Analytic functions

As was introduced in week 03.

- Complex derivative: Let f be a complex valued function defined in a neighbourhood of z_{0}. The derivative of f at z_{0} is given by

$$
\frac{\mathrm{d} f}{\mathrm{dz}}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

provided the limit exists.

- A function f is analytic at z_{0} if f is differentiable at all points in some neighbourhood of z_{0}.
- A function f is analytic in a domain if f is analytic at all points in the domain.
- A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is an entire function if it is analytic on the whole complex plane \mathbb{C}.

The Cauchy Riemann equations in polars

Suppose

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =\tilde{u}(r, \theta)+i \tilde{v}(r, \theta) \\
f^{\prime}(z) & =\frac{1}{e^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial r}+i \frac{\partial \tilde{v}}{\partial r}\right) \\
& =\frac{1}{i r \mathrm{e}^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial \theta}+i \frac{\partial \tilde{v}}{\partial \theta}\right)
\end{aligned}
$$

The Cauchy Riemann equations in polar coordinates are

$$
\frac{\partial \tilde{u}}{\partial r}=\frac{1}{r} \frac{\partial \tilde{v}}{\partial \theta}, \quad \frac{1}{r} \frac{\partial \tilde{u}}{\partial \theta}=-\frac{\partial \tilde{v}}{\partial r}
$$

The Cauchy Riemann equations for $f(z)=u(x, y)+i v(x, y)$ When f is analytic at z_{0} the following limit exists.

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

By considering the case when h is real and then purely imaginary we get

$$
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{1}{i}\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
$$

Cauchy Riemann equations are

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

When u and v have continuous first partial derivatives on a domain D and the Cauchy Riemann equations are satisfied then the limit above exists and f is analytic on D.

MA3614 2023/4 Week 05, Page 2 of 16

Functions which are analytic $-\exp (z)$

$$
\exp (z)=\exp (x+i y)=\mathrm{e}^{x} \mathrm{e}^{i y}=\mathrm{e}^{x}(\cos (y)+i \sin (y))
$$

Here

$$
u=\mathrm{e}^{x} \cos (y), \quad v=\mathrm{e}^{x} \sin (y)
$$

The Cauchy Riemann equations are satisfied and

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \mathrm{e}^{z}=\mathrm{e}^{z}
$$

as in the real case.
Observe that

$$
\left|\mathrm{e}^{z}\right|=\mathrm{e}^{x} \quad \text { and } \quad \arg \left(\mathrm{e}^{z}\right)=y
$$

The definition of e^{z} gives the value in polar form. Also with $w=\mathrm{e}^{z}, x=\ln (|w|), y=\arg (w)$.

Functions which are analytic $-\log (z)$

$$
\log (z)=\ln r+i \operatorname{Arg} z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+i \tan ^{-1}(y / x)
$$

is analytic except on $\{z=x+i y: x \leq 0, y=0\}$.
$\frac{\partial u}{\partial x}=\frac{x}{r^{2}}, \quad \frac{\partial u}{\partial y}=\frac{y}{r^{2}}, \quad f^{\prime}(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=\frac{x-i y}{r^{2}}=\frac{\bar{z}}{|z|^{2}}=\frac{1}{z}$.
Using the polar form of the Cauchy Riemann equations

$$
\tilde{u}=\ln r, \quad \tilde{v}=\theta .
$$

$$
\begin{gathered}
\frac{\partial \tilde{u}}{\partial r}=\frac{1}{r} \frac{\partial \tilde{v}}{\partial \theta}=\frac{1}{r} \cdot \quad \frac{1}{r} \frac{\partial \tilde{u}}{\partial \theta}=-\frac{\partial \tilde{v}}{\partial r}=0 . \\
\frac{\mathrm{d}}{\mathrm{~d} z} \log (z)=\frac{1}{\mathrm{e}^{i \theta}}\left(\frac{\partial \tilde{u}}{\partial r}+i \frac{\partial \tilde{v}}{\partial r}\right)=\frac{1}{r \mathrm{e}^{i \theta}}=\frac{1}{z} .
\end{gathered}
$$

The derivative is not analytic at $z=0$ whereas $\log (z)$ is also not analytic on the negative real axisi3614 2023/4 Week 05, Page 5 of 16

Harmonic functions and analytic function

- $\phi(x, y)$ is harmonic if

$$
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0
$$

- If $f=u+i v$ is analytic then u and v are harmonic functions. v is said to be the harmonic conjugate of u.
- If u is known then we can attempt to get v as follows.

