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Chapter 1

An introduction to the module and
revision of previous study of
complex numbers

The material in this chapter should mostly be a reminder of how complex numbers are
defined and represented in the complex plane as well as an introduction to some of the
topics in the module. In section 1.8 the notes also contain some brief details of work by
Cardano in the 16th century about finding the roots of cubics which is generally regarded
as a starting point for the interest in complex numbers.

1.1 The definition of complex numbers and the com-

plex plane

Let R denote the real numbers. It is usual to regard a specific real number x as a point
on the real line as indicated below.

−2 −1 0 1 2 3 4

e π

Complex number are defined after first introducing a symbol i which has the property

i2 = −1

and we write i =
√
−1. The space of complex numbers is defined by

C = {x+ iy : x, y ∈ R} .

We get a one-one correspondence between points (x, y) ∈ R2 and complex numbers
z = x+ iy. For some terminology, x = Re(z) is known as the real part and y = Im(z) is
known as the imaginary part and the representation of z in this form is often referred
to as the cartesian representation of z. As has just been illustrated, a real number is
represented by a point on the real line and similarly a complex number can be represented
by a point in the complex plane. The representation of complex numbers in this way is
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known as an argand diagram. Now a point in R2 can also be represented in polar
coordinates and thus for complex numbers we also have

z = x+ iy = r(cos θ + i sin θ), r =
√
x2 + y2, θ = arg z. (1.1.1)

r ≥ 0 is known as the magnitude or absolute value of z and θ = arg z is any angle for
which (1.1.1) is true. The phrase any angle is used here as if we add any integer multiple
of 2π to θ then we get the same point and this is something which will be discussed at
various times in the module. When there is a need to uniquely determine θ the usual
convention is to take the principal argument, which is denoted by Argz, which satisfies

Argz ∈ (−π, π].

Note that Argz defines a function which is discontinuous as you cross the negative real
axis with a jump discontinuity of magnitude 2π. Also note that arg z and Argz are not
defined when z = 0.

With z defined the complex conjugate is denoted by z and is defined by

z = x− iy = r(cos(−θ) + i sin(−θ)).

The number z is the reflection of z in the real line and we can represent z and z in the
following diagram.

z = x+ iy

z = x− iy

r

r

θ

θ

r cos θ

r sin θ

−r sin θ

0
Real axis

Imaginary axis
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1.2 Addition, multiplication, division and complex

conjugate of complex numbers

We can add (and subtract), multiply and divide complex numbers and you can represent
the result in cartesian and polar form.

Let

z1 = x1 + iy1 = r1(cos θ1 + i sin θ1),

z2 = x2 + iy2 = r2(cos θ2 + i sin θ2),

be complex numbers with xk, yk, rk ≥ 0 and θk, k = 1, 2 being real.

Addition

Using the cartesian representation we have

z1 + z2 = (x1 + x2) + i(y1 + y2).

Multiplication

Using the cartesian representation we have

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + i2y1y2 + i(x1y2 + y1x2)

= (x1x2 − y1y2) + i(x1y2 + y1x2).

Note that we expand in the usual way and whenever i2 appears we can replace it by −1.
It is also beneficial to do the multiplication using the polar forms as we get

z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2((cos θ1 cos θ2 − sin θ1 sin θ2)

+i(cos θ1 sin θ2 + sin θ1 cos θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

where in the last step we have used the expansion formulas for the cosine and the sine
functions. In the polar form we just multiply the magnitudes and we add the angles.

Complex conjugate z = x− iy of z = z + iy

The complex conjugate has already been mentioned but we make a few more comments
here. Firstly, note that

|z| = |z| =
√
x2 + y2, Argz = −Argz,

and also

zz = |z|2 = x2 + y2,

z + z = 2x ∈ R,
z − z = 2iy (purely imaginary when y 6= 0).

– Introduction– 1–3 –
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From the first part of the equations we have when z 6= 0

1

z
=

z

zz
=

z

|z|2

and this is used in a moment to deal with division. Note that in polars this is

1

z
=

cos(θ)− i sin(θ)

r
.

Other points to note here are that a complex number z = x+ iy is real if and only if
y = 0 which is if and only if z = z and we can interchange the operation of taking the
complex conjugate with the operations of addition, multiplication, division and powers in
the sense that

z1 + z2 = z1 + z2,

z1z2 = (z1) (z2),

(z1/z2) = z1/z2,

zn = (z)n

The verification of these is left as exercises.

1.2.1 Division

From the previous discussion about multiplication and the complex conjugate we can cope
with division as follows.

z1

z2

= z1

(
z2

z2z2

)
=
z1z2

z2z2

=
1

|z2|2
z1z2

and to complete the operation we have to do the product of z1 and z2. If we do the
operation using the polar form then we have

z1

z2

=
r1

r2

(cos θ1 + i sin θ1)(cos θ2 − i sin θ2)

=
r1

r2

(cos(θ1 − θ2) + i sin(θ1 − θ2)).

With division we get the angle of the result by subtracting the two angles, i.e. θ1 − θ2 is
one of the values of the argument of z1/z2.

1.3 Powers: zn for n = 2, 3, . . .

We have already considered multiplication using the polar form which involves adding the
angles and thus for the powers we have

z = r(cos θ + i sin θ),

z2 = r2(cos 2θ + i sin 2θ),

z3 = r3(cos 3θ + i sin 3θ),

· · · · · ·
zn = rn(cosnθ + i sinnθ).
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With r = 1 this gives us DeMoivre’s theorem

(cos θ + i sin θ)n = cosnθ + i sinnθ.

Later in the module (probably in this term) we will generalise the taking of a power
of a complex number to zα for any complex number α.

1.4 The reiθ representation

For one or more years you will have been using the exponential function with a real
argument and you would have seen that it has the Maclaurin expansion

f : R→ R, f(x) = ex = 1 + x+
x2

2!
+ · · ·+ xk

k!
+ · · · .

Later in the module we will see that we can just replace x by z for any z in the complex
plane. Before we get to that stage we will assume that it is valid to replace x by iθ to
be able to define eiθ and manipulation of the absolutely convergent series leads to the
identity

eiθ = cos θ + i sin θ.

With this more compact notation the results considered earlier can now be summarised
as follows.

eiθ1eiθ2 = ei(θ1+θ2),
1

eiθ
= e−iθ,

eiθ1

eiθ2
= ei(θ1−θ2),

eiθ = e−iθ,(
eiθ
)n

= eniθ, n = 0,±1,±2, . . . .

1.5 The triangle inequality |z1 + z2| ≤ |z1| + |z2|
With real numbers x1 and x2 we have the triangle inequality

|x1 + x2| ≤ |x1|+ |x2|.

Similarly with complex numbers z1 = x1 + iy1 = r1eiθ1 and z2 = x2 + iy2 = r2eiθ2 we have

|z1 + z2|2 = (z1 + z2)(z1 + z2) = r2
1 + (z1z2 + z2z1) + r2

2.

For the middle term

(z1z2 + z2z1) = 2Re(z1z2) = 2r1r2 cos(θ1 − θ2) ≤ 2r1r2.

Putting everything together gives

|z1 + z2|2 ≤ r2
1 + 2r1r2 + r2

2 = (r1 + r2)2 = (|z1|+ |z2|)2

– Introduction– 1–5 –
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and we have shown that the triangle inequality

|z1 + z2| ≤ |z1|+ |z2|

is also true for complex numbers.
There is another version of this result which follows by first replacing z2 by z2 − z1

giving
|z2| ≤ |z1|+ |z2 − z1|

or equivalently
|z2 − z1| ≥ |z2| − |z1|

and if we swap z1 and z2 we also have

|z2 − z1| = |z1 − z2| ≥ |z1| − |z2|.

The two different lower bounds can be combined into one expression as follows. Note that
|z1 − z2| ≥ 0 with |z1 − z2| = 0 only if z1 = z2. When z1 6= z2 one of the right hand side
bounds is positive and one is negative and the sharpest result is obtained if we write

|z2 − z1| ≥ ||z2| − |z1||.

There is an exercise question related to this result and in particular to interpreting when
we have equality in this case and also when do we have |z1 + z2| = |z1|+ |z2|?

1.6 Convergence of a sequence of complex numbers

At a number of stages in this module we will consider series and to understand this
you need to know something about convergence and in particular the convergence of a
sequence of partial sums. The convergence of a sequence of complex numbers z1, z2, . . . is
defined in a similar way to the convergence of a sequence of real numbers.

Definition 1.6.1 Convergence of a sequence of numbers. z1, z2, . . . converges to z∗

if for every ε > 0 there exists N = N(ε) such that

|zn − z∗| < ε for all n ≥ N.

All the results about combining convergent sequences hold and we are unlikely to meet a
case when we need to return to this ε–N definition to prove convergence.

As an example, the sequence z, z2, z3, z4, . . . , zn, . . . converges to 0 as n → ∞ if and
only if |z| < 1.

1.7 Comments about functions of a complex variable

In previous study you consider functions defined on R (or on part of R), e.g.

f : R→ R, f(x) := e2x − 3e−x + x5 + x4 − 2x (1.7.1)

and you will have considered differentiation and integration of such functions when this
is possible. In this particular example we can differentiate and integrate infinitely many
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times. Much of this module is concerned with extending these ideas and considering
functions of a complex variable. As we will see, it is possible to generalise (1.7.1) and
consider

f : C→ C, f(z) := e2z − 3e−z + z5 + z4 − 2z (1.7.2)

with the meaning of the exponential with a complex argument to be discussed later. As
we will see later we will take

ex+iy = exp(x+ iy) = exp(x) exp(iy) = exp(x)(cos y + i sin y).

An obvious question is the following.

Why would you want to generalise (1.7.1) to (1.7.2)?

A partial answer, which will become apparent later on, is that you often learn more
about the function which helps to understand the real case better. In a sense the complex
plane C is the more natural domain for the function than just restricting to R. One
property in particular that we will meet is that of a function being analytic which is
concerned with being able to differentiate the function in a complex sense at all points in
a region. As we will see, the complex derivative is the same as the real derivative when
both exist. In the case of (1.7.2) the function is analytic in the entire complex plane and

f ′(z) = 2e2z + 3e−z + 5z4 + 4z3 − 2.

What better understanding is obtained?

We can attempt to answer this with examples which involve power series.

(i) One of the simplest series is the geometric series which we can derive by noting the
identity

(1 + x+ x2 + x3 + · · ·+ xn)(1− x) = 1− xn+1.

It is valid to replace x by z where z can be any complex number. Then provided
z 6= 1 we have

1 + z + z2 + z3 + · · ·+ zn =
1− zn+1

1− z
.

If |z| < 1 then the series on the left hand side converges and we have

1

1− z
= 1 + z + z2 + z3 + · · ·+ zn + · · ·

The series defines a function in the disk {z ∈ C : |z| < 1} with R = 1 being the
radius of convergence. The radius of convergence that you meet in earlier modules
on analysis does indeed refer to the radius of a circle in the complex plane. As we
will see,

g(z) :=
1

1− z
is analytic in C except at the point z = 1 which determines the radius of convergence.
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2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 1–8

1

This example hence explains why we use the term radius of convergence.

As we will see later, the function g(z) is analytic in the entire complex plane except
at the point z = 1 and can be represented by a Laurent series in |z| > 1. The
Laurent series for |z| > 1 in this example can be obtained with very little effort. If
we write

1− z = −z
(

1− 1

z

)
so that

1

1− z
=

(
−1

z

)(
1− 1

z

)−1

.

As |z| > 1, 1/|z| < 1 and we have the geometric series representation

1

1− z
=

(
−1

z

)(
1 +

1

z
+

1

z2 + · · ·
)

= −
(

1

z
+

1

z2 + · · ·
)
.

The series representation here involves negative powers of z. More general Laurent
series can have both positive and negative powers and it will be covered in term 2.

(ii) We now replace z in the previous example with −z2 and we similarly have

1

1 + z2 = 1− z2 + z4 − z6 + · · ·+ (−z)2n + · · · , |z| < 1.

Let now

g(z) :=
1

1 + z2 .

If we just consider the real case, i.e.

g : R→ R, g(x) =
1

1 + x2

then we have a function which is infinitely differentiable on R, it is bounded on R,
but yet the power series about x = 0 only converges for |x| < 1. When the function
is considered as a function of a complex variable it becomes clearer why this is the
case as g(z) → ∞ as z → i or as z → −i. As we will see the function has the
property of being analytic at all points except ±i.
This example hence explains that to understand the value for the radius of conver-
gence it is often necessary to consider the function with a complex variable.
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(iii) In earlier modules you consider Taylor’s series for functions which are continuously
differentiable a sufficient number of times. Suppose a function f is n + 1 times
continuously differentiable in an interval which contains a and x. When we have
these conditions

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

+
1

n!

∫ x

a

f (n+1)(t)(x− t)n dt,

This is Taylor’s series with an integral form of the remainder. We also have

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

+
f (n+1)(η)

(n+ 1)!
(x− a)n+1,

where η = η(x) is some value between a and x. This is Taylor’s series with a
Lagrange form of the remainder. Do not worry if you have not previously done
this in year 2 as these will not be used in this module. At almost all stages in this
module and we will consider functions which can be differentiated infinitely many
times and we will be concerned when it is valid to write

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

+
f (n)

n!
(x− a)n + · · ·

for x sufficiently close to a. What you would not have done before is to consider the
properties that f needs to have for the power series to be equal to the function. It
is not just sufficient that the function is infinitely differentiable at x = a in the real
sense as we now illustrate with an example.

Let

f : R→ R, f(x) :=

{
exp(−1/x2), if x 6= 0,

0, if x = 0.

