MA3614 Complex variable methods and applications Comments, topics and why it is taught

- Will the module involve complex numbers?

Yes. The complex number material that you learned in MA1620 will be used.

The module is more about functions of a complex variable. For many real valued functions $f(x), x \in \mathbb{R}$ it makes sense to consider

$$
f(z), \quad z=x+i y, \quad x, y \in \mathbb{R}, \quad i^{2}=-1
$$

The natural domain of many functions that you have considered is the complex plane. Hence you learn more about such functions.

Comments, topics and why it is taught continued
 - Why study something that is not real?

A brief answer to this is that it helps to understand the real case better. There are some examples of this in these slides.

It is also a tool in solving real problems. This is the application part.

What previous study will be useful?

- Complex number manipulation from MA1620, e.g. $z=x+i y=r \mathrm{e}^{1 \theta}, z^{n}=r^{n} \mathrm{e}^{i n \theta}$ etc.
- Partial differentiation from MA2612, e.g. for a sufficiently smooth function $u(x, y)$,

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x} .
$$

- Geometric series from possibly several previous modules, i.e.

$$
\frac{1}{1-z}=1+z+z^{2}+\cdots+z^{n}+\cdots, \quad \text { when }|z|<1 .
$$

Without detail what topics are involved?

- Differentiation in a complex sense.
- Integration in the complex plane.
- Power series and Laurent series representations of functions. (Term 2).
- Applications usually involving residue theory. (Term 2).

Which functions make sense with a complex variable?

1. Polynomials

$$
p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}, \quad a_{n} \neq 0 .
$$

This has n roots (counting multiplicities) in the complex plane. We need to study complex integration to explain this.
2. Rational functions (i.e. a ratio of polynomials).

$$
f(z)=\frac{a_{0}+a_{1} z+\cdots+a_{n} z^{n}}{b_{0}+b_{1} z+\cdots+b_{m} z^{m}}
$$

When $n<m$ there is a partial fraction representation. You may have had rules to get this representation. Do you know why the rules work?
3. Exponential function.

$$
\exp (z)=\mathrm{e}^{x} \mathrm{e}^{i y}=\mathrm{e}^{x}(\cos (y)+i \sin (y))
$$

The real case of e^{x} and the notation $\mathrm{e}^{i \theta}=\cos (\theta)+i \sin (\theta)$ are special cases.

Some examples of things the complex case explains

The following relate to things you possibly have met before.

1. Suppose that you have a real polynomial.

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, \quad a_{n} \neq 0, \quad a_{k} \in \mathbb{R}
$$

Non-real roots occur in complex conjugate pairs. This is a consequence of

$$
p(\bar{z})=\overline{p(z)}
$$

2. Why is the Maclaurin series for

$$
f(x)=\frac{1}{1+x^{2}}=1+\left(-x^{2}\right)+\left(-x^{2}\right)^{2}+\left(-x^{2}\right)^{3}+\left(-x^{2}\right)^{4}+\cdots
$$

only valid in $-1<x<1$? Note that the function is infinitely differentiable on \mathbb{R}. This is because $f(z)$ has singularities at $\pm i$. The series (which is a geometric series) is valid for $|z|<1$.

What additional properties will be covered? Differentiation and analytic

In the real case differentiation is considered. In this module we consider when the functions are also differentiable in a complex sense and a related analytic property. Many additional results will depend on where $f(z)$ is analytic and where it is not. The complex differentiable property at z_{0} is concerned with when the following limit exists.

$$
\frac{\mathrm{d} f}{\mathrm{~d} z}\left(z_{0}\right) \equiv f^{\prime}\left(z_{0}\right):=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

We have the same expression as in the real case but now we are dividing by a complex number and we must get the same value however h tends to 0 to be complex differentiable at z_{0}.
$f(z)$ is analytic at z_{0} if it is complex differentiable at z_{0} and in a neighbourhood of z_{0}. This will probably first be done in about week 3.

Why is MA2612 a prerequisite?

With $z=x+i y, x, y \in \mathbb{R}$ a function of a complex variable

$$
w=f(z), \quad w=u+i v, \quad u, v \in \mathbb{R}
$$

is in full

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

We have real valued functions u and v of 2-variables x, y. When $f(z)$ is complex differentiable we can express $f^{\prime}(z)$ in terms of the partial derivatives

$$
\frac{\partial u}{\partial x}, \quad \frac{\partial v}{\partial x}, \quad \frac{\partial u}{\partial y} \quad \text { and } \quad \frac{\partial v}{\partial y} .
$$

We will see that $f(z)$ is analytic in a domain if and only if the following hold in the domain.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

These are the Cauchy Riemann equations.

Contour integrals

In the real case you consider definite integrals of the form

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

Generalising to the complex case involves an arc Γ in the complex plane and we write

$$
\int_{\Gamma} f(z) d z
$$

Examples of Γ

A line segment.

Taylor series will be explained?

With integration introduced a key result early in term 2 is to show that when $f(z)$ is analytic in a domain, Γ is a closed loop traversed once in the anti-clockwise direction and z is inside Γ we have the Cauchy integral formula

$$
f(z)=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta
$$

This implies the generalised Cauchy integral formula

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} \mathrm{~d} \zeta, \quad n=0,1,2, \ldots
$$

Using both gives the Taylor series

$$
f(z)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}
$$

If $f(z)$ is analytic in $\left|z-z_{0}\right|<R$ then the series representation is valid in this disk.

Early jargon: Laurent series

A Laurent series is a series of the form

$$
\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

When it converges the region is an annulus $\left\{z: r<\left|z-z_{0}\right|<R\right\}$.

Laurent series representation

Let $f(z)$ be analytic in an annulus $r<\left|z-z_{0}\right|<R$. Then it has the representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} a_{-n}\left(z-z_{0}\right)^{-n}
$$

Early jargon: A residue

This will first be met when considering partial fractions. Consider

$$
R(z)=\frac{p(z)}{q(z)}, \quad q(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

When $\operatorname{deg} p(z)<\operatorname{deg} q(z)$ and the zeros of $q(z)$ are simple we have the partial fraction representation of the form

$$
R(z)=\frac{p(z)}{q(z)}=\sum_{k=1}^{n} \frac{A_{k}}{z-z_{k}}
$$

Here A_{k} is the residue at z_{k}. This will be covered in term 1.

More generally, when

$$
\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

converges in $0<\left|z-z_{0}\right|<R$ the coefficient a_{-1} is the residue at z_{0}. This will be covered in term 2 .

MA3614 Welcome Slides for 2023/4 Page 12 of 12

