## Where will chap 4 results appear again?

Let

$$
R(z)=\frac{p(z)}{\left(z-\zeta_{1}\right)^{r_{1}}\left(z-\zeta_{2}\right)^{r_{2}} \cdots\left(z-\zeta_{n}\right)^{r_{n}}}
$$

When $\operatorname{deg}(p)<r_{1}+\cdots+r_{n}$ we have a partial fraction representation
$\left(\frac{A_{1,1}}{z-\zeta_{1}}+\cdots+\frac{A_{r_{1}, 1}}{\left(z-\zeta_{1}\right)^{r_{1}}}\right)+\cdots+\left(\frac{A_{1, n}}{z-\zeta_{n}}+\cdots+\frac{A_{r_{n}, n}}{\left(z-\zeta_{n}\right)^{r_{n}}}\right)$.
The coefficients are

$$
A_{i, j}=\frac{1}{\left(r_{j}-i\right)!} \lim _{z \rightarrow \zeta_{j}}\left(\frac{\mathrm{~d}^{r_{j}-i}}{\mathrm{~d} z^{r_{j}-i}}\left(z-\zeta_{j}\right)^{r_{j}} R(z)\right)
$$

The residues $A_{1,1}, \ldots, A_{1, n}$ will appear at the end of chap 5 and in term 2. In term 2 we will see that in the $A_{1, j}$ case we can replace $R(z)$ by $f(z)$ for any function $f$ with an isolated singularity at $\zeta_{j}$.

Where will chap 4 results appear again continued?
Consider a real interval $-\pi<\theta \leq \pi$. By the substitution $z=\mathrm{e}^{i \theta}$ we get the unit circle $C$ for $z$ considered once in the anti-clockwise direction.

$$
\frac{\mathrm{d} z}{\mathrm{~d} \theta}=i e^{i \theta}=i z, \quad \frac{\mathrm{~d} \theta}{\mathrm{~d} z}=\frac{1}{i z} .
$$

Observe that

$$
\cos \theta=\frac{1}{2}\left(\mathrm{e}^{i \theta}+\mathrm{e}^{-i \theta}\right)=\frac{1}{2}\left(z+\frac{1}{z}\right) .
$$

$$
\int_{-\pi}^{\pi} \frac{\mathrm{d} \theta}{a+\cos \theta}=\oint_{C} \frac{\mathrm{~d} \theta}{\mathrm{~d} z}\left(\frac{1}{a+\frac{1}{2}\left(z+\frac{1}{z}\right)}\right) \mathrm{d} z, \quad|a|>1
$$

We get the integration of a rational function around the unit circle. As we will see later that the answer depends on the residues at the poles which are inside the unit circle.

## Series and the residue more generally

Taylor series: If $f(z)$ is analytic in the disk $\left|z-z_{0}\right|<R$ then

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}
$$

and the series converges uniformly in $\left|z-z_{0}\right| \leq R^{\prime}<R$.
Laurent series: If $f(z)$ is analytic in $0<r<\left|z-z_{0}\right|<R$ then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{a_{-n}}{\left(z-z_{0}\right)^{n}},
$$

Uniform convergence in $0 \leq r<r_{1} \leq\left|z-z_{0}\right| \leq R_{1}<R$.
Both series are unique once $z_{0}$ is specified.
All the coefficients can be written as loop integrals
The coefficient $a_{-1}$ is the residue at $z_{0}$ when $r=0$.

## Key results about analytic function before series

Let $f$ be a function which is analytic in a domain $D$ and let $\Gamma$ be a positively orientated loop in $D$ and let $z$ be a point inside $D$.

Cauchy-Goursat theorem (Near the end of chap 5)

$$
\oint_{\Gamma} f(\zeta) d \zeta=0
$$

The Cauchy integral formula (Planned for chap 6)

$$
f(z)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
$$

The generalised Cauchy integral formula

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \mathrm{~d} \zeta, \quad n=0,1,2, \ldots
$$

The representation of functions by series is planned for chap 7. MA3614 2023/4 Week 10, Page 5 of 20

## The approximations with 10 and 20 strips



In this case it is visually reasonably clear that when we double the number of strips we get a more accurate approximation of the area under the curve.