The value at x = 0 is the same as the limit as x → 0 and thus the function is
continuous at x = 0. For x 6= 0 we have

f ′(x) =
2

x3 exp(−1/x2)

and it can be shown that f ′(x)→ 0 as x→ 0. In fact

f (n)(x)→ 0, as x→ 0 for n = 1, 2, 3, . . .

as a consequence of how rapidly the exponential term tends to 0. Thus f is infinitely
differentiable (in the real sense) at x = 0 with all the derivatives having the value 0.
Thus if we take the Taylor series about x = 0 using the derivatives considered in
the real sense then we get the zero function, the radius of convergence is ∞ but the
series is only the same as f(x) at x = 0.

– Introduction– 1–9 –
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The problem with this function f is that it is not analytic at z = 0 when we consider
it as a function of complex variable. If we let

f(z) := exp(−1/z2)

and consider what happens when we take z = iy, y ∈ R then

f(iy) = exp(1/y2)→∞ as y → 0.

As this case shows the limiting value depends on which direction we tend to 0. When
a function is analytic the value in a limit must be independent of the direction in
which we tend to the limit. Thus this function does not have a Taylor series about
z = 0 in the sense considered in this module but it does have a Laurent series
representation about z = 0 and Laurent series will be considered in term 2.

What we will show later in this module is that

f(z) = f(a) + f ′(a)(z − a) + · · ·+ f (n)(a)

n!
(z − a)n + · · ·

in a neighbourhood of z = a provided f is analytic at z = a. Conversely we will
also show that a convergent power series defines an analytic function.

Thus to summarize, this example shows that it is not sufficient for a function to be
infinitely differentiable (in the real sense) in order to have a convergent power series
representation but we need the stronger property that it is analytic.

1.8 Some other results in the module: roots of poly-

nomials

Polynomials are among the simpler functions that you consider and earlier in your study
of mathematics you meet (and derive) the formula for solving a quadratic equation

ax2 + bx+ c = 0, a, b, c ∈ R, and a 6= 0.

The roots are

α1 =
−b−∆

2a
, α2 =

−b+ ∆

2a
, where ∆ =

√
b2 − 4ac.

When b2− 4ac ≥ 0 the term ∆ ≥ 0 is real and we have real roots. When b2− 4ac < 0 we
have a complex conjugate pair of roots

α1 =
−b− iδ

2a
, α2 =

−b+ iδ

2a
, where δ =

√
4ac− b2.

Introducing the symbol i =
√
−1 enables us to solve all quadratics with real coefficients

and we can factorise the quadratic as

ax2 + bx+ c = a(x− α1)(x− α2).
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The fundamental theorem of algebra (which was proved by Gauss in 1799) gen-
eralises the result in the sense that a polynomial of any degree can be factorised in this
way. Specifically, a polynomial of degree n can always be factorised in the form

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = an(x− α1)(x− α2) · · · (x− αn)

where now a0, a1, . . . , an ∈ C, an 6= 0, and α1, α2, . . . , αn ∈ C. The points α1, α2, . . . , αn,
known as the roots or the zeros, need not be distinct. The proof will be done in this module
and it uses properties of functions which are analytic in the entire complex domain. The
result provides no information as to where the zeros α1, α2, . . . , αn are located but just
that they must exist. Thus in your previous study of linear algebra, when you have a
real or complex n × n matrix A it follows that there are n eigenvalues, when you count
them as above, since there must exist values λ1, λ2, . . . , λn such that the characteristic
polynomial can be written as

det(tI − A) = (t− λ1)(t− λ2) · · · (t− λn).

A historical note about solving cubics

Figure 1.1: A plot of y = (x3 − 15x− 4)/10 on −5 ≤ x ≤ 5.

It might be thought that complex number were first introduced to be able to solve
quadratics. However, this does not seem to be the case and this may be because just
introducing

√
−1 in order to get non-real solutions was not too interesting. One of the

things which it is believed to have started interest in complex numbers was work by
Cardano (1501–1576) who had constructed a method to find the roots of cubics. When
we have a cubic with real coefficients there must always be at least one real root as we have
a continuous function which takes all values in (−∞,∞). The graph of a typical cubic
is shown in figure 1.1 on this page. The problem that Cardano found with his method is
that there were examples in which you could only make sense of the manipulations to get
the real roots if there was such a thing as the square root of negative numbers. Briefly
the method of Cardano involves the following.

– Introduction– 1–11 –
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Suppose we have
x3 + cx+ d = 0.

(A general cubic equation can always be transformed to an equivalent problem with no
x2 term by using a substitution.) The method then involves the substitution

x = u+
p

u

with at the moment p being arbitrary. With this substitution we get

x3 + cx+ d =
(
u+

p

u

)3

+ c
(
u+

p

u

)
+ d

=

(
u3 + 3pu+ 3

p2

u
+
p3

u3

)
+ c
(
u+

p

u

)
+ d

= u3 + 3p
(
u+

p

u

)
+
p3

u3 + c
(
u+

p

u

)
+ d

= u3 + (3p+ c)
(
u+

p

u

)
+
p3

u3 + d.

Now if we choose p so that 3p + c = 0, i.e. p = −c/3 then the expression simplifies in
that we have

x3 + cx+ d = u3 +
p3

u3 + d =
1

u3

(
u6 + du3 + p3

)
.

The part u6 + du3 + p3 in the last expression is a quadratic in u3 and by the quadratic
formula we can make it equal to 0 by taking

u3 =
−d±

√
d2 − 4p3

2
.

Thus to summarise the method, we obtain 2 values of u3 from this formula, for each value
of u3 we obtain 3 possible values of u and for each value of u we form

x = u+
p

u
= u− c

3u

as a root of the cubic. Although this gives 6 different values for u we only actually get
3 possibly different values for x. The problem that Cardano encountered was that there
are examples for which

d2 − 4p3 = d2 + 4c3/27 < 0

so that u3 is complex and indeed finding u from u3 also requires complex quantities. At
the time the method was created complex numbers had not yet been invented and the
report is that Cardano described the method as needing to pass through “alien territory”
(i.e. involving the square root of negative numbers) to generate a meaningful answer.
Cardano is believed to have described the square root of negative numbers as “useless”
yet his formula demonstrated that they are useful.

For a specific example consider the case shown in figure 1.1.

x3 − 15x− 4 = 0, (c = −15, d = −4).
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By inspection x = 4 is a root and in fact

x3 − 15x− 4 = (x− 4)(x2 + 4x+ 1)

and the quadratic factor also has real roots (which of course is consistent with the graph
on page 1-11 which we can see crosses the real axis at 3 distinct points.) In this case
p = −c/3 = 5 and Cardano’s method gives

u6 − 4u3 + 53 = 0 and d2 − 4p3 = 16− 4× 53 = −4× 112.

Hence

u3 =
4± i

√
4× 112

2
= 2± 11i.

If we just consider one of the values and use the polar form then we have

u3 = 2 + 11i = reiθ, r =
√

53, 0 < θ <
π

2

and one possible value for u is
u = r1/3eiθ/3

and the corresponding value x is given by

x = u+
p

u
=
√

5eiθ/3 +
5√
5

e−iθ/3

= 2
√

5 cos(θ/3).

Without a little investigation it is not immediately obvious that in this example this is
the root x = 4 and next we verify this by considering powers of 2 + i as follows.

(2 + i)2 = 3 + 4i,

(2 + i)3 = (2 + i)(2 + i)2 = (2 + i)(3 + 4i) = 2 + 11i.

Thus if u3 = 2 + 11i then one of the solutions is u = 2 + i and

2 + i =
√

5(cos φ+ i sin φ) with cos φ =
2√
5
.

Hence with φ = θ/3 we have
x = 2

√
5 cos φ = 4.

In this particular case we could have also more directly written

x = u+
5

u
= (2 + i) +

5

2 + i
= (2 + i) +

5(2− i)
5

= 4.

As this example shows, Cardano’s method does indeed lead to a root of the cubic but
it requires an understanding of complex numbers to work in some cases when all the roots
are real.
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1.9 Roots: Solutions of zn = ζ

In sections 1.3 and 1.4 we showed that if we had the polar form z = reiθ then zn = rneniθ.
We now consider the reverse operation in the sense that if ζ is known then what possible
values of z gives that value, i.e. we wish to solve for z the equation

zn − ζ = 0.

As an observation, as we are finding the roots of a polynomial of degree n there can be
at most n distinct values are these can be obtained as follows.

Let ζ have the polar form

ζ = ρeiα, ρ ≥ 0, α = Arg ζ.

Hence
zn = ζ implies that rneniθ = ρeiα.

By taking the absolute value of the expression we get

rn = ρ, r = n
√
ρ ≥ 0

and thus all the solutions have the same magnitude. It remains then to find all solutions
of

eniθ = eiα.

Since 1 = e0 = e2πi = e4πi = · · · we have

eniθ = eiα+2kπi, k = 0,±1,±2, . . .

and hence all possible values of θ are

α + 2kπ

n
, k = 0,±1,±2, . . . .

There are infinitely many possible values of θ but this only generates n different values of
z which we obtain by taking n consecutive values of k and our n roots are

n
√
ρ exp(iα/n) exp(i2kπ/n), k = 0, 1, . . . , n− 1.

It is handy here to let
ω = ei2π/n

which is a root of unity and let

z0 = n
√
ρ exp(iα/n)

denote one of the roots. When this is done all the roots can now be neatly written as

z0ω
k, k = 0, 1, . . . , n− 1

which gives n equally spaced points on a circle with centre at 0 and radius |z0| = n
√
ρ

in the complex plane. This shows that to find all the roots of any number just involves
finding one of the roots and then combining with the n roots of unity. In the case that
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ζ = 1 the n roots of unity, which are 1, ω, ω2, . . . , ωn−1, are shown in figure 1.2 in the
cases of n = 2, 3, 4, 5, 6 and 7. The factorizations in the cases n = 2, . . . , 5 correspond to

z2 − 1 = (z − 1)(z + 1),

z3 − 1 = (z − 1)(z − β3)(z − β3), β3 = −1

2
+ i

√
3

2
,

z4 − 1 = (z − 1)(z − i)(z + 1)(z + i),

z5 − 1 = (z − 1)(z − β5,1)(z − β5,1)(z − β5,2)(z − β5,2),

β5,1 = cos(2π/5) + i sin(2π/5), β5,2 = cos(4π/5) + i sin(4π/5).

In terms of expressions involving square roots the expression for the real and imagi-
nary parts of ω become increasingly more complicated as n increases. At the time of
writing these notes the wikipedia page on the roots of unity gives the expressions for
n = 2, 3, . . . , 7. As is shown above, we can quite easily express the roots when n = 3 in
both polar and cartesian form. To get a feel for the increase in complexity as n increases
it is worth briefly mentioning the case n = 5. This is manageable but the answer is not
immediate. If z = ei2π/5 then the real part is c = cos(2π/5) and as

z4 + z3 + z2 + z + 1 = 0

taking the real part gives

cos(8π/5) + cos(6π/5) + cos(4π/5) + cos(2π/5) + 1 = 0.

Using symmetry (or that cosine is even) and a double angle trig. formula we have

cos(8π/5) = cos(−2π/5) = cos(2π/5) = c

and
cos(6π/5) = cos(−4π/5) = cos(4π/5) = 2c2 − 1.

Using this result in the previous one give us that c satisfies

2(c+ 2c2 − 1) + 1 = 4c2 + 2c− 1 = 0, c =
−1 +

√
5

4
.

The other root of the quadratic gives cos(4π/5) and for the imaginary part

sin(2π/5) =
√

1− c2 =

√
10 + 2

√
5

4
.
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n = 6 n = 7

n = 4 n = 5

n = 3n = 2

Figure 1.2: Roots of unity for n = 2, 3, 4, 5, 6, 7. All the circles have centre at 0 and
radius= 1.
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Chapter 2

Functions of a complex variable –
the domain and continuity

This chapter will be covered fairly quickly in the lectures and it does not contain much
material which is directly examinable. The purpose of the chapter is mainly to introduce
a number of terms connected with functions of a complex variable and in particular to
define what we mean by continuity which in turn needs the definition of a limit. As we
will see, the requirement for a limit to exist in the complex sense is more restrictive than
it is in the real sense and this will have many implications later on. Limits are needed for
continuity and in the next chapter we need limits to define the term complex differentiable
from which we will then define the term analytic. From the next chapter onwards most
of the functions that we consider in this module are analytic at most points.

2.1 The domain of a function – terminology

In mathematics a function f : A → B is a rule which assigns to each element a ∈ A an
element b = f(a) ∈ B. The set A is known as the domain of definition of f and the
set

{f(a) ∈ B : a ∈ A}
is the image of f on A which is a subset of B. The image is sometimes written as f(A).

In your previous modules you would have considered sets A ⊂ R and B ⊂ R and
typically the sets would have been intervals such as the following.

Unbounded open intervals: R = (−∞,∞), (−∞, a), (a,∞) where a ∈ R.

Bounded open interval: (a, b) = {x ∈ R, a < x < b} .

Closed bounded interval: [a, b] = {x ∈ R, a ≤ x ≤ b} .

The last two intervals given only differ in whether or not the end points are included and
this is important in a number of results. For example, if f : [a, b] → R is a continuous
function then f is bounded, f has a minimum and maximum in [a, b] and it takes every
value between the extreme function values. The extreme values may occur at the end
points and with intervals there are only two end points to consider.

When functions of a complex variable are considered the set A is now a subset of C and
now there a few more possibilities for the sets that can be considered which is discussed
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below. The extra complication in considering subsets of C compared with intervals in
R is that the “boundary” of the set is now a curve in C whereas we only had the two
end points when we considered intervals such as (a, b). The following is a list of terms to
describe the types of sets in C that we will be considering leading to what will be meant
by a “domain” and what will be meant as a “region”.