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

Partial integrate wrt x to get

$$
\begin{gathered}
v(x, y)=\text { some function }+g(y) \\
\frac{\partial v}{\partial y}=\text { deriv of some function }+g^{\prime}(y)=\frac{\partial u}{\partial x}
\end{gathered}
$$

This gives $g^{\prime}(y)$ and then we get $g(y)$.

Example showing both order of operations
$\underline{u=x^{2}}-y^{2}+4 x y$ is harmonic. Let v denote a harmonic conjugate.

$$
\begin{aligned}
\frac{\partial v}{\partial x}= & -\frac{\partial u}{\partial y}=2 y-4 x \\
v= & 2 x y-2 x^{2}+g(y) \\
\frac{\partial v}{\partial y}= & 2 x+g^{\prime}(y)=\frac{\partial u}{\partial x}=2 x+4 y, \\
& g^{\prime}(y)=4 y, \quad g(y)=2 y^{2}+C .
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial v}{\partial y}= & \frac{\partial u}{\partial x}=2 x+4 y \\
v & =2 x y+2 y^{2}+h(x) \\
\frac{\partial v}{\partial x}= & 2 y+h^{\prime}(x)=-\frac{\partial u}{\partial y}=2 y-4 x \\
& h^{\prime}(x)=-4 x, \quad h(x)=-2 x^{2}+C
\end{aligned}
$$

An analytic function $f(z)$ cannot depend on \bar{z}

Let $f=u+i v=u(x, y)+i v(x, y)$ and let

$$
g(z, \bar{z})=u\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right)+i v\left(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2 i}\right) .
$$

The Cauchy Riemann equations hold if and only if

$$
\frac{\partial g}{\partial \bar{z}}=0
$$

When f is not a polynomial an expression only involving z is given by the Taylor series

$$
f(z)=f\left(z_{0}\right)+f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+\frac{f^{\prime \prime}\left(z_{0}\right)}{2!}\left(z-z_{0}\right)^{2}+\cdots .
$$

In term 2 we show that a function analytic at z_{0} always has a
Taylor series which converges in a neighbourhood of z_{0}.

Expressing an analytic $f=u(x, y)+i v(x, y)$ in terms of z In the case of only "polynomial terms" we can express in terms of z by using the finite Maclaurin series representation.

$$
\begin{gathered}
f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \text { etc. } \\
f(z)=f(0)+f^{\prime}(0) z+\cdots+\frac{f^{(r)}(0)}{r!} z^{r} .
\end{gathered}
$$

Examples of analytic functions and harmonic functions

$$
\begin{aligned}
z & =x+i y \\
z^{2} & =\left(x^{2}-y^{2}\right)+2 i x y \\
z^{3} & =\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right) \\
\frac{1}{z} & =\frac{\bar{z}}{|z|^{2}}=\frac{x-i y}{x^{2}+y^{2}} \\
\mathrm{e}^{z} & =\mathrm{e}^{x}(\cos y+i \sin y), \\
\log z & =\ln |z|+i \operatorname{Arg} z
\end{aligned}
$$

$\bar{z}=x-i y$ is an example of a function which is not analytic anywhere.