A sufficient condition for the "limiting sum" to exist is that the function $f$ is continuous on $[a, b]$. The limit also exists for many less smooth functions.

## Real integrals - the area under a curve

Let $a=x_{0}<x_{1}<\cdots<x_{m}=b$, let $f:[a, b] \rightarrow \mathbb{R}$. Let

$$
A_{m}=\sum_{i=1}^{m} h_{i} f\left(x_{i-1 / 2}\right), \quad h_{i}=x_{i}-x_{i-1}, \quad x_{i-1 / 2}=\frac{x_{i-1}+x_{i}}{2}
$$

When the following limit exists we have

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{\substack{m \rightarrow \infty \\ \max _{i} h_{i} \rightarrow 0}} A_{m}
$$



## Extending to complex valued functions

If $f:[a, b] \rightarrow \mathbb{C}$ with $f=u+i v, u, v \in \mathbb{R}$ then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} u(x) \mathrm{d} x+i \int_{a}^{b} v(x) \mathrm{d} x
$$

In the following we extend this by replacing the real interval $[a, b]$ by a contour $\Gamma$ in the complex plane and define what is meant by

$$
\int_{\Gamma} f(z) d z
$$

## Integrating a complex valued function

 from the first exercise sheet$$
\int \mathrm{e}^{k x} \mathrm{~d} x=\frac{\mathrm{e}^{k x}}{k}+\text { const. }
$$

This is valid with $k=p+i q, p, q \in \mathbb{R}$.
Let $c=\cos (q x), s=\sin (q x)$.

$$
\begin{aligned}
\frac{\mathrm{e}^{k x}}{k} & =\mathrm{e}^{p x}\left(\frac{c+i s}{p+i q}\right)=\mathrm{e}^{p x}\left(\frac{(p-i q)(c+i s)}{p^{2}+q^{2}}\right) \\
& =\mathrm{e}^{p x}\left(\frac{(p c+q s)+i(p s-q c)}{p^{2}+q^{2}}\right)
\end{aligned}
$$

If we take the real and imaginary part then we get

$$
\begin{aligned}
& \int \mathrm{e}^{p x} \cos (q x) \mathrm{d} x=\mathrm{e}^{p x}\left(\frac{p \cos (q x)+q \sin (q x)}{p^{2}+q^{2}}\right)+\text { constant } \\
& \int \mathrm{e}^{p x} \sin (q x) \mathrm{d} x=\mathrm{e}^{p x}\left(\frac{p \sin (q x)-q \cos (q x)}{p^{2}+q^{2}}\right)+\text { constant. } \\
& \text { MA3614 2023/4 Week 10, Page } 9 \text { of } 20
\end{aligned}
$$

## Definition of a smooth arc

Smooth arc: A set $\gamma \subset \mathbb{C}$ is a smooth arc if the set can be described in the form

$$
\{z(t): a \leq t \leq b\}
$$

where $z(t)$ is continuously differentiable on $[a, b], z^{\prime}(t) \neq 0$ on $[a, b]$ and the function $z(t)$ is one-to-one on $[a, b]$.
Smooth closed curve. Similar to the above but with now $z(a)=z(b)$ and the one-to-one property only needs to hold on $a \leq t<b$ and for smoothness $z^{\prime}(b)=z^{\prime}(a)$.
Directed smooth arc: A smooth arc with a specific ordering of the points is known as a directed smooth arc.

## Integration is the reverse of differentiation

Let $f$ denote a real valued function.
The fundamental theorem of calculus involves the following.

1. When an anti-derivative $F(x)$ of $f(x)$ exists, i.e.

$$
F^{\prime}(x)=f(x)
$$

then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)
$$

2. When $f$ is continuous

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(s) \mathrm{d} s=f(x)
$$

MA3614 2023/4 Week 10, Page 10 of 20

## A contour

This is 1 point or a finite sequence of directed smooth arcs $\gamma_{k}$ with the end of $\gamma_{k}$ being the start of arc $\gamma_{k+1}$.

## Examples of contours



Polygonal path with $n=3$ arcs.