An open disk is a set of the form {z ∈ C : |z − z0| < ρ}. Here z0 is the centre of the
disk and ρ > 0 is the radius.

The unit disk is {z ∈ C : |z| < 1}.
A neighbourhood of a point z0 means a disk of the form {z ∈ C : |z − z0| < ρ} for some
ρ > 0.

A point z0 ∈ A is said to be an interior point of A if there is a neighbourhood of z0 which
is contained in A, i.e. for sufficiently small ρ > 0 we have {z ∈ C : |z − z0| < ρ} ⊂ A.

A set in C is open if every point is an interior point.

Given a set A, z0 ∈ C is a boundary point if every neighbourhood of z0 contains points
which are in A and also contains points which are not in A.

The boundary of A is the set of all boundary points.

In a moment we define what we mean by a connected region which in turn needs the
definition of a polygonal path.

Let w1, w2, . . . , wn+1 be points in C and let Ik be the straight line segment joining wk to
wk+1. The successive line segments I1, I2, . . . , In is a polygonal path joining w1 to wn+1.

A set A is connected if every pair of points z1 and z2 in A can be joined by a polygonal
path which is contained in A. For many sets that we consider only one segment is needed
to join z1 and z2 but it is easy to create examples of sets where more than one line segment
is needed as is shown below.

Throughout this module it should be immediately evident whether or not a set is
connected but in mathematics such terms need to be precisely defined.

In this module a domain refers to an open connected set when we are considering a
function of a complex variable.
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A region is a bit more general and refers to a domain or to a domain together with some
or all of the boundary points.

Throughout this module we consider functions defined on regions and there is still
a bit more jargon associated with the regions concerned with whether or not they are
bounded and also to their degree of connectivity.

A set A is bounded if there exists R > 0 such that the set is contained in the disk
{z : |z| < R}.
An unbounded set is a set which is not bounded.

This is not a precise mathematical definition but for the purpose of this section a domain is
simply connected if it does not contain any holes and it is multi-connected otherwise.
In this module we will consider an annulus which is an example of a doubly connected
domain and this is in the following list of examples.

Some examples of subsets of C
We consider now some examples and give diagrams of domains which are bounded.

1. A = C, i.e. the entire complex plane. This is an unbounded domain. We will
often consider functions defined on C and in the previous chapter there were several
examples, e.g. polynomials and the exponential function.

2. The real line R. This is not a domain in C in the sense defined above as any
neighbourhood of x ∈ R contains points with non-zero imaginary part which are
not in R.

3. A disk, e.g. {z ∈ C : |z − 1| < 2}, is one of the simplest bounded simply connected
domains. The boundary of a disk is a circle. The disk is hence the domain which is
interior to the circle

1 3−1

4. If we take the union of two or more disks then we get a domain provided they all
intersect. The following is hence a simply connected domain.

A = {z : |z − 1| < 2} ∪ {z : |z + 1| < 2}
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1 3−3 −1

However the following set is not connected

A = {z : |z − 1| < 1} ∪ {z : |z + 1| < 0.5} .

The region is not connected as we cannot join points in the left hand disk with
points in the right hand disk by a polygonal path which does not leave the set A.

1−1

Throughout this module we will just consider connected sets.

5. The infinite strip A = {z = x+ iy : −∞ < x <∞, −π < y ≤ π} is an unbounded
region. It does not qualify as a domain as points with y = π are not interior points.
This is the natural region to consider for the exponential function

ex+iy = exp(x+ iy) = exp(x)(cos y + i sin y)

which is periodic with period 2πi, i.e. exp(z + 2πi) = exp(z) for all z ∈ C.
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y = 0

y = π

y = −π

The infinite strip is actually an example of an unbounded polygonal region in that
the boundary is union of straight lines.

6. The interior of polygons gives us domains and examples with 3, 4 and 8 sides are
shown below where in all the cases shown the domains are bounded and simply
connected. Note the terminology here, the polygon is the boundary and the region
interior to it is the bounded domain.

There is a formula, known as the Schwarz-Christoffel formula, for mapping the upper
half plane onto the interior of a polygon (bounded or unbounded).

7. An annulus is a domain of the form

A = {z ∈ C : r1 < |z − z0| < r2} ,

i.e. it is region between two circles with the same centre. The region is bounded
if r2 is finite. The domain is not simply connected as it has a hole. This type of
domain will be considered in this module when isolated singularities are considered,
for example we will consider functions such as g(z) = 1/(z − z0) in an annulus and
more generally one of the topics of the module is Laurent series which involves
series of the form

f(z) =
∞∑

n=−∞

an(z − z0)n =
∞∑
n=1

a−n
(z − z0)n

+ a0 +
∞∑
n=1

an(z − z0)n.
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Note that a power series is a special case of a Laurent series corresponding to
an = 0 for n < 0. As we will see later in the module when the inner radius r1 = 0
the coefficient a−1 is known as the residue of f(z) at z = z0 and it is what we are
most interested in when we consider integration along closed paths in the complex
plane. When r1 > 0 we never get arbitrary close to the centre z0 and in this case
we just get a way of representing the function in such a region.

z0 r1 r2

2.2 The domain implied by the formula for f

In many cases the domain of a function is implied once the formula for f is given as the
convention is to take the domain as the largest it can be for which the formula makes
sense. For example, if

f(z) =
1

z
then this makes sense for all z ∈ C except for z = 0, i.e. we have the annulus

{z : 0 < |z| <∞} .

Similarly, if

f(z) =
z2 + z + 1

(z − 1)(z − 2)2(z − 3)3

then this makes sense for all z ∈ C except for the points z = 1, z = 2 and z = 3 at which
the denominator is 0. As other examples,

ex+iy = exp(x+ iy) = exp(x)(cos y + i sin y),

cos(z) =
eiz + e−iz

2
,

sin(z) =
eiz − e−iz

2i

are all defined for all z ∈ C. The function

cot z =
cos z

sin z
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is defined for all z ∈ C except at the points where sin z = 0 and these are the points ±kπ,
k = 0, 1, 2, . . ..

2.3 Plotting a function of a complex variable

When you consider a real valued function of one variable you can graphically represent
the function in two dimensions with the x-direction for the dependent variable and the
y-direction for the function value and typically we write y = f(x). For example the cubic
f(x) = (x3 − 15x − 4)/10 considered in the discussion of Cardano’s method for finding
the roots of cubics was represented in this way and it shown again in figure 2.1.

-5 -3 -1 1 3 5

Figure 2.1: A plot of y = (x3 − 15x− 4)/10 on −5 ≤ x ≤ 5.

It is more complicated to attempt to represent a complex valued function w = f(z) of
a complex variable z as we now need a plane to represent z and another plane to represent
w. If we consider the real and imaginary part of z and w, i.e.

z = x+ iy,

w = f(z) = u+ iv,

then u and v are two real valued functions of x and y, i.e.

u = u(x, y),

v = v(x, y).

One possibility is to attempt to show a surface for u and to show another surface for v.
An alternative to this is to give two copies of the complex plane and to give a curve or
curves in the z-plane and to show the image of the curve or curves in the w-plane. We
consider this approach next in the case of two functions.

Plotting f(z) = z2

In this case it is better to take a region which does not include both a point z 6= 0 and −z
as these both map to the same w = f(z). With this in mind the plots given in figure 2.2
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show a radial mesh of part of the unit disk in the z-plane in the left hand side plot with
image in the w-plane in the right hand side plot.

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

z plane

-2 -1 0 1 2 3

-2

-1

0

1

2

w plane

Figure 2.2: w = f(z) = z2, z = reiθ, |θ| ≤ π/3, r ≤ 1.5.

The radial lines in the z-plane are the straight lines with the origin as an end point
and these map to radial lines in w-plane and the angle between any two radial lines is
doubled. In this case the circles shown in the z-plane map to circles in the w-plane with
a different radius although note that this is because all the circles in the z-plane have the
origin as the centre. In all cases the radial lines and the circles are orthogonal where they
intersect in both planes and thus the angle between curves is preserved everywhere except
for the radial lines which intersect at 0. A mapping which preserves angles is known as a
conformal mapping and thus f(z) = z2 is a conformal mapping at all points with the
exception of z = 0.

In figure 2.3 we similarly show a radial mesh of a disk with centre at 1 and radius 1/2
in the z-plane together with the image mesh in the w-plane.

0.5 1 1.5

-0.4

-0.2

0

0.2

0.4

z plane

0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

w plane

Figure 2.3: w = f(z) = z2, |z − 1| ≤ 0.5.
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In this case the image of the circles in the z-plane are not circles in the w-plane although
the circle with the smallest radius surrounding 1 is “close” to a circle and this can be
quite easily explained as follows. Firstly, with any polynomial f(z) of degree 2 we have

f(z) = f(1) + f ′(1)(z − 1) +
f ′′(1)

2
(z − 1)2

and thus in this case

z2 = 1 + 2(z − 1) + (z − 1)2 ≈ 1 + 2(z − 1)

when z is close to 1. The function f1(z) = 1 + 2(z − 1) maps a circle centered at 1 in the
z-plane to a circle centred at 1 in the w-plane and thus z2 approximately does this when
z is close to 1.

Again the plots suggest that angles are preserved at all intersection points and this
can be proved to be the case.

Plotting f(z) = (z − z0)/(1− z0z)

Given some point z0 ∈ C the function

w = f(z) =
z − z0

1− z0z

is a particular bilinear function (the ratio of two linear polynomials). The term Möbius
transformation is also used for functions of this type. If |z0| < 1 and we restrict z to
the unit disk then the function is bounded on the unit disk as we have kept away from
the point z = 1/z0 which has magnitude greater than 1. In figure 2.4 we show a radial
mesh of the unit disk in the z-plane together with the image mesh in the w-plane. (The
plot was generated using a computer program.)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
z plane

-1 -0.5 0 0.5 1

-0.5

0

0.5

w plane

Figure 2.4: w = f(z) = z − z0
1− z0z

, with z0 = 0.4(1 + i) and |z| ≤ 1.

The plot suggests that the image of a circle is a circle and this can be proved to be
the case and indeed in the w-plane all the curves shown are parts of circles or are parts
of a straight line. On the first exercise sheet one of the questions asks you to verify that
if |z| = 1 then |w| = 1 which explains why the unit circle maps to the unit circle.
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2.4 The limit of a function and continuity

When a function of a real variable is considered the terms limit and continuity at a point
are defined with the limit of f(x) at x = a, when it exists, being the value that f(x)
tends to as x tends to a and continuity is concerned with a function having a limiting
value which is the same as f(a). Continuity is concerned with f(x) being close to f(a)
whenever x is close to a and the ‘closeness’ part is given in terms of ε > 0 and δ > 0. We
can similarly define these terms for complex valued functions of a complex variable with
the distance between values being the absolute value.

Definition 2.4.1 The limit of f(z) as z → z0. Let f be defined in a neighbourhood of
z0 and let f0 ∈ C. If for every ε > 0 there exists a real number δ > 0 such that

|f(z)− f0| < ε for all z satisfying 0 < |z − z0| < δ

then we say that
lim
z→z0

f(z) = f0.

Definition 2.4.2 The limit of f(z) as z →∞. Let f be defined in a region of the form
{z : |z| > ρ}. If for every ε > 0 there exists a real number r > 0 such that

|f(z)− f0| < ε for all z satisfying |z| > r

then we say that
lim
z→∞

f(z) = f0.

As an example of a function having a limit at∞ consider the ratio of two polynomials
when the denominator has at least the degree of the numerator, e.g.

1

z
→ 0 as z →∞ and

z + 1

2z + 1
=

1 + (1/z)

2 + (1/z)
→ 1

2
as z →∞.

Note that we did not need to use ε and δ to get these limiting values.

Definition 2.4.3 Continuity. A function w = f(z) is continuous at z = z0 provided
f(z0) is defined and

lim
z→z0

f(z) = f(z0).

The definitions in the complex case hence involves statements which are the same as
are used in the real case apart from now having z0, f0, z and f(z) as complex numbers
and with absolute value now meaning the absolute value of a complex number. This last
observation about the quantities now being complex numbers makes the conditions for a
function to have a limit and to be continuous a bit stricter a requirement on f than in the
real case as there are now more possibilities as to how z → z0 and the limit value must be
independent of this. To attempt to visualise some of the possibilities for the trajectory
of z as it approaches z0 consider the following. The trajectory could be along any radial
line, i.e. z(t) = z0 + teiα, as t → 0 for any −π < α ≤ π, or the trajectory might be a
spiral of the form z(t) = z0 + teiαt as t → 0 for any α ∈ R. Trajectories of this type are
shown in figure 2.5.
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Examples of approaching a point along a radial line.

Figure 2.5: Examples of approaching a point along various spirals.

In the introduction chapter it was shown that how z tends a point can make a difference
as was the case with

f(z) = exp(−1/z2).

If we approach z = 0 along the real axis then we have f(x)→ 0 as x→ 0 (x ∈ R) but if
we approach z = 0 along the imaginary axis then we have f(iy)→∞ as y → 0 (y ∈ R).
As a function of a complex variable this function does not have a limit as z → 0 and it is
not bounded either.

For another example of a function which has already been mentioned which does not
have a limit as z → 0 we have Arg z.

Most of the functions considered in this module are continuous at most points and the
proofs are very similar to the proof in the case of functions of a real variable and these
are not repeated here. For example,

f1(z) = z,

f2(z) = exp(z),

are both continuous on C. As in the real case, once we have a few standard functions
which are continuous then these can be combined in various ways to prove that many
more functions have the continuity property. We have the following involving adding,
multiplying and dividing.

