MA3614 Complex variable methods and applications
Comments, topics and why it is taught

» Will the module involve complex numbers?
Yes. The complex number material that you learned in
MA1620 will be used.

The module is more about functions of a complex
variable. For many real valued functions f(x), x € R it
makes sense to consider

f(z), z=x+iy, x,yeR, *?=-1

The natural domain of many functions that you have
considered is the complex plane. Hence you learn more
about such functions.
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Comments, topics and why it is taught continued

» Why study something that is not real?

A brief answer to this is that it helps to understand the
real case better. There are some examples of this in these
slides.

It is also a tool in solving real problems. This is the
application part.
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What previous study will be useful?
» Complex number manipulation from MA1620, e.g.

z=x+iy =re? z"=r"e" etc.

» Partial differentiation from MA2612, e.g. for a sufficiently
smooth function u(x, y),
0*u B 0%u
Oxdy  Oyox’

» Geometric series from possibly several previous modules,
ie.

1
1—:1+z—|—22+---+z"+---, when |z| < 1.
-z
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Without detail what topics are involved?

» Differentiation in a complex sense.

» Integration in the complex plane.

» Power series and Laurent series representations of
functions. (Term 2).

» Applications usually involving residue theory. (Term 2).
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Which functions make sense with a complex variable?

1. Polynomials
p(z) =ap+aiz+---+anz", a,#0.

This has n roots (counting multiplicities) in the complex

plane. We need to study complex integration to explain this.
2. Rational functions (i.e. a ratio of polynomials).

ag+ajz+---+apz"
f(z) = e

bo+biz+ -+ bnz

When n < m there is a partial fraction representation. You

may have had rules to get this representation. Do you know
why the rules work?

3. Exponential function.

exp(z) = eXe” = eX(cos(y) + isin(y)).
The real case of eX and the notation e’ = cos(#) + isin(6)

are special cases.
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Some examples of things the complex case explains
The following relate to things you possibly have met before.

1. Suppose that you have a real polynomial.
p(x) =ap+aix+---+ax", a,#0, ax€R.

Non-real roots occur in complex conjugate pairs. This is a
consequence of

p(2) = p(2).
2. Why is the Maclaurin series for

1

=12 T+ (=) + (=) + (=) + (=) + - -

f(x)
only valid in —1 < x < 17 Note that the function is infinitely
differentiable on R. This is because f(z) has singularities at
+i. The series (which is a geometric series) is valid for

|z| < 1.
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What additional properties will be covered?
Differentiation and analytic

In the real case differentiation is considered. In this module we
consider when the functions are also differentiable in a complex
sense and a related analytic property. Many additional results will
depend on where f(z) is analytic and where it is not. The complex
differentiable property at zy is concerned with when the following
limit exists.

d71((20) = f/(zo) = lim f(zo + h) — f(2) = lim M

dz h—0 h z—zy Z—Zp

We have the same expression as in the real case but now we are
dividing by a complex number and we must get the same value
however h tends to 0 to be complex differentiable at zj.

f(z) is analytic at zg if it is complex differentiable at zy and in a
neighbourhood of zy. This will probably first be done in about
week 3.
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Why is MA2612 a prerequisite?

With z = x + iy, x,y € R a function of a complex variable
w="f(z), w=u+iv, uveR

is in full

f(x+iy) =u(x,y) + iv(x,y).
We have real valued functions v and v of 2-variables x, y. When
f(z) is complex differentiable we can express f’(z) in terms of the
partial derivatives

ou Ov Ou ov

—y —, — and —.

ox’  Ox’ 0Oy oy
We will see that f(z) is analytic in a domain if and only if the
following hold in the domain.

ou  Ov ou ov

ax 9y’ 9y  ox

These are the Cauchy Riemann equations.
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Contour integrals

In the real case you consider definite integrals of the form

/a ’ £(x) dx.

Generalising to the complex case involves an arc [ in the complex
plane and we write
/f(z) dz.
r

Examples of

\ \
o 7 o 4
A line segment. A union of a line segment

and a half circle to give a loop.
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Taylor series will be explained?

With integration introduced a key result early in term 2 is to show
that when f(z) is analytic in a domain, I is a closed loop traversed
once in the anti-clockwise direction and z is inside [ we have the
Cauchy integral formula

f(z) = - ﬁf(C) dc.

T omi (—z

This implies the generalised Cauchy integral formula

YL i (9 _
f (z)_27ﬂ_]€(<_z)n+ldg‘, n=0,1,2,...

Using both gives the Taylor series

o £(K)(,
) =3 0 )

k=0

If f(z) is analytic in |z — zg| < R then the series representation is

valid in this disk.
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Early jargon: Laurent series
A Laurent series is a series of the form

[e.9]

Z an(z — 20)".

n=—oo

When it converges the region is an annulus {z: r < |z — z| < R}.

Laurent series representation

Let f(z) be analytic in an annulus r < |z — z5| < R. Then it has
the representation

f(z) = Z an(z —20)" + Z a_n(z—29)"".
n=0 n=1
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Early jargon: A residue

This will first be met when considering partial fractions. Consider

R(z) = SZ;, qz)=(z—z)(z—2z) - (z — zpn).

When deg p(z) < deg q(z) and the zeros of g(z) are simple we
have the partial fraction representation of the form

R(z):@:i A

q(z) —~z- i

Here Ay is the residue at z,. This will be covered in term 1.

More generally, when

o0

Z an(z — z9)"

n=—0o0

converges in 0 < |z — zp| < R the coefficient a_; is the residue

at zg. This will be covered in term 2.
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