Circle, anti-clockwise.


Closed polygonal path with $n=3$ arcs. Closed path, $n=2$ arcs. MA3614 2023/4 Week 10, Page 12 of 20

## The length of an arc



The length of this contour is

$$
\left|z_{1}-z_{0}\right|+\left|z_{2}-z_{1}\right|+\left|z_{3}-z_{2}\right| .
$$

Let $\gamma=\{z(t): \quad a \leq t \leq b\}$ and let $a=t_{0}<t_{1}<\cdots<t_{m}=b$.
The length of the arc is approximately

$$
\sum_{i=1}^{m}\left|z\left(t_{i}\right)-z\left(t_{i-1}\right)\right|
$$

Now when $t_{i}-t_{i-1}$ is small

$$
z\left(t_{i}\right)-z\left(t_{i-1}\right) \approx z^{\prime}\left(t_{i-1 / 2}\right)\left(t_{i}-t_{i-1}\right), \quad t_{i-1 / 2}:=\frac{t_{i}+t_{i-1}}{2}
$$

Take the limit as $m \rightarrow \infty$ with $\max _{i}\left(t_{i}-t_{i-1}\right) \rightarrow 0$ to give

$$
I(\gamma)=\text { length of } \gamma=\int_{a}^{b}\left|z^{\prime}(t)\right| \mathrm{d} t
$$

MA3614 2023/4 Week 10, Page 13 of 20

## The $M L$ inequality

Let $M$ and $L$ be defined by

$$
M=\max _{z \in \Gamma}|f(z)| \quad \text { and } \quad L=\text { length of } \Gamma
$$

From the bound on $|f(z)|$ and the triangle inequality we have

$$
\left|\sum_{i=1}^{m} h_{i} f\left(z\left(t_{i-1 / 2}\right)\right)\right| \leq \sum_{i=1}^{m}\left|h_{i}\right|\left|f\left(z\left(t_{i-1 / 2}\right)\right)\right| \leq M \sum_{i=1}^{m}\left|h_{i}\right| \leq M L
$$

As the bound above is independent of $m$ and as the integral is an appropriate limit of such a sum we have

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right|=\left|\lim _{\substack{m \rightarrow \infty \\ \max _{i}\left|h_{i}\right| \rightarrow 0}} \sum_{i=1}^{m} h_{i} f\left(z\left(t_{i-1 / 2}\right)\right)\right| \leq M L
$$

## Definition of the contour integral on $\gamma$

Let $a=t_{0}<t_{1}<\cdots<t_{m}=b$ and let

$$
\begin{gathered}
A_{m}=\sum_{i=1}^{m} h_{i} f\left(z\left(t_{i-1 / 2}\right)\right), \quad h_{i}=z\left(t_{i}\right)-z\left(t_{i-1}\right) \\
\begin{aligned}
h_{i} f\left(z\left(t_{i-1 / 2}\right)\right) & =\left(z\left(t_{i}\right)-z\left(t_{i-1}\right)\right) f\left(z\left(t_{i-1 / 2}\right)\right) \\
& \approx f\left(z\left(t_{i-1 / 2}\right)\right) z^{\prime}\left(t_{i-1 / 2}\right)\left(t_{i}-t_{i-1}\right)
\end{aligned} \\
\qquad \int_{\gamma} f(z) \mathrm{d} z=\lim _{\substack{m \rightarrow \rightarrow \\
\max _{i}\left|h_{i}\right| \rightarrow 0}} A_{m}=\int_{a}^{b} f(z(t)) z^{\prime}(t) \mathrm{d} t
\end{gathered}
$$

The value here does not depend on which particular valid parameterization $z(t)$ that we use to describe $\gamma$.