Theorem 2.4.1 Suppose that f(z) and g(z) are continuous at z0. Then

(i) f(z)± g(z) and f(z)g(z) are continuous at z0.
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(ii) f(z)/g(z) is continuous at z0 provided g(z0) 6= 0.

We can also consider functions of a function.

Theorem 2.4.2 Suppose that f(z) is continuous at z0 and g(z) is continuous at f(z0)
then g(f(z)) is continuous at z0.

Continuity of the function can also be deduced from the continuity of the real and
imaginary parts and vice versa and we state this as a theorem.

Theorem 2.4.3 Let f(z) = u(x, y) + iv(x, y). If f is continuous at z0 = x0 + iy0 then u
and v are both continuous as functions on R2 at (x0, y0). Conversely, if u and v are both
continuous at (x0, y0) then f is continuous at z0 = x0 + iy0.

As a consequence of the above results we have that any polynomial

a0 + a1z + · · ·+ anz
n

is continuous on C and any rational function of the form

a0 + a1z + · · ·+ anz
n

b0 + b1z + · · ·+ bmz
m , bm 6= 0, m ≥ 1, an 6= 0

is continuous except at points where the denominator is 0. The fundamental theorem
of algebra tells us that there must be points where the denominator vanishes and unless
such points are also zeros of the numerator this type of function will generally not have a
limit at every z ∈ C. For a function such as this the domain is all of C except for a finite
number of points.

Examples

1. Let z0 6= 0 and let

f(z) =

z
4 − z4

0
z − z0

, z 6= z0,

4z3
0 , z = z0.

From the previous theorems this function is continuous at all values of z 6= z0 as
it is a combination of continuous functions. To determine whether or not it is also
continuous at z0 we need to consider the limit as z → z0. In the next chapter we
will see that L’Hopital’s rule that you may have used for real-valued differentiable
functions can also be used in this complex case when we only want the limit but
before then we show that we can get the limit by just considering properties of
polynomials. To do this note that the numerator z4 − z4

0 does vanish at z = z0 and
hence z − z0 is a factor and we need to determine the other factor. If you cannot
spot what the other factor is then you might note that

z4 − z4
0 = z4

0

((
z

z0

)4

− 1

)
and z − z0 = z0

((
z

z0

)
− 1

)
Thus with w = z/z0 we have the geometric series

w4 − 1 = (w − 1)(w3 + w2 + w + 1)
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and
z4 − z4

0

z − z0

= z3
0(w3 + w2 + w + 1)→ 4z3

0 as z → z0

as w → 1 as z → z0. The function value is the same as the limit and hence the
function is continuous on C. The function is just the cubic polynomial

f(z) = z3 + z0z
2 + z2

0z + z3
0 .

2. Let

f(z) =
z

z
.

As in the previous case this function is continuous for all z 6= 0 by the combination
of continuous functions result and thus we just need to consider if a limit exists as
z → 0. If we let z = teiα with t ∈ R and t 6= 0 then

z

z
=
te−iα

teiα
= e−2iα.

The right hand side does not depend on t and in particular this tells us that we have
a limit as teiα → 0, i.e. when we approach 0 on a radial line. However the result
depends on which radial line is used and every value on the unit circle is attained for
some z which is arbitrarily close to z = 0. For a limit to exist there must be just one
value and thus this function does not have a limit as z → 0. This situation will be
met again when we use limits to define complex differentiability and we are trying
to determine which functions are analytic and which functions are not analytic.
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Chapter 3

The complex derivative and analytic
functions

3.1 Definition of an analytic function

In the previous chapter a neighbourhood of a point z0 was defined and for a function
f defined in such a neighbourhood the limit limz→z0 f(z) and the continuity of f at z0

were also defined. Continuity is about f(z) being close to f(z0) whenever z is close to
z0 where in the complex case this means all z in a disk centred at z0. In the previous
chapter it was also noted that the continuity requirement is a stricter requirement on a
function than is the case of continuity for a real valued function of a real variable. This
chapter is concerned with differentiability in the complex sense which, as we will see, is a
much stricter requirement on a function than is the corresponding case with real valued
functions. We start with some definitions.

Definition 3.1.1 Complex derivative. Let f be a complex valued function defined in
a neighbourhood of z0. The derivative of f at z0 is given by

df

dz
(z0) ≡ f ′(z0) := lim

h→0

f(z0 + h)− f(z0)

h
= lim

z→z0

f(z)− f(z0)

z − z0

provided the limit exists. When the limit exists f is said to be differentiable at z0.

Definition 3.1.2 Analytic at a point. A function f is analytic at z0 if f is differ-
entiable at all points in some neighbourhood of z0.

Note: The term holomorphic is also commonly used for this property. It might not seem
much at this stage but to emphasise what has just been stated we do need the differentiable
property to hold in a neighbourhood of a point for the function to be analytic at the point.

Definition 3.1.3 Analytic in a domain. A function f is analytic in a domain if f
is analytic at all points in the domain.

Definition 3.1.4 Entire function. A function f : C → C is an entire function if it
is analytic on the whole complex plane C.
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The expression used to define the derivative is the same as in the real case but re-
member that there are now more possibilities for how h → 0 and the implication of this
will be discussed shortly when the Cauchy Riemann equations are considered.

One immediate consequence of the above definitions is that if f(z) is analytic at z0

then it is continuous in a neighbourhood of z0. This is because

f(z)− f(z0) =

(
f(z)− f(z0)

z − z0

)
(z − z0)

and we have a product with both terms having a limit as z → z0 and we can hence
immediately deduce that limz→z0 f(z) = f(z0). It further follows that we can define the
function

λ(z) =

{
f(z)− f(z0)

z − z0
− f ′(z0), z 6= z0,

0, z = z0

and this is continuous in the neighbourhood. Thus in particular this shows that

f(z) = f(z0) + f ′(z0)(z − z0) + λ(z)(z − z0)

≈ f(z0) + f ′(z0)(z − z0) when z ≈ z0.

3.2 Examples of functions which are analytic

We consider next some functions which can be shown to be analytic by directly using the
definition and in all cases the details are virtually identical to the corresponding real case.

1. Let f(z) := z. We trivially have

f(z + h)− f(z)

h
=
z + h− z

h
= 1.

Thus f ′(z) = 1 as in the real case.

2. Let f(z) := z2. We have

f(z + h)− f(z)

h
=

(z + h)2 − z2

h
=

2zh+ h2

h
= 2z + h→ 2z

as h→ 0. Thus f ′(z) = 2z as in the real case.

3. Let f(z) := zn for any n = 1, 2, 3, . . ..

f(z + h)− f(z) = (z + h)n − zn = nhzn−1 + · · ·+ hn

by the binomial theorem. Again

f(z + h)− f(z)

h
= nzn−1 +O(h)→ nzn−1 as h→ 0.

Thus f ′(z) = nzn−1 as in the real case.
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4. Let f(z) = 1/z. If z 6= 0 and h is sufficiently small such that z + h 6= 0 then

f(z + h)− f(z) =
1

z + h
− 1

z
=
z − (z + h)

(z + h)z
=

−h
(z + h)z

.

It then follows that

f(z + h)− f(z)

h
=

−1

(z + h)z
→ − 1

z2 as h→ 0.

Again we have the same expression for the derivative as in the real case.

In all the above cases we obtain the same expression for the derivative as in the real
case with virtually identical workings and hence it is perhaps not too surprising that the
rules that you learned for differentiating finite sums, products, quotients and functions
of a function also hold in the complex case and these are just stated next without any
proofs.

3.3 Combining analytic functions

Theorem 3.3.1 Combining differentiable functions. Let f and g be differentiable
at z0. We have the following.

(i)
(f ± g)′(z0) = f ′(z0)± g′(z0).

(ii)
(cf)′(z0) = cf ′(z0)

for all constants c ∈ C.

(iii)
(fg)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0).

This is the product rule.

(iv) (
f

g

)′
(z0) =

g(z0)f ′(z0)− f(z0)g′(z0)

g(z0)2 , if g(z0) 6= 0.

This is the quotient rule.

(v) Let now f be a function which is differentiable at g(z0). Then

d

dz
f(g(z))

∣∣∣∣
z=z0

= f ′(g(z0))g′(z0).

This is known as the function of a function rule or the chain rule.
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From the examples considered earlier and the above theorem we deduce that polyno-
mials

anz
n + · · ·+ a1z + a0

are entire functions and rational functions of the form

anz
n + · · ·+ a1z + a0

bmz
m + · · ·+ b1z + b0

, an 6= 0, bm 6= 0

are analytic in C except at points at which the denominator is 0.
Another function that has been mentioned which is an entire function is the exponen-

tial function
exp(x+ iy) = ex(cos y + i sin y).

This will be shown later after we have considered what the analytic property means for
the real and imaginary parts of f .

3.4 L’Hôpital’s rule

When derivatives are available for two functions f and g we can often make progress in
determining whether or not a limit exists of a quotient

f(z)

g(z)

in the case that f(z0) = g(z0) = 0. For z 6= z0 we have

f(z)

g(z)
=
f(z)− f(z0)

g(z)− g(z0)
=

(f(z)− f(z0))/(z − z0)

(g(z)− g(z0))/(z − z0)
.

Now if g′(z0) 6= 0 then letting z → z0 gives

lim
z→z0

f(z)

g(z)
=
f ′(z0)

g′(z0)
.

This result is known as L’Hôpital’s rule. In term 2 we will extend the result to deal
with cases when f ′(z0) = g′(z0) = 0, and also possibly of higher derivatives, after we
have shown that the analytic property of a function actually implies that derivatives of
all order also exist and are analytic. This property of analytic functions requires results
about integration along paths in the complex plane which will occupy a large part of the
module involving the latter part of term 1 and much of term 2.

Example

Suppose we want to compute

lim
z→i

i+ z11

i+ z15 .

In this case
f(z) = i+ z11 and g(z) = i+ z15
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and we have f(i) = g(i) = 0. For the derivatives we have

f ′(z) = 11z10 and g′(z) = 15z14

and observe that g′(i) 6= 0. Thus

lim
z→i

i+ z11

i+ z15 =
f ′(i)

g′(i)
=

11i10

15i14 =
11

15
, as i4 = 1.

3.5 Examples of functions which are not analytic any-

where

You do not need to search very far to find functions which are not analytic at any points
with one of the simplest examples being

f(z) = z.

This function is continuous but if we consider

f(z + h)− f(z)

h
=
h

h

then we have an expression with no limit as h→ 0. This was the expression encountered
in the example on page 2-13. We get a limit as h → 0 along radial lines but the limit
obtained depends on which radial line is used. For example if h = h1 is real then we get
1 whilst if h = ih2 is pure imaginary (which requires h2 to be real) then we get −1. This
is sufficient to explain why no limit exists as h→ 0.

Other examples that immediately follow of functions which are not analytic are

f(x+ iy) = x and f(x+ iy) = y.

In both cases these follow from the relations

2x = z + z, 2iy = z − z.

If x or y were analytic then this immediately implies that z is analytic (as it is a com-
bination involving z) but this contradicts what was done above in showing that z is not
analytic anywhere.

The case f(z) = z suggests other examples of this type. If f(z) is analytic at z0 and
f ′(z0) 6= 0 and we let g(z) = f(z) then

g(z)− g(z0)

z − z0

=
f(z)− f(z0)

z − z0

=

(
f(z)− f(z0)

z − z0

)(
z − z0

z − z0

)
.

The first term tends to f ′(z0) 6= 0 as z → z0 but the second term does not have a limit as
z → z0 and thus a limit does not exist. There will be a result at the end of this chapter
which further explains this case.
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3.6 The Cauchy Riemann equations

When continuity was discussed in the previous chapter we considered the real and imag-
inary parts of f(z), i.e.

f(z) = u(x, y) + iv(x, y), z = x+ iy, x, y, u, v ∈ R,

and we had that f is continuous at z0 = x0 + iy0, x0, y0 ∈ R, if and only if u and v
are continuous at (x0, y0). We now consider what existence of f ′(z0) means for the first
partial derivatives of u and v at (x0, y0).

Recall the definition

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
.

If we consider the limit taking h = h1 being real then

f(z0 + h1)− f(z0) = u(x0 + h1, y0) + iv(x0 + h1, y0)

−(u(x0, y0) + iv(x0, y0))

= (u(x0 + h1, y0)− u(x0, y0))

+i(v(x0 + h1, y0)− v(x0, y0))

and

f ′(z0) = lim
h1→0

(
u(x0 + h1, y0)− u(x0, y0)

h1

+i
v(x0 + h1, y0)− v(x0, y0)

h1

)
=

(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0).

If we consider the limit taking h = ih2 being purely imaginary then

f ′(z0) = lim
h2→0

(
u(x0, y0 + h2)− u(x0, y0)

ih2

+i
v(x0, y0 + h2)− v(x0, y0)

ih2

)
=

(
1

i

∂u

∂y
+
∂v

∂y

)
(x0, y0) =

(
−i∂u
∂y

+
∂v

∂y

)
(x0, y0).

Equating the two different representations for f ′(z0) gives

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

and these are known as the Cauchy-Riemann equations. We summarize what has just
been shown in a theorem.

Theorem 3.6.1 If f = u+ iv is complex differentiable at z0 = x0 + iy0 then at (x0, y0)

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.
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Hence if we have expressions for u and v and these equations do not hold then we can
immediately deduce that f is not complex differentiable. The Cauchy-Riemann equations
are thus a necessary condition for f to be analytic.

If all the first partial derivatives of u and v are continuous at (x0, y0) then we next
show that the converse is true in that if the Cauchy-Riemann equations are satisfied then
f = u+ iv is complex differentiable at z0 = x0 + iy0. That is, subject to the continuity of
the derivatives of u and v, the Cauchy Riemann equations are also a sufficient condition.
This is a bit harder to do as we have to show that the limit existing using two different
directions is sufficient to show that the same limit works with all possible directions.

