multiplicity m ≥ 1 at z0 we have

f (z) = am(z − z0)m + am+1(z − z0)m+1 + · · · = (z − z0)mg(z)

with g(z) being analytic at z0 and g(z0) = am 6= 0.

If f (z) has a removable singularity at z0 then it has a Laurent
series valid in 0 < |z − z0| < R with no negative powers, i.e.

f (z) =
∞∑
n=0

an(z − z0)n and lim
z→z0

f (z) = a0.

If f (z) has a pole of order m then in 0 < |z − z0| < R we have

f (z) =
∞∑

n=−m
an(z − z0)n =

φ(z)

(z − z0)m

with φ(z) being analytic at z0 and φ(z0) = a−m 6= 0.

An essential singularity at z0 has infinitely many negative powers

f (z) =
∞∑

n=−∞
an(z − z0)n, 0 < |z − z0| < R.
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Isolated zeros of non-zero analytic functions
When f (z) has a zero of multiplicity m ≥ 1 at z0 we have

f (z) = am(z − z0)m + am+1(z − z0)m+1 + · · · = (z − z0)mg(z)

with g(z) being analytic at z0 and g(z0) = am 6= 0. These
properties of g(z) imply that in a neighbourhood
{z : |z − z0| < δ}, for some δ > 0, g(z) is non-zero and thus f (z)
is non-zero. The zeros of f (z) are isolated.
As an example suppose that the Cauchy Riemann equations are
used to show that the following is analytic.

f (x+iy) = (−2x2−10xy+6x+2y2+15y)+i(5x2−4xy−15x−5y2+6y).

f (x) = (−2x2 + 6x) + i(5x2 − 15x).

g(z) = (−2z2 + 6z) + i(5z2 − 15z).

f (x + iy) and g(z) are both analytic with f (z)− g(z) = 0 on the
real line. Hence f (z) = g(z) for all z .
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Complex identity and the related real relation
The isolated zeros property of non-zero analytic functions is a way
to quickly explain why many identities are also true in the complex
plane. For example,

cos2(x) + sin2(x) = 1,

sin(2x) = 2 sin(x) cos(x),

being true for all x ∈ R also hold for all z ∈ C, i.e.

cos2(z) + sin2(z) = 1,

sin(2z) = 2 sin(z) cos(z).
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Integrating a Laurent Series
Let f (z) be analytic in an annulus with the following Laurent series
representation.

f (z) =
∞∑

n=−∞
an(z − z0)n, 0 < |z − z0| < R.

The coefficient a−1 is called the residue at z0. We write Res(f , z0).

Let Γ denote a loop traversed once in the anti-clockwise sense with
z0 inside Γ. Then term-by-term integration gives∮

Γ
f (z) dz = 2πia−1.

This is one of properties we need to show residue theorem which is
in chapter 8 of the main notes.
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