MA3614 2023/4 Week 10, Page 14 of 20

Integrals involving $\left(z-z_{0}\right)^{n}, n=0, \pm 1, \pm 2, \ldots$ Let

$$
C_{r}=\left\{z=z(\theta)=z_{0}+r \mathrm{e}^{i \theta}: 0 \leq \theta \leq 2 \pi\right\}
$$

and note that

$$
z^{\prime}(\theta)=i e^{i \theta}
$$



$$
\int_{C_{r}}\left(z-z_{0}\right)^{n} \mathrm{~d} z= \begin{cases}2 \pi i, & \text { if } n=-1 \\ 0, & \text { otherwise }\end{cases}
$$

MA3614 2023/4 Week 10, Page 16 of 20

## Examples with path independence



$$
\begin{aligned}
& \Gamma_{1}=\left\{z_{1}+t\left(z_{2}-z_{1}\right): 0 \leq t \leq 1\right\}, \quad z_{1}=1, \quad z_{2}=i, \\
& \Gamma_{2}=\left\{e^{i t}: 0 \leq t \leq \pi / 2\right\} .
\end{aligned}
$$

By direct computation, if $n \neq-1$ then we have

$$
\int_{\Gamma_{1}} z^{n} \mathrm{~d} z=\int_{\Gamma_{2}} z^{n} \mathrm{~d} z=\frac{1}{n+1}\left(i^{n+1}-1\right)
$$

If $n=-1$ then we have MA3614 2023/4 Week 10, Page 17 of 20

$$
\int_{\Gamma_{1}} \frac{\mathrm{~d} z}{z}=\int_{\Gamma_{2}} \frac{\mathrm{~d} z}{z}=i \frac{\pi}{2}
$$

When we have a contour - a union of directed arcs
Suppose $F^{\prime}=f$ throughout the contour and

$$
\Gamma=\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{n}
$$

with the end point of $\gamma_{k}$ being the starting point of $\gamma_{k+1}$ for $k=1, \ldots, n-1$ and with

$$
\begin{aligned}
\gamma_{k} & =\left\{z(t): \tau_{k-1} \leq t \leq \tau_{k}\right\} \\
\int_{\Gamma} f(z) \mathrm{d} z & =\sum_{k=1}^{n} \int_{\gamma_{k}} f(z) \mathrm{d} z=\sum_{k=1}^{n} \int_{\gamma_{k}} F^{\prime}(z) \mathrm{d} z \\
& =\sum_{k=1}^{n}\left(F\left(z\left(\tau_{k}\right)\right)-F\left(z\left(\tau_{k-1}\right)\right)\right) \\
& =F\left(z\left(\tau_{n}\right)\right)-F\left(z\left(\tau_{0}\right)\right)
\end{aligned}
$$

The last part is because we have a 'telescoping' sum. The answer just depends on the end points when $F$ exists throughout $\Gamma$.

MA3614 2023/4 Week 10, Page 19 of 20

Independence of path when $f=F^{\prime}$
If there exists an anti-derivative $F$ along the path then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(z(t))=F^{\prime}(z(t)) z^{\prime}(t)=f(z(t)) z^{\prime}(t)
$$

This is the integrand in the expression for the contour integral.

## Key result:

Suppose that the function $f(z)$ is continuous in a domain $D$ and has an anti-derivative $F(z)$ throughout $D$. Then for any contour $\Gamma$ contained in $D$ with initial point $z_{l}$ and an end point $z_{E}$ we have

$$
\int_{\Gamma} f(z) \mathrm{d} z=F\left(z_{E}\right)-F\left(z_{l}\right)
$$

## MA3614 2023/4 Week 10, Page 18 of 20

## Some anti-derivatives - powers of $z$

When $n \in \mathbb{Z}$ and $n \neq-1$.

$$
f(z)=z^{n}, \quad F(z)=\frac{z^{n+1}}{n+1}
$$

Let $\beta \in \mathbb{R}$.

$$
F(z)=\log \left(\mathrm{e}^{i \beta} z\right), \quad F^{\prime}(z)=\frac{1}{z}
$$

In the context of contour integrals and integrating $1 / z$ along a contour which is not closed we may be able to choose $\beta$ so that we have an anti-derivative along the path.
For the principle value complex power for any $\alpha \in \mathbb{C}$, $\alpha \neq-1$, we have

$$
f(z)=z^{\alpha}, \quad F(z)=\frac{z^{\alpha+1}}{\alpha+1}
$$

(There is an exercise sheet question to show this.) Care is needed depending on the path of the contour and the branch cut of the functions involved.