Proof of the sufficiency of the Cauchy Riemann equations:
The proof of the sufficiency of the Cauchy Riemann equations is not examinable and

in the following we give a short version, without all the details, to partially justify the
result and then this is followed by a full text book type justification.

A partial justification using directional derivatives
The difficulty in proving the result is that when we consider the difference f(z0 +h)−

f(z0) we need to consider this for all possible ways that h→ 0. Let h = h1 + ih2 denote
the cartesian form of h with h1, h2 ∈ R. We have

f(z0 + h)− f(z0) = u(x0 + h1, y0 + h2)− u(x0, y0)

+i(v(x0 + h1, y0 + h2)− v(x0, y0)).

To express the difference of u at (x0, y0) with u at the near by point (x0 +h1, y0 +h2) can
be done in terms of the directional derivative of u in the direction of (h1, h2) and this in
turn involves the dot product of ∇u with a unit vector in the direction involved. (If you
have not met the term gradient and directional derivative before then we present in any
case what this means in terms of what is covered in MA2612. For information the gradient
vector of u = u(x, y) is the vector

∇u =

∂u∂x
∂u
∂y

 .

Gradient vectors were part of a vector calculus module MA2741 which last ran in 2019/0.)
The outcome of this is that when u is sufficiently smooth we can write

u(x0 + h1, y0 + h2)− u(x0, y0) =

(
h1
∂u

∂x
+ h2

∂u

∂y

)
(x0, y0) +O(|h|2).

We can similarly do this for the function v and when we consider f = u+ iv we have

f(z0 + h)− f(z0) =

((
h1
∂u

∂x
+ h2

∂u

∂y

)
+i

(
h1
∂v

∂x
+ h2

∂v

∂y

))
(x0, y0) +O(|h|2).

Now we use the Cauchy Riemann equations to express all the partial derivatives in terms
of partial derivatives with respect to x and note that the expression has a factor of
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h = h1 + ih2, that is we have

f(z0 + h)− f(z0)

=

((
h1
∂u

∂x
− h2

∂v

∂x

)
+ i

(
h1
∂v

∂x
+ h2

∂u

∂x

))
(x0, y0) +O(|h|2)

= (h1 + ih2)

(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0) +O(|h|2).

Dividing by h = h1 + ih2 and letting this tend to 0 gives

lim
h→0

f(z0 + h)− f(z0)

h
=

(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0).

We have shown that the limit exists and we have an expression for the limit.

A full text book type version of the proof
Taking one of the representations for f ′(z0) we need to consider the following for

arbitrary h = h1 + ih2

f(z0 + h)− f(z0)

h
−
(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0).

That is we have to show that our candidate for the limit, obtained by considering one di-
rection, works as the limit when we consider all possible directions. Part of the expression
just given involves

f(z0 + h)− f(z0) = u(x0 + h1, y0 + h2)− u(x0, y0)

+i(v(x0 + h1, y0 + h2)− v(x0, y0))

and we start by just considering the part of this which just involves u. As we have a
change in both the x and y directions it helps to introduce an intermediate point for the
comparison.

(x0, y0)

(x0 + h1, y0 + h2)

(x0 + h1, y0)

Intermediate point

Now we use the mean value theorem twice to give

(u(x0 + h1, y0 + h2)− u(x0 + h1, y0)) + (u(x0 + h1, y0)− u(x0, y0))

= h2
∂u

∂y
(x0 + h1, y0 + α1h2) + h1

∂u

∂x
(x0 + α2h1, y0)
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for some α1, α2 ∈ (0, 1). By the continuity of the partial derivatives we can relate them
to the derivatives at (x0, y0) and write

∂u

∂x
(x0 + α2h1, y0) =

∂u

∂x
(x0, y0) + ε2

∂u

∂y
(x0 + h1, y0 + α1h2) =

∂u

∂y
(x0, y0) + ε1

with ε1 → 0 and ε2 → 0 as h→ 0. Putting the terms involving u together gives

u(x0 + h1, y0 + h2)− u(x0, y0) = h1
∂u

∂x
(x0, y0) + h2

∂u

∂y
(x0, y0) + h1ε2 + h2ε1.

Similar reasoning for v leads to the existence of ε3 and ε4 which both tend to 0 as h→ 0
with

v(x0 + h1, y0 + h2)− v(x0, y0) = h1
∂v

∂x
(x0, y0) + h2

∂v

∂y
(x0, y0) + h1ε4 + h2ε3.

As the candidate for the limit only involves partial derivatives with respect to x we use
the Cauchy Riemann equations to write all the partial derivatives in terms of derivatives
with respect to x and the last two equations become

u(x0 + h1, y0 + h2)− u(x0, y0) =

(
h1
∂u

∂x
− h2

∂v

∂x

)
(x0, y0) + h1ε2 + h2ε1,

v(x0 + h1, y0 + h2)− v(x0, y0) =

(
h1
∂v

∂x
+ h2

∂u

∂x

)
(x0, y0) + h1ε4 + h2ε3.

Now we need to combine these parts appropriately to have the difference of u+ iv at the
two points and this gives(

h1
∂u

∂x
− h2

∂v

∂x

)
(x0, y0) + i

(
h1
∂v

∂x
+ h2

∂u

∂x

)
(x0, y0)

= (h1 + ih2)

(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0),

i.e. the expression is the product of two terms. This is one of the key stages of the proof
as h = h1 + ih2 and for f we thus have

f(z0 + h)− f(z0) = (h1 + ih2)

(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0)

+(h1ε2 + h2ε1) + i(h1ε4 + h2ε3).

Thus

f(z0 + h)− f(z0)

h
−
(
∂u

∂x
+ i

∂v

∂x

)
(x0, y0) =

(h1ε2 + h2ε1) + i(h1ε4 + h2ε3)

h

and it just remains to show that the right hand side tends to 0 as h → 0. Now since
h = h1 + ih2 and |h|2 = h2

1 + h2
2 we have∣∣∣∣h1

h

∣∣∣∣ ≤ 1 and

∣∣∣∣h2

h

∣∣∣∣ ≤ 1
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and the result follows by the triangle inequality and that εk → 0 for k = 1, 2, 3, 4, that is
we have∣∣∣∣(h1ε2 + h2ε1) + i(h1ε4 + h2ε3)

h

∣∣∣∣ ≤ ∣∣∣∣h1

h

∣∣∣∣ |ε2|+ ∣∣∣∣h2

h

∣∣∣∣ |ε1|+ ∣∣∣∣h1

h

∣∣∣∣ |ε4|+ ∣∣∣∣h2

h

∣∣∣∣ |ε3|
≤ |ε2|+ |ε1|+ |ε4|+ |ε3| → 0 as h→ 0.

Thus after more than 1.5 pages we have shown that our candidate for the limit is correct.
We summarize what has been done in the following theorem.

Theorem 3.6.2 When u and v have continuous partial derivatives in a domain D the
function f = u + iv is analytic on D if and only if the Cauchy Riemann equations are
satisfied throughout D.

Examples

1. If
f(z) = z = x− iy then u(x, y) = x and v(x, y) = −y.

We immediately have for the partial derivatives

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= −1.

As
∂u

∂x
6= ∂v

∂y

one of the Cauchy Riemann equations is not satisfied which confirms what has
already been done that this function is not analytic.

2. The complex exponential is defined by

exp(x+ iy) = ex(cos y + i sin y)

and thus
u(x, y) = ex cos y, and v(x, y) = ex sin y.

All the first partial derivatives are as follows.

∂u

∂x
= ex cos y = u,

∂v

∂y
= ex cos y = u,

∂u

∂y
= −ex sin y = −v, ∂u

∂y
= ex sin y = v.

The Cauchy Riemann equations are satisfied everywhere and further if f = u + iv
then

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= u+ iv = f(z)

which is the same as the corresponding result in the real case, i.e.

d

dz
ez = ez.
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Some remarks about the representations of f ′(z)

By using the Cauchy Riemann equations we can represent the derivative f ′ of an analytic
function f = u+ iv in several different ways as follows.

f ′(z) =
∂u

∂x
+ i

∂v

∂x
, (only involving partial derivatives with respect to x), (3.6.1)

=
∂v

∂y
− i∂u

∂y
, (only involving partial derivatives with respect to y), (3.6.2)

=
∂u

∂x
− i∂u

∂y
, (only involving u), (3.6.3)

=
∂v

∂y
+ i

∂v

∂x
, (only involving v). (3.6.4)

f ′(z) is thus completely determined by the gradient of u (which is denoted by ∇u) and it
is also completely determined by the gradient of v (which is denoted by ∇v).

The Cauchy Riemann equations in polar form

In some situations it is simpler to use polar coordinates r and θ instead of cartesian
coordinates x and y and consider a function in the form

f(z) = u(x, y) + iv(x, y) = ũ(r, θ) + iṽ(r, θ).

To obtain the expression for f ′(z) in terms of the partial derivatives of ũ and ṽ and the
form of the Cauchy Riemann equations in this case we can directly use the definition of
the derivative with suitable choices for h. At a value z = reiθ a change in the radial
direction (i.e. r direction) corresponds to

h = (r + hr)e
iθ − reiθ = hre

iθ

and a change in the θ direction corresponds to

h = rei(θ+∆θ) − reiθ = rei(θ)
(
ei(∆θ) − 1

)
= rei(θ)

(
i∆θ +O

(
(∆θ)2

))
.

The change in the r direction gives

f ′(z) =
1

eiθ

(
∂ũ

∂r
+ i

∂ṽ

∂r

)
= e−iθ

(
∂ũ

∂r
+ i

∂ṽ

∂r

)
.

For the change in the θ direction we take

h = rei(θ+∆θ) − reiθ = reiθ
(
i∆θ +O

(
(∆θ)2

))
= rei(θ)i∆θ (1 +O (∆θ))

and consider

f(z + h)− f(z)

h
=

1

ireiθ

(
u(r, θ + ∆θ)− u(r, θ)

∆θ
+ i

v(r, θ + ∆θ)− v(r, θ)

∆θ

)
φ(∆θ),

where

φ(∆θ) =
1

(1 +O (∆θ))
→ 1 as ∆θ → 0.
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Thus
f(z + h)− f(z)

h
→ e−iθ

(
− i
r

∂ũ

∂θ
+

1

r

∂ṽ

∂θ

)
as ∆θ → 0.

Both the expressions have the factor e−iθ and as they must be the same we equate the
real and imaginary parts of the term in brackets to get the Cauchy Riemann equations in
polar form

∂ũ

∂r
=

1

r

∂ṽ

∂θ
,

1

r

∂ũ

∂θ
= −∂ṽ

∂r
.

Example

With z = reiθ, r > 0 and taking θ = Arg z let

f(z) = ln r + iθ

and consider this on the domain

G =
{
z = reiθ : r 6= 0 and − π < θ < π

}
.

The domain is thus the complex plane with the non-positive real axis excluded (i.e. we
are excluding 0 and the negative real axis). In the notation above we have

ũ(r, θ) = ln r and ṽ(r, θ) = θ.

The Cauchy Riemann equations are satisfied as

∂ũ

∂r
=

1

r

∂ṽ

∂θ
=

1

r
and

∂ũ

∂θ
=
∂ṽ

∂r
= 0

and hence f(z) is analytic on G. Further note that

f ′(z) = e−iθ
(
∂ũ

∂r
+ i

∂ṽ

∂r

)
=

1

r
e−iθ =

1

reiθ
=

1

z
.

f(z) is the principal branch of the complex logarithm. Observe that f ′(z) is analytic
for all z 6= 0 but for f(z) to be analytic we needed to exclude the non-positive real axis
to ensure the analytic property because Imf(z) = Argz has a jump discontinuity across
this half line. To introduce the notation that we use later, the principal valued complex
logarithm is defined by

Log z := ln |z|+ iArg z.

3.7 Harmonic functions

Definition 3.7.1 A function φ(x, y) is said to be harmonic in a domain D if it satisfies
Laplace’s equation

∆φ ≡ ∇2φ ≡ ∇ · (∇φ) =
∂2φ

∂x2 +
∂2φ

∂y2 = 0.
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As we now demonstrate, there is a strong connection between harmonic functions and
analytic functions which follows quite quickly by using the Cauchy Riemann equations.
Suppose that we have an analytic function

f(z) = u(x, y) + iv(x, y)

and suppose that both u and v are twice continuously differentiable which in particular
implies that mixed partial derivatives can be done in any order, i.e.

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
=

∂

∂y

(
∂u

∂x

)
. (3.7.1)

This twice continuously differentiable property has been the case in all the examples
encountered and as will be shown later in the module it is actually unnecessary to add
this requirement as the analytic property of f actually implies that derivatives of all order
are continuous. Now if we consider the property (3.7.1) for u and use the Cauchy Riemann
equations then we have

∂2u

∂x∂y
=

∂

∂x

(
∂u

∂y

)
= − ∂

∂x

(
∂v

∂x

)
= −∂

2v

∂x2

and
∂2u

∂x∂y
=

∂

∂y

(
∂u

∂x

)
=

∂

∂y

(
∂v

∂y

)
=
∂2v

∂y2 .

Equating the last two expressions gives us that v satisfies Laplace’s equation, i.e.

∂2v

∂x2 +
∂2v

∂y2 = 0.

Similar reasoning gives that u satisfies Laplace’s equation, i.e.

∂2u

∂x2 +
∂2u

∂y2 = 0.

Both u and v are harmonic functions with the function v said to be the harmonic
conjugate of u.