MA3614 2023/4 Week 05, Page 10 of 16

∇u and ∇v are orthogonal when $f^{\prime}(z) \neq 0$

Suppose that $f=u+i v$ is analytic.
With vector calculus notation, the gradients of u and v are the vectors

$$
\nabla u=\frac{\partial u}{\partial x} \underline{i}+\frac{\partial u}{\partial y} j \quad \text { and } \quad \nabla v=\frac{\partial v}{\partial x} \underline{i}+\frac{\partial v}{\partial y} j
$$

The dot product of these two vectors is

$$
\begin{aligned}
\nabla u \cdot \nabla v & =\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \\
& =\frac{\partial u}{\partial x}\left(-\frac{\partial u}{\partial y}\right)+\frac{\partial u}{\partial y}\left(\frac{\partial u}{\partial x}\right) \\
& =0
\end{aligned}
$$

using the Cauchy Riemann equations.
When $f^{\prime}\left(z_{0}\right) \neq 0$ the gradient vectors ∇u and ∇v are non-zero.

Level curves of u and v are orthogonal when $f^{\prime}(z) \neq 0$

The level curve for u passing through $\left(x_{0}, y_{0}\right)$ is defined by

$$
\Gamma^{u}=\left\{(x, y): u(x, y)=u\left(x_{0}, y_{0}\right)\right\}
$$

and the level curve for v passing through this point is defined by

$$
\Gamma^{v}=\left\{(x, y): v(x, y)=v\left(x_{0}, y_{0}\right)\right\}
$$

∇u is normal to Γ^{u} and ∇v is normal to Γ^{v}.
The tangent to a curve is at right angle to a normal.
As the normals are orthogonal it follows that the tangent to a level curve of u is orthogonal to the tangent to a level curve of v at $\left(x_{0}, y_{0}\right)$ when $f^{\prime}\left(x_{0}+i y_{0}\right) \neq 0$.

Mapping of $w=z^{2}$ near $z=1$
 and level curves of $z=\sqrt{w}$

Level curves in the w-plane are the real and imaginary parts of

$$
z=g(w)=\sqrt{w} .
$$

Mapping of $w=\exp (z)$, level curves of $z=\log (w)$

The rectangular grid in the z-plane maps to the circular arcs and radial lines in the w-plane. The inverse function takes the curves in the w-plane to the grid in the z-plane. The circles and radial lines are thus curves where the real and imaginary parts of $\log (w)$ are constant. These are orthogonal.

$f(z)$ is a conformal mapping when $f^{\prime}(z) \neq 0$

Suppose we have 2 arcs described in parametric form as

$$
z_{1}(t), \quad a_{1}<t<b_{1} \quad \text { and } \quad z_{2}(t), \quad a_{2}<t<b_{2} .
$$

Given an analytic function $f(z)$ we get 2 image curves

$$
w_{1}(t)=f\left(z_{1}(t)\right) \quad \text { and } \quad w_{2}(t)=f\left(z_{2}(t)\right) .
$$

If the curves intersect at $z^{*}=z_{1}\left(t_{1}\right)=z_{2}\left(t_{2}\right)$ then the image curves intersect at $w^{*}=f\left(z^{*}\right)$. The direction of the tangents are the direction of $z_{1}^{\prime}\left(t_{1}\right), z_{2}^{\prime}\left(t_{2}\right) f^{\prime}\left(z^{*}\right) z_{1}^{\prime}\left(t_{1}\right)$ and $f^{\prime}\left(z^{*}\right) z_{2}^{\prime}\left(t_{2}\right)$. The angle between the curves in the z-plane is the angle of $z_{1}^{\prime}\left(t_{1}\right) / z_{2}^{\prime}\left(t_{2}\right)$ and similarly for the curves in the w-plane.

$$
\frac{w_{1}^{\prime}\left(t_{1}\right)}{w_{2}^{\prime}\left(t_{2}\right)}=\frac{f^{\prime}\left(z^{*}\right) z_{1}^{\prime}\left(t_{1}\right)}{f^{\prime}\left(z^{*}\right) z_{2}^{\prime}\left(t_{2}\right)}=\frac{z_{1}^{\prime}\left(t_{1}\right)}{z_{2}^{\prime}\left(t_{2}\right)} .
$$

When f is analytic and $f^{\prime}\left(z^{*}\right) \neq 0$ angles are preserved. MA3614 2023/4 Week 05, Page 16 of 16

