
Analytic functions
As was introduced in week 03.

I Complex derivative: Let f be a complex valued function
defined in a neighbourhood of z0. The derivative of f at
z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h

provided the limit exists.

I A function f is analytic at z0 if f is differentiable at all
points in some neighbourhood of z0.

I A function f is analytic in a domain if f is analytic at
all points in the domain.

I A function f : C→ C is an entire function if it is
analytic on the whole complex plane C.
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The Cauchy Riemann equations for f (z) = u(x , y) + iv(x , y)

When f is analytic at z0 the following limit exists.

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f (z0 + h)− f (z0)

h
.

By considering the case when h is real and then purely imaginary
we get

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=

1

i

(
∂u

∂y
+ i

∂v

∂y

)
=
∂v

∂y
− i

∂u

∂y
.

Cauchy Riemann equations are

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

When u and v have continuous first partial derivatives on a
domain D and the Cauchy Riemann equations are satisfied then
the limit above exists and f is analytic on D.
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The Cauchy Riemann equations in polars
Suppose

f (reiθ) = ũ(r , θ) + i ṽ(r , θ).

f ′(z) =
1

eiθ

(
∂ũ

∂r
+ i

∂ṽ

∂r

)
=

1

ireiθ

(
∂ũ

∂θ
+ i

∂ṽ

∂θ

)
The Cauchy Riemann equations in polar coordinates are

∂ũ

∂r
=

1

r

∂ṽ

∂θ
,

1

r

∂ũ

∂θ
= −∂ṽ

∂r
.
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Functions which are analytic – exp(z)

exp(z) = exp(x + iy) = ex eiy = ex(cos(y) + i sin(y)).

Here
u = ex cos(y), v = ex sin(y).

The Cauchy Riemann equations are satisfied and

d

dz
ez = ez

as in the real case.

Observe that
|ez | = ex and arg(ez) = y .

The definition of ez gives the value in polar form. Also with
w = ez , x = ln(|w |), y = arg(w).
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Functions which are analytic – Log(z)

Log(z) = ln r + iArg z =
1

2
ln(x2 + y2) + i tan−1(y/x).

is analytic except on {z = x + iy : x ≤ 0, y = 0}.

∂u

∂x
=

x

r2
,

∂u

∂y
=

y

r2
, f ′(z) =

∂u

∂x
− i

∂u

∂y
=

x − iy

r2
=

z

|z |2
=

1

z
.

Using the polar form of the Cauchy Riemann equations

ũ = ln r , ṽ = θ.

∂ũ

∂r
=

1

r

∂ṽ

∂θ
=

1

r
.

1

r

∂ũ

∂θ
= −∂ṽ

∂r
= 0.

d

dz
Log(z) =

1

eiθ

(
∂ũ

∂r
+ i

∂ṽ

∂r

)
=

1

reiθ
=

1

z
.

The derivative is not analytic at z = 0 whereas Log(z) is also not
analytic on the negative real axis.
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Different representations of f ′(z) using u and v

f ′(z) =
∂u

∂x
+ i

∂v

∂x
, (only involving derivatives with respect to x),

=
∂v

∂y
− i

∂u

∂y
, (only involving derivatives with respect to y),

=
∂u

∂x
− i

∂u

∂y
, (only involving u),

=
∂v

∂y
+ i

∂v

∂x
, (only involving v).

The different versions are because of the CR equations.

f ′(z) is thus completely determined by the gradient of u.

f ′(z) is thus completely determined by the gradient of v .
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Harmonic functions and analytic function

I φ(x , y) is harmonic if

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0.

I If f = u + iv is analytic then u and v are harmonic functions.
v is said to be the harmonic conjugate of u.

I If u is known then we can attempt to get v as follows.

∂v

∂x
= −∂u

∂y

Partial integrate wrt x to get

v(x , y) = some function + g(y)

∂v

∂y
= deriv of some function + g ′(y) =

∂u

∂x

This gives g ′(y) and then we get g(y).
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Harmonic functions and analytic function continued

I We can do things in a different order, i.e. with a harmonic
function u given we can first use

∂v

∂y
=
∂u

∂x
.

Partial integrate wrt to y to get

v(x , y) = some function + h(x)

∂v

∂x
= deriv of some function + h′(x) = −∂u

∂y

This gives h′(x) and then we get h(x).

The amount of work by each route will be about the same.
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Example showing both order of operations
u = x2− y2 + 4xy is harmonic. Let v denote a harmonic conjugate.