Thus the above has shown that given an analytic function we get a pair of related
harmonic functions. With some restrictions we can do the reverse of generating an analytic
function with a given harmonic function u as its real part. The restriction which makes
this possible is that the domain being considered should be simply connected (i.e. it has
no holes) and the ease or difficulty of obtaining f is concerned with the ease or difficulty
of obtaining the harmonic conjugate function v. When the domain is simply connected
and the functions involved can be integrated relatively easily we can obtain v from u as
follows. If we are given u then we can differentiate it and by using the Cauchy Riemann
equations we have expressions for the partial derivatives of v, i.e.

∂v

∂x
= −∂u

∂y
,

∂v

∂y
=

∂u

∂x
.
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If this is going to determine v then it can only determine v up to an additive constant.
Our procedure is to partially integrate the first relation with respect to x to get a form
for v with the constant of integration being some function of y which we denote by g(y).
We can then partially differentiate with respect to y and use the other Cauchy Riemann
equation to attempt to determine g(y). We consider this approach with some examples.

Examples

1. Suppose
u(x, y) = (x2 − y2) + 4xy.

For the first partial derivatives we have

∂u

∂x
= 2x+ 4y,

∂u

∂y
= −2y + 4x.

As a check, u does indeed satisfy Laplace’s equation

∂2u

∂x2 +
∂2u

∂y2 = 2 + (−2) = 0.

To determine v consider the Cauchy Riemann equation

∂v

∂x
= −∂u

∂y
= −(−2y + 4x) = 2y − 4x.

Remember that we have partial derivatives here and thus if we integrate with respect
to x then the ‘constant term’ is a function which does not involve x, i.e. any function
of y. With this in mind, this gives

v = 2yx− 2x2 + g(y)

for some function g(y). We next differentiate this with respect to y and use the
other Cauchy Riemann equation to give

∂v

∂y
= 2x+ g′(y) =

∂u

∂x
= 2x+ 4y

which requires that

g′(y) = 4y, giving g(y) = 2y2 + A

where A is a constant. The general form of the harmonic conjugate v is

v(x, y) = 2yx− 2x2 + g(y) = 2yx− 2x2 + 2y2 + A

and f is

f = u+ iv = (x2 − y2) + 4xy + i(2yx− 2x2 + 2y2 + A)

= (x2 − y2)(1− 2i) + 2xy(2 + i) + iA.

This can be written in terms of z alone in several ways and the one that we present
here involves considering the derivatives and a finite Maclaurin expansion. The
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details of this are as follows. Firstly note that we have already shown that f(z)
is analytic and hence differentiating in any direction gives the same result and in
particular we can get expressions for the derivative by partially differentiating in
the x direction. We can repeatedly differentiate in the x direction to give

f ′(z) =
∂f

∂x
=

∂u

∂x
+ i

∂v

∂x
= (2x+ 4y) + i(2y − 4x),

f ′′(z) =
∂2f

∂x2 =
∂2u

∂x2 + i
∂2v

∂y2 = 2− 4i.

We can directly verify here that f ′(z) and f ′′(z) are also analytic and in term 2 we
will show that this is always the case. As the second derivative is a constant and
the third derivative is 0 everywhere the function is a polynomial of degree 2. For
the derivatives at 0 we have f(0) = iA, f ′(0) = 0 and f ′′(0) = 2 − 4i. By a finite
Maclaurin expansion the polynomial is hence

f(z) = f(0) + f ′(0)z +
f ′′(0)

2
z2 = iA+ (1− 2i)z2.

The above use of the finite Maclaurin series representation was quite short as a way
of expressing in term of z. An even shorter way of getting the result is given next
although full justification in all cases of this type depends on something covered in
term 2. In this particular case of a polynomial we do actually have full justification
now as we explain. If we consider again our analytic function

f(x+ iy) = (x2 − y2)(1− 2i) + 2xy(2 + i) + iA

and just let y = 0 then we have

f(x) = (1− 2i)x2 + iA.

We get an analytic function if we just replace x by z, i.e.

φ(z) = (1− 2i)z2 + iA

is analytic and the difference f−φ is analytic with the property that f(z)−φ(z) = 0
when y = 0. In this case f −φ is a polynomial of degree 2 or less and thus can have
at most 2 distinct zeros and as it zero on the real axis it is zero everywhere. This
is the full justification when an analytic function is a polynomial. More generally
in term 2 we show that an analytic function which is not identically zero only has
zeros which are isolated. Thus if two analytic function agree on the real axis then
they must agree everywhere where they are both defined.

2. Let
u(x, y) = sinx cosh y.

The first partial derivatives are

∂u

∂x
= cosx cosh y,

∂u

∂y
= sinx sinh y.
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If you differentiate again then you get

∂2u

∂x2 = −u, ∂2u

∂y2 = u, and
∂2u

∂x2 +
∂2u

∂y2 = 0

as a check that u is harmonic. To get the harmonic conjugate v we have

∂v

∂x
= −∂u

∂y
= − sinx sinh y.

Partially integrating with respect to x gives

v = cosx sinh y + g(y).

To determine g(y) we use the other Cauchy Riemann equation, i.e.

∂v

∂y
= cosx cosh y + g′(y) =

∂u

∂x
= cosx cosh y.

Thus g′(y) = 0 and g(y) = A is a constant. The analytic function is

f(z) = u+ iv = sinx cosh y + i cosx sinh y + iA.

As we will see later this function is f(z) = sin(x+ iy) + iA = sin z + iA.

3.8 The ∂f/∂z = 0 form of the Cauchy Riemann equa-

tions

Recall that we showed that f(z) = z is not analytic anywhere and more generally if f(z) is
analytic then g(z) = f(z) is not complex differentiable at any point for which f ′(z) 6= 0.
These observations all suggest that for f to be analytic then it should be possible to
express it in a way which does not involve z. This is indeed the case in the following
sense.

From z = x+ iy and z = x− iy we have

x =
z + z

2
, y =

z − z
2i

and we can write

g(z, z) = u(x, y) + iv(x, y) = u

(
z + z

2
,
z − z

2i

)
+ iv

(
z + z

2
,
z − z

2i

)
.

For the manipulations we can consider g as independent function of z and z and use the
chain rule to give

∂g

∂z
=

(
∂u

∂x

∂x

∂z
+
∂u

∂y

∂y

∂z

)
+ i

(
∂v

∂x

∂x

∂z
+
∂v

∂y

∂y

∂z

)
=

(
1

2

∂u

∂x
− 1

2i

∂u

∂y

)
+ i

(
1

2

∂v

∂x
− 1

2i

∂v

∂y

)
=

1

2

(
∂u

∂x
− ∂v

∂y

)
− 1

2i

(
∂u

∂y
+
∂v

∂x

)
.
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This shows that

∂g

∂z
= 0 if and only if

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

It is in this sense that if we have a function of z and z then it needs to be a function of z
alone to be analytic. This does not mean that we can always express an analytic function
as a finite combination of standard functions as in all the examples considered so far but,
as we will show later in the module, we can always represent such functions in a power
series about a point z0 which just involves powers of z − z0.
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Chapter 4

The elementary functions of a
complex variable

Most books on functions of a complex variable contain a chapter or a section with a title
of the form “the elementary functions”. The term elementary functions is usually taken
to mean a function of one variable which is built from a finite number of exponential,
logarithm, constants, nth roots through composition and combination using the opera-
tions of +, −, × and / (this is how it is defined in wikipedia). In chapters discussing
such functions it is also common to also include polynomials, rational functions and this
is what is done here. In all cases considered the functions to be described are functions
f(z) of the complex variable z = x+ iy.

4.1 Polynomials

A polynomial is a function of the form

pn(z) = a0 + a1z + a2z
2 + · · ·+ anz

n =
n∑
k=0

akz
k

where a0, a1, . . . , an are complex numbers. If an 6= 0 then the degree of the polynomial is
n. pn(z) is an entire function, i.e. analytic in C.

4.1.1 The finite Taylor series representation

If we differentiate repeatedly the above relation then we obtain

p′n(z) = a1 + 2a2z + 3a3z
2 + · · ·+ nanz

n−1,

p′′n(z) = 2a2 + 3(2)a3z + · · ·+ n(n− 1)anz
n−2,

· · · · · ·
p(k)
n (z) = k!ak + · · ·+ n(n− 1) · · · (n− k + 1)anz

n−k.

Each differentiation gives a polynomial of one degree lower and if we differentiate n + 1
times then we get the zero function. Also note that the coefficients are given by

ak =
p(k)
n (0)

k!
, k = 0, 1, . . . , n
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so that

pn(z) =
n∑
k=0

p(k)
n (0)

k!
zk

which is a finite Maclaurin expansion. In some applications it is more convenient to
expand about a point z0 instead of 0 and we similarly have the representation

pn(z) =
n∑
k=0

p(k)
n (z0)

k!
(z − z0)k (4.1.1)

which is a finite Taylor expansion about z0. As an example, if we take pn(z) = z3 then

pn(1) = 1, p′n(1) = 3, p′′n(1) = 6 and p′′′n (1) = 6

giving
z3 = 1 + 3(z − 1) + 3(z − 1)2 + (z − 1)3

which can also be deduced by considering the binomial expansion of

(1 + (z − 1))3.

If we return to the representation (4.1.1) and we define

pr(z) =
r∑

k=0

p(k)
n (z0)

k!
(z − z0)k, r = 0, 1, . . . , n

and approximate pn(z) by pm−1(z) with m ≤ n then the difference is of the form

pn(z)− pm−1(z) =
n∑

k=m

p(k)
n (z0)

k!
(z − z0)k = (z − z0)m( polynomial ).

The difference has a zero of multiplicity of at least m at z0 and the other factor is a
polynomial.

4.1.2 A representation in terms of the roots

In other applications it is convenient to factorize the polynomial in the form

pn(z) = an(z − α1)(z − α2) · · · (z − αn)

where α1, . . . , αn are known as the zeros or roots of pn(z). This representation is possible
as a consequence of the fundamental theorem of algebra (proofs of this theorem will be
seen later in the module although they will not be examinable). The n numbers α1, . . . , αn
need not be distinct and if we let ζ1, . . . , ζm denote the distinct zeros then

pn(z) = an(z − ζ1)r1(z − ζ2)r2 · · · (z − ζm)rm , ri ≥ 1, r1 + r2 + · · ·+ rm = n.

Here pn(z) has a zero at ζk of multiplicity rk ≥ 1. Another way of stating this is that
there exists an analytic function g(z) such that

pn(z) = (z − ζk)rkg(z), g(ζk) 6= 0, (4.1.2)
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and in the case of a polynomials of degree n the function g(z) is a polynomial of degree
n− rk. If we differentiate (4.1.2) repeatedly then we get

p′n(z) = (z − ζk)rkg′ + rk(z − ζk)rk−1g,

p′′n(z) = (z − ζk)rkg′′ + 2rk(z − ζk)rk−1g′ + rk(rk − 1)(z − ζk)rk−2g,

· · ·

and if we evaluate the derivatives at ζk then we have

pn(ζk) = p′n(ζk) = · · · = p(rk−1)
n (ζk) = 0.

As a note, later in the module we consider zeros of analytic functions f(z) more
generally and we again have that if ζ is a zero of multiplicity r ≥ 1 then there exists
another analytic function g(z) such that

f(z) = (z − ζ)rg(z), g(ζ) 6= 0,

from which it follows that f (k)(ζ) = 0, k = 0, 1, . . . , r − 1. This result will follow once we
have covered Taylor’s series in term 2.

4.2 Rational functions

A rational function is a ratio of two polynomials, i.e. it is of the form

Rm,n(z) =
pm(z)

qn(z)
=
a0 + a1z + · · ·+ amz

m

b0 + b1z + · · ·+ bnz
n , am 6= 0, bn 6= 0.

The properties of such functions are mainly determined by the zeros of the denominator
qn(z) as these are points where generally the function value will tend to infinity as z tends
to such points with the precise outcome depending on whether or not pm(z) also has a
zero at the same point. For example, if we note the identity

zn − 1 = (z − 1)(zn−1 + zn−2 + · · ·+ z + 1)

and define

R(z) =
z − 1

zn − 1

then R(z) is not defined at any of the n roots of 1 but it has a finite limit as z → 1. The
points where R(z) is not defined are said to be singularities although the singularity at
z = 1 is said to be removable and we can effectively just consider instead

1

zn−1 + zn−2 + · · ·+ z + 1
.

In what follows we will assume that the numerator and denominator have no common
zeros.
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4.2.1 Partial fraction representation

In previous study you are likely to have considered techniques for integrating rational
functions and as first step you would have probably needed to construct a partial fraction
representation. When real integrals are considered is it usually necessary to get the
complete representation before the integration can be attempted. In the applications
involving contour integrals in the complex plane to be considered later in this module it
will turn out that we only need part of the representation and thus in the description
that follows we consider techniques which enable us to just determine the parts that are
needed. The parts that are needed in the contour integral application are the residues
which is a term which we define later. Before general comments are given we consider the
use of partial fractions for the following functions.

f1(z) =
1

z2 + 1
,

f2(z) =
z3

z2 + 1
,

f3(z) =
4

(z2 + 1)(z − 1)2
.

In all cases we have z2 + 1 = (z + i)(z − i) and we have singularities at ±i. In the case
of f3(z) we have a singularity at z = 1 and denominator has a double zero at z = 1.

The function f1(z)

The partial fraction representation is of the form

f1(z) =
1

z2 + 1
=

A

z + i
+

B

z − i

where A and B are constants. To determine A and B one technique is to write the right
hand side as

A(z − i) +B(z + i)

(z + i)(z − i)
and then equate the numerators to give

1 = A(z − i) +B(z + i).

We can equate constant terms and the coefficients of z which gives a 2× 2 system for A
and B but an easier way is to note that as the relation is true for all z we can just set
z to specific values which eliminates a term and in particular it is best here to set z = i
and also to set z = −i to give

1 = B(2i), 1 = A(−2i)

giving

A = − 1

2i
, B =

1

2i
.

As an alternative we can multiply f1(z) by z − i or z + i and note that

(z − i)f1(z) = B + (z − i)(a function analytic at z = i)→ B as z → i
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and similarly
(z + i)f1(z)→ A as z → −i.

To actually get the values we can use L’Hopital’s rule

A = lim
z→−i

z + i

z2 + 1
=

1

2z

∣∣∣∣
z=−i

= − 1

2i
,

B = lim
z→i

z − i
z2 + 1

=
1

2z

∣∣∣∣
z=i

=
1

2i
.

This indicates that we can separately determine A and B. If we actually need the full
expression then it is

1

z2 + 1
=

1

2i

(
1

z − i
− 1

z + i

)
.

The function f2(z)

The extra complication here is that the numerator (i.e. z3) is of a higher degree than the
denominator (i.e. z2 + 1) and we cannot write it in partial fraction form. However we do
have

z3 = (degree 1 polynomial)(z2 + 1) + (remainder),

where the remainder has degree less than 2, so that we do have a representation of the
form

f2(z) = (degree 1 polynomial) +
A

z + i
+

B

z − i
.

We can obtain A and B without needing to first determine the polynomial in the brackets
by using the technique used in the case of f1(z).

A = lim
z→−i

(z + i)f2(z)

= lim
z→−i

z3 lim
z→−i

(z + i)

(z2 + 1)
= (−i)3

d

dz
(z + i)

∣∣∣∣
z=−i

d

dz
(z2 + 1)

∣∣∣∣
z=−i

=
(−i)3

2(−i)
= −1

2
.

Similarly

B = lim
z→i

(z − i)f2(z) =
i3

2i
= −1

2
.

To actually get the degree 1 polynomial in the brackets note that

z3 = z(z2 + 1)− z

so that
z3

z2 + 1
= z − z

z2 + 1
= z − 1

2

(
1

z + i
+

1

z − i

)
.
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The function f3(z)

The denominator in f3(z) has zeros of multiplicity 1 at the points ±i, as in the previous
cases, and it has zero of multiplicity 2 at the point z = 1. This requires a partial fraction
representation of the form

f3(z) =
A

z + i
+

B

z − i
+

C1

z − 1
+

C2

(z − 1)2 .

If we multiply by z + i then we get

(z + i)f3(z) = A+ (z + i)(a function analytic at z = −i).

If we multiply by z − i then we get

(z + i)f3(z) = B + (z − i)(a function analytic at z = i).

If we multiply by (z − 1)2 then we get

(z − 1)2f3(z) = C2 + C1(z − 1) + (z − i)2(a function analytic at z = 1). (4.2.1)

These observations enables us to get A, B and C2 by taking appropriate limits of these
expressions. In the computatations we use properties of limits (specifically that the limit
of a product is the product of the limits done separately) and we use L’Hopital’s rule. To
get A we have the following.

A = lim
z→−i

(z + i)f3(z) = 4 lim
z→−i

(
z + i

z2 + 1

)
1

(z − 1)2 ,

= 4 lim
z→−i

(
z + i

z2 + 1

)
lim
z→−i

1

(z − 1)2 = 4
1

2(−i)
1

(−i− 1)2

= 4

(
1

−2i

)(
1

2i

)
= 1.

To get B we have the following.

B = lim
z→i

(z − i)f3(z) = 4 lim
z→i

(
z − i
z2 + 1

)
1

(z − 1)2 ,

= 4 lim
z→i

(
z − i
z2 + 1

)
lim
z→i

1

(z − 1)2 = 4
1

2i

1

(i− 1)2

= 4

(
1

2i

)(
1

−2i

)
= 1.

To get C2 we have the following.

C2 = lim
z→1

(z − 1)2f3(z) = 4 lim
z→1

(
1

z2 + 1

)
= 2.

Although it may not be the shortest technique to get C1 once all the other coefficients
have been found but it is worth mentioning that we can also get C1 using limits. If we
differentiate what is given in (4.2.1) then we have

d

dz

(
(z − 1)2f3(z)

)
= C1 + (z − 1)(some function analytic at z = 1).
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Hence

C1 = lim
z→1

d

dz

(
(z − 1)2f3(z)

)
.

Fortunately in this example the differentiation does not involve too much work as we have

(z − 1)2f3(z) =
4

z2 + 1
,

d

dz

(
(z − 1)2f3(z)

)
=

−8z

(z2 + 1)2

and
−8z

(z2 + 1)2

∣∣∣∣
z=1

= −2.

To summarise we have

f3(z) =
4

(z2 + 1)(z − 1)2
=

1

z + i
+

1

z − 1
− 2

z − 1
+

2

(z − 1)2 .

What this example has illustrated is that all the coefficients to find can be given in
terms of limits. In this particular case the amount of workings needed could have been a
bit shorter by instead first putting the following.

A

z + i
+

B

z − i
+

C1

z − 1
+

C2

(z − 1)2

=
A(z − i)(z − 1)2 +B(z + i)(z − 1)2 + C1(z − 1)(z2 + 1) + C2(z2 + 1)

(z2 + 1)(z − 1)2 .

To be the same as f3(z) we need that for all z

1 = A(z − i)(z − 1)2 +B(z + i)(z − 1)2 + C1(z − 1)(z2 + 1) + C2(z2 + 1).

Letting z = −i then z = i and then z = 1 quickly gets the values A, B and C2. Equating
the coefficient of z3 then gives us

A+B + C1 = 0

from which we get C1 as A and B have already been found. In fact this relation is fairly
clear from the start when you consider the magnitude of the terms as |z| gets large. When
|z| is large we must have that |f3(z)| is decaying like 4/|z|4 whereas the 4 terms in the
representation are much larger with a decay of O(1/|z|) or O(1/|z|2). Thus the coefficients
of all the O(1/|z|) terms must be such that the terms nearly cancel for large |z|.

Summary of the f1, f2 and f3 examples and some terminology

In the case of f1(z) we have

f1(z) =
1

z2 + 1
=

A

z + i
+

B

z − i
.

The function has simple poles at ±i and A and B are known as the residues. We can
get the residues using

A = lim
z→−i

(z + i)f1(z), B = lim
z→i

(z − i)f1(z).
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In the case of f2(z) we can use a similar technique to just get the residues even
though the expression is not in the form that we can directly construct a partial fraction
representation.

In the case of f3(z) the situation is more complicated as the function has a double
pole at the point 1 and the representation needs to be

f3(z) =
A

z + i
+

B

z − i
+

C1

z − 1
+

C2

(z − 1)2 .

The residues in this case are the coefficient of the simple pole terms, i.e. A, B and C1

and we can get these from

A = lim
z→−i

(z + i)f3(z),

B = lim
z→i

(z − i)f3(z),

C1 = lim
z→1

d

dz

(
(z − 1)2f3(z)

)
.

As a comment on the terminology, a function f(z) is said to have a pole at a point
z0 if 1/f(z) is analytic at z0 and has a zero at that point. A simple zero of 1/f(z) (i.e.
a zero of multiplicity 1) gives a simple pole of f(z) and similarly a double zero of 1/f(z)
(i.e. a zero of multiplicity 2) gives a double pole of f(z).

4.2.2 Any rational function with just simple poles

The previous examples indicate what to do in more general cases and thus suppose that
the rational function is

R(z) =
p(z)

q(z)
, q(z) = (z − z1)(z − z2) · · · (z − zn), (4.2.2)

where p(z) is a polynomial. We are assuming here that z1, . . . , zn are distinct so that the
function has simple poles at z1, . . . , zn. As we have not given any restriction on the degree
of p(z) the representation is of the form

R(z) = (polynomial) +
n∑
k=1

Ak
z − zk

where Ak is the residue at zk. To obtain Ak we have

Ak = lim
z→zk

(z − zk)R(z) = lim
z→zk

(z − zk)p(z)

q(z)
= p(zk) lim

z→zk

(z − zk)
q(z)

=
p(zk)

q′(zk)
.

The case when p(zk) = 0 corresponds to Ak = 0 and this is the removable singularity
case. In the partial fraction case the numerator needs to have a lower degree than the
denominator, i.e. deg p(z) ≤ n− 1, and when this is the case we have

R(z) =
p(z)

q(z)
=

n∑
k=1

Ak
z − zk

, Ak =
p(zk)

q′(zk)
. (4.2.3)
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If you wish to fully justify that (4.2.3) is correct for all z then this can be done by the
following argument. Consider the difference which we denote by

g(z) =
p(z)

q(z)
−

n∑
k=1

p(zk)/q
′(zk)

z − zk
,

and multiply by q(z) and consider

q(z)g(z) = p(z)−
n∑
k=1

p(zk)

q′(zk)

(
q(z)

z − zk

)
. (4.2.4)

From (4.2.2) the term q(z)/(z−zk) is just a product of n−1 factors of the form z−zi with
limiting value of q′(zk) at zk. As deg p(z) ≤ n−1 the right hand side is a linear combination
of polynomials of degree n− 1 or less and thus the right hand side a polynomial of degree
n− 1 or less. When we consider this polynomial at the points z1, . . . , zn we get

lim
z→zk

q(z)g(z) = p(zk)−
p(zk)

q′(zk)
q′(zk) = 0.

Thus the right hand side of (4.2.4) is a polynomial of degree less than or equal to n − 1
and it is 0 at the n distinct points z1, . . . , zn which implies that it is 0 everywhere.

4.2.3 When there is just 1 multiple pole

As the example with f3(z) showed, when there are multiple poles there is usually more
effort to obtain the residues. However, if there is just one multiple pole then the derivation
is much shorter as we can just write a Taylor polynomial for the numerator p(z) with the
expansion about the pole. If p(z) has degree n and we have a pole of order r at z1 then
we have the following.

p(z)

(z − z1)r
=
p(z1) + p′(z1)(z − z1) + · · ·+ p(n)(z1)/n!(z − z1)n

(z − z1)r
.

The residue at z1 is
p(r−1)(z1)

(r − 1)!
.

4.2.4 The most general case

In the example involving the function f3(z) there was a double pole. In the most general
case we can have a rational function of the form

R(z) =
p(z)

(z − z1)r1(z − z2)r2 · · · (z − zn)rn
(4.2.5)

where rk ≥ 1 and where we assume that p(z) is a polynomial which is not zero at any of
the points zk. The form of the representation about zk needs poles of orders 1, 2, . . . , rk
and we have

R(z) = (poly) +

(
A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
.
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To just get the residue at zk we multiply by (z−zk)rk to get a function which is analytic at
zk, and to shorten the notation let r = rk, ζ = zk and let B1, . . . , Br denote A1,k, . . . , Ark,k.
With this notation we have

(z− ζ)rR(z) = Br +Br−1(z− ζ) + · · ·+B1(z− ζ)r−1 + (z− ζ)r(a function analytic at z).

To extract the residue B1 we differentiate r − 1 times to eliminate the terms involving
Br, Br−1, . . . , B2 and take the limit as z → ζ to give

lim
z→ζ

dr−1

dzr−1 ((z − ζ)rR(z)) = (r − 1)!B1.

With similar workings we can get all the coefficients as

lim
z→ζ

dr−j

dzr−j
((z − ζ)rR(z)) = (r − j)!Bj, j = 1, 2, . . . , r.

As this reasoning shows, to get the residue when there is a multiple pole you need to
know the order of the pole (i.e. r in this case) and then do the above. In the case of f3(z)
we just had r = 2 and in the calculation we first simplified the expression to differentiate
before we actually did the differentiation.

Fortunately, in this module most of the examples will just involve simple poles and
poles of higher order will be not appear very often.

The following is not examinable, and the details are close to two pages, but if you
wish to prove that the general partial fraction representation of R(z) is actually the
same as R(z) there are a number of steps. At the moment we have just shown that if a
representation is of the form given then we have given an expression for each coefficient.
We wish to now show that the partial fraction representation and the original expression
are the same for all z and to do this we can proceed as follows. Firstly, to be a partial
fraction representation we need the degree of p(z) to be less that the degree of q(z). Let

R̃(z) =

(
A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
denote the candidate for the partial fraction representation with the coefficients given as
indicated above. As R(z) and R̃(z) are both rational functions the difference R(z)− R̃(z)
is also a rational function and the only possible places where the difference can have poles
are the points z1, . . . , zn. Now because of the degrees of the polynomials involved (the
numerator has a lower degree than the denominator) we have that

R(z)− R̃(z)→ 0 as |z| → ∞. (4.2.6)

Hence if we can show that R(z)−R̃(z) has no poles then this implies that it is a polynomial
and the observation (4.2.6) further implies that R(z)−R̃(z) = 0. This last step is because
non-constant polynomials are unbounded and if it is constant then the only possibility
for the constant is 0.

We consider next the properties of R(z)− R̃(z) near z = z1 which gives us

R(z)− R̃(z) = R(z)−
(

A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
+ (a function analytic at z1). (4.2.7)
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Let
Q(z) = (z − z2)r2 · · · (z − zn)rn

so that the denominator can be written as

q(z) = (z − z1)r1Q(z).