∂v

∂x
= −∂u

∂y
= 2y − 4x ,

v = 2xy − 2x2 + g(y),

∂v

∂y
= 2x + g ′(y) =

∂u

∂x
= 2x + 4y ,

g ′(y) = 4y , g(y) = 2y2 + C .

∂v

∂y
=

∂u

∂x
= 2x + 4y ,

v = 2xy + 2y2 + h(x),

∂v

∂x
= 2y + h′(x) = −∂u

∂y
= 2y − 4x ,

h′(x) = −4x , h(x) = −2x2 + C .
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Expressing an analytic f = u(x , y) + iv(x , y) in terms of z

In the case of only “polynomial terms” we can express in terms of
z by using the finite Maclaurin series representation.

f ′(z) =
∂u

∂x
+ i

∂v

∂x
etc.

f (z) = f (0) + f ′(0)z + · · ·+ f (r)(0)

r !
z r .

Examples of analytic functions and harmonic functions

z = x + iy ,

z2 = (x2 − y 2) + 2ixy ,

z3 = (x3 − 3xy 2) + i(3x2y − y 3),
1

z
=

z

|z |2
=

x − iy

x2 + y 2 ,

ez = ex(cos y + i sin y),

Log z = ln |z |+ i Arg z .

z = x − iy is an example of a function which is not analytic
anywhere. MA3614 2023/4 Week 05, Page 10 of 16

An analytic function f (z) cannot depend on z

Let f = u + iv = u(x , y) + iv(x , y) and let

g(z , z) = u

(
z + z

2
,
z − z

2i

)
+ iv

(
z + z

2
,
z − z

2i

)
.

The Cauchy Riemann equations hold if and only if

∂g

∂z
= 0.

When f is not a polynomial an expression only involving z is given
by the Taylor series

f (z) = f (z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + · · · .

In term 2 we show that a function analytic at z0 always has a
Taylor series which converges in a neighbourhood of z0.
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∇u and ∇v are orthogonal when f ′(z) 6= 0
Suppose that f = u + iv is analytic.

With vector calculus notation, the gradients of u and v are the
vectors

∇u =
∂u

∂x
i +

∂u

∂y
j and ∇v =

∂v

∂x
i +

∂v

∂y
j .

The dot product of these two vectors is

∇u · ∇v =
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

=
∂u

∂x

(
−∂u
∂y

)
+
∂u

∂y

(
∂u

∂x

)
= 0

using the Cauchy Riemann equations.

When f ′(z0) 6= 0 the gradient vectors ∇u and ∇v are non-zero.

MA3614 2023/4 Week 05, Page 12 of 16



Level curves of u and v are orthogonal when f ′(z) 6= 0
The level curve for u passing through (x0, y0) is defined by

Γu = {(x , y) : u(x , y) = u(x0, y0)}

and the level curve for v passing through this point is defined by

Γv = {(x , y) : v(x , y) = v(x0, y0)}.

∇u is normal to Γu and ∇v is normal to Γv .

The tangent to a curve is at right angle to a normal.

As the normals are orthogonal it follows that the tangent to a level
curve of u is orthogonal to the tangent to a level curve of v at
(x0, y0) when f ′(x0 + iy0) 6= 0.
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Mapping of w = exp(z), level curves of z = Log(w)
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The rectangular grid in the z-plane maps to the circular arcs and
radial lines in the w -plane. The inverse function takes the curves in
the w -plane to the grid in the z-plane. The circles and radial lines
are thus curves where the real and imaginary parts of Log(w) are
constant. These are orthogonal.
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Mapping of w = z2 near z = 1
and level curves of z =

√
w
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Level curves in the w -plane are the real and imaginary parts of
z = g(w) =

√
w .
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f (z) is a conformal mapping when f ′(z) 6= 0
Suppose we have 2 arcs described in parametric form as

z1(t), a1 < t < b1 and z2(t), a2 < t < b2.

Given an analytic function f (z) we get 2 image curves

w1(t) = f (z1(t)) and w2(t) = f (z2(t)).

If the curves intersect at z∗ = z1(t1) = z2(t2) then the image
curves intersect at w∗ = f (z∗). The direction of the tangents are
the direction of z ′1(t1), z ′2(t2) f ′(z∗)z ′1(t1) and f ′(z∗)z ′2(t2). The
angle between the curves in the z-plane is the angle of
z ′1(t1)/z ′2(t2) and similarly for the curves in the w -plane.

w ′1(t1)

w ′2(t2)
=

f ′(z∗)z ′1(t1)

f ′(z∗)z ′2(t2)
=

z ′1(t1)

z ′2(t2)
.

When f is analytic and f ′(z∗) 6= 0 angles are preserved.
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