For part of (4.2.7) we have

R(z)−
(

A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
(4.2.8)

=
p(z)

(z − z1)r1Q(z)
−
(

A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
(4.2.9)

=
1

(z − z1)r1

(
p(z)

Q(z)
−
(
Ar1,1 + Ar1−1,1(z − z1) + · · ·+ A1,1(z − z1)r1−1

))
(4.2.10)

=
1

(z − z1)r1

(
p(z)

Q(z)
− T1(z)

)
(4.2.11)

=
1

(z − z1)r1

(
p(z)−Q(z)T1(z)

Q(z)

)
(4.2.12)

where
T1(z) = Ar1,1 + Ar1−1,1(z − z1) + · · ·+ A1,1(z − z1)r1−1.

The formula for the coefficients of T1(z) show that this is the Taylor polynomial of
p(z)/Q(z) about the point z1, i.e.(

p

Q

)(k)

(z1) = T
(k)
1 (z1), for k = 0, 1, . . . , r1 − 1.

Now by writing

p− T1Q = Q

(
p

Q
− T1

)
and differentiating once, twice and further we have

(p− T1Q)′ = Q

(
p

Q
− T1

)′
+Q′

(
p

Q
− T1

)
(p− T1Q)′′ = Q

(
p

Q
− T1

)′′
+ 2Q′

(
p

Q
− T1

)′
Q′′
(
p

Q
− T1

)
· · ·

The kth derivative of the polynomial p − T1Q is a combination of (p/Q − T1)(j), j =
0, 1, . . . , k and as these are all zero at z1 it follows that

(p−QT1)(k)(z1) = 0 for k = 0, 1, . . . , r1 − 1.

(This can be deduced more easily once the material on Taylor series has been covered but
the above is a direct verification.) As p(z)−Q(z)T1(z) is a polynomial this implies that
we can write

p(z)−Q(z)T1(z) = (z − z1)r1h(z),

where h(z) is a polynomial. Using this in (4.2.12) and considering again (4.2.7) shows
that the difference has no pole at the point z1. Similar reasoning applies to all the points
zk, k = 1, . . . , n and we conclude that R(z) − R̃(z) is a polynomial and (4.2.6) implies
that it is the zero polynomial.
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4.3 The exponential function ez ≡ exp(z)

With z = x+ iy recall the definition

ez ≡ exp(z) := ex(cos y + i sin y) = exeiy. (4.3.1)

We now consider some of the properties which quickly follow. From the definition we have

e−z = e−x(cos y − i sin y) =
1

ex eiy
=

1

ez
. (4.3.2)

We have already shown that
d

dz
ez = ez. (4.3.3)

For arbitrary points z1 = x1 + iy1 and z2 = x2 + iy2, x1, y1, x2, y2 ∈ R, we have

ex1+x2 = ex1ex2 and ei(y1+y2) = eiy1eiy2

and it follows that
ez1+z2 = ez1ez2 . (4.3.4)

The results (4.3.2), (4.3.3) and (4.3.4) have the same form as the corresponding results
when the argument is real.

We consider now a few things specific to having a complex argument. We have the
periodic property

ez+2πi = ez,

i.e. the function is periodic with period 2πi. If we let

w = ez

then
|w| = ex > 0.

There is no value z ∈ C such that we get 0 but the function does tend to 0 as x→ −∞.
Every other value of w is however possible and because of the periodic property every
other value is attained infinitely many times and this is discussed in a moment when we
discuss the logarithm function. To consider a specific value we take w = 1 and note that

ez = 1 if and only if |ez| = ex = 1, and eiy = 1.

Thus
ez = 1 if and only if z = 2kπi, k = 0,±1,±2, . . .

An immediate consequence of this is that if

ez1 = ez2 then we have
ez1

ez2
= ez1−z2 = 1

and thus
ez1 = ez2 implies that z1 − z2 = 2kπi for some integer k.

In particular this implies that the function is one-to-one on the strip

G = {x+ iy : −∞ < x <∞, −π < y ≤ π} .
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If we take z ∈ G then

w = ez = exeiy gives |w| = ex and Argw = Arg eiy = y,

i.e. we have
x = ln |w|, and y = Argw.

The inverse of ez on this strip is the principal valued logarithm function

Logw = ln |w|+ iArgw.

To attempt to plot the complex exponential one possibility is to plot a rectangular
grid in the z-plane and show the image plot in the w-plane and this is done in figure 4.1.
Lines with x fixed (i.e. lines parallel to the y-axis) map to circles and lines with y fixed
(i.e. lines parallel to the x-axis) map to radial lines.

−2 −1 0 1 2

−2

−1.5
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−0.5

0

0.5

1

1.5
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z plane

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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−0.5

0

0.5

1

1.5

w plane

Figure 4.1: w = f(z) = exp(z), |x| ≤ 0.6, |y| ≤ 2π/3.

4.4 sin z, cos z, sinh z, cosh z

When we have real valued functions we have the definitions

cosh x =
1

2

(
ex + e−x

)
and sinh x =

1

2

(
ex − e−x

)
and when eix was introduced we have

cos x =
1

2

(
eix + e−ix

)
and sin x =

1

2i

(
eix − e−ix

)
.

The definition of each of these functions for a general complex variable z = x+ iy is just
to take

cosh z =
1

2

(
ez + e−z

)
, sinh z =

1

2

(
ez − e−z

)
,

cos z =
1

2

(
eiz + e−iz

)
, sin z =

1

2i

(
eiz − e−iz

)
.
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From the result about combining analytic functions it follows that all of these functions are
entire functions, i.e. they are all analytic in the whole complex plane C. The derivatives
in the complex sense correspond to the real case as we have

d

dz
cosh z =

1

2

(
ez − e−z

)
= sinh z,

d

dz
sinh z =

1

2

(
ez + e−z

)
= cosh z,

d

dz
cos z =

1

2

(
ieiz − ie−iz

)
= − 1

2i

(
eiz − e−iz

)
= − sin z,

d

dz
sin z =

1

2i

(
ieiz + ie−iz

)
=

1

2

(
eiz − e−iz

)
= cos z.

All these functions are periodic with the hyperbolic functions having period 2πi (the
same as the exponential function) and with sine and cosine having period 2π as in the
real case, i.e.

cosh(z + 2πi) = cosh z, sinh(z + 2πi) = sinh z,

and
cos(z + 2π) = cos z, sin(z + 2π) = sin z.

The exponential function as defined in (4.3.1) involves an expression involving x and
y and we can similarly write each of cos(x+ iy), sin(x+ iy), cosh(x+ iy) and sinh(x+ iy)
in terms of x and y as follows. From

z = x+ iy, −z = −x− iy, iz = −y + ix, −iz = y − ix,

and

ez = ex(cos y + i sin y),

e−z = e−x(cos y − i sin y),

eiz = e−y(cos x+ i sin x),

e−iz = ey(cos x− i sin x).

Thus

cosh z =
ez + e−z

2
=

(
ex + e−x

2

)
cos y + i

(
ex − e−x

2

)
sin y

= cosh x cos y + i sinh x sin y,

sinh z =
ez − e−z

2
=

(
ex − e−x

2

)
cos y + i

(
ex + e−x

2

)
sin y

= sinh x cos y + i cosh x sin y,

cos z =
eiz + e−iz

2
=

(
ey + e−y

2

)
cos x+ i

(
e−y − ey

2

)
sin x

= cos x cosh y − i sin x sinh y,

sin z =
eiz − e−iz

2i
=

(
e−y − ey

2i

)
cos x+ i

(
e−y + ey

2i

)
sin x

= sin x cosh y + i cos x sinh y.
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It is not expected that you remember all of these but hopefully you can work them out
from other definitions. It is interesting that every combination of one of the hyperbolic
functions and one of the trigonometric functions gives a harmonic function.

Other properties to note are the following.

1. cosh z and cos z are both even functions, i.e.

cosh(−z) = cosh(z), cos(−z) = cos(z)

and sinh z and sin z are both odd functions, i.e.

sinh(−z) = − sinh(z), sin(−z) = − sin(z),

as in the real case.

2. From the definitions the hyperbolic and trigonometric functions are related by

cosh(iz) = cos z and cosh z = cos(iz),

sinh(iz) =
eiz − e−iz

2
= i

(
eiz − e−iz

2i

)
= i sin z,

sin(iz) =
e−z − ez

2i
=

1

i

(
e−z − ez

2

)
= (−i)(− sinh z) = i sinh z.

3. For all z we have
cos2 z + sin2 z = 1

as in the real case. This follows directly from the definition, i.e.

cos2 z + sin2 z =

(
eiz + e−iz

2

)2

+

(
eiz − e−iz

2i

)2

=
(e2iz + 2 + e−2iz)− (e2iz − 2 + e−2iz)

4
= 1.

We similarly have
cosh2 z − sinh2 z = 1

as in the real case.

4. As eiπ/2 = i and e−iπ/2 = −i we have

sin(z + π/2) =
eiz+iπ/2 − e−(iz+iπ/2)

2i

=
ieiz − (−i)e−iz

2i
=

eiz + e−iz

2
= cos z,

cos(z + π/2) =
eiz+iπ/2 + e−(iz+iπ/2)

2

=
ieiz + (−i)e−iz

2
=

eiz − e−iz

−2i
= − sin z.

All of these correspond to what we have in the real case.

Similarly as e±iπ = −1 using the definitions gives

sin(z + π) = − sin(z),

cos(z + π) = − cos(z).
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5. From the real case we have that sin x = 0 if x = kπ, k = 0,±1,±2, . . .. These
are also the only points in the complex plane where sin z = 0 because from the
definition

sin z = 0 if and only if eiz = e−iz, i.e. e2iz = 1.

The result follows from the result about the exponential function.

We similarly have that the zeros of the cosine function are all on the real axis at
the points π/2 + kπ, k = 0,±1,±2, . . ..

6. The formulas for sin(x1 ± x2) and cos(x1 ± x2) also have similar complex versions
and we give these without any proofs.

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2,

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2

and in the case z1 = z2 = z we get the double angle formulas

sin(2z) = 2 sin z cos z,

cos(2z) = cos2 z − sin2 z = 2 cos2 z − 1 = 1− 2 sin2 z.

7. When we just consider the function sin x with a real variable x we know that it
increases from −1 to +1 as x increases from −π/2 to +π/2 and it is invertible if we
restrict to [−π/2, π/2]. We consider next the situation with sin z when z ∈ G with
G denoting the strip

G = {z = x+ iy : −π/2 ≤ x ≤ π/2, −∞ < y <∞}

and recall that we have shown that

sin z = sin x cosh y + i cos x sinh y.

On the line x = −π/2 we have cos x = 0 and sin x = −1 and thus

sin(−π/2 + iy) = − cosh y ≤ −1.

Similarly on the line x = π/2 we have cos x = 0 and sin x = 1 and thus

sin(π/2 + iy) = cosh y ≥ 1.

On both these lines we get a real value with magnitude of at least 1. In both these
cases if we replace y by −y then we get the same value (as cosh y is even) and hence
the function is not one-to-one on G. Hence we consider instead the semi-infinite
strip

G′ = {z = x+ iy : −π/2 ≤ x ≤ π/2, 0 ≤ y <∞}

and note that the boundary part with x = −π/2, y ≥ 0 maps to (−∞,−1], the
real segment [−π/2, π/2] maps to [−1, 1] and the boundary part with x = π/2,
y ≥ 0 maps to [1,∞). The image of the boundary of G′ under the map sin z is
hence the real axis. To determine the image of the interior of G′ we note that
Im(sin z) = cos x sinh y ≥ 0 when x and y are such that cos x ≥ 0 and sinh y ≥ 0
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and this is the case when |x| ≤ π/2 and y ≥ 0. Thus we only get points with
non-negative imaginary part and from this we conclude that the interior of G′ maps
to the upper half plane and this is illustrated in figure 4.2.

With a bit more effort, which is not done fully here, it can shown that the function
w = sin z is one-to-one on the domain G′ and hence has an inverse and for the
expression for the inverse first note that

eiz = cos z + i sin z.

If w = sin z is a point in the upper half plane then it can be shown that

cos z =
√

1− sin2(z) =
√

1− w2,

where the square root is defined by

ζ = ρeiφ, φ = Argζ,
√
ζ =
√
ρeiφ/2.

(This is known as the principal valued square root.) Hence

z = sin−1w =
1

i
Log(iw +

√
1− w2)

where, as before, Log denotes the principal valued logarithm. The function sin−1w
is analytic at all points except w = ±1 which correspond to z = ±π/2 at which the
derivative of sin z has a simple zero in each case.

y

x−π/2 π/20

A

B C

DE

z-plane

A′ B′

−1 0 1

C ′ D′

E ′

w-plane

Figure 4.2: The image of the semi-infinite strip G′ under the mapping w = sin z, z = x+iy.

4.5 tan z, cot z, · · · , tanh z, · · ·
With cos z and sin z defined we can similarly define

tan z =
sin z

cos z
,

and also

sec z =
1

cos z
, cosec z =

1

sin z
and cot z =

cos z

sin z
=

1

tan z
.
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There are also hyperbolic versions of all of these but we only give the hyperbolic tangent
which is

tanh z =
sinh z

cosh z
.

In all cases the functions are analytic for all z ∈ C except at the points at which the
denominator in these expressions is 0. As cos z, sin z, cosh z and sinh z all have zeros it
thus follows that none of the functions tan z, sec z, cosec z, cot z and tanh z are entire
functions. In what follows we just consider tan z and cot z. Both these functions are
periodic and by using the results

sin(z + 2π) = sin z, sin(z + π) = − sin z,

cos(z + 2π) = cos z, cos(z + π) = − cos z

it follows that the period is π. The function tan z has simple poles at the zeros of cos z
which are the points π/2 + kπ, k = 0,±1,±2, . . . and the function cot z has simple poles
at the zeros of sin z which are the points kπ, k = 0,±1,±2, . . .. For the residues of the
poles of tan z and cot z we can use the same technique as used with rational functions
although this is not fully justified until term 2 when series is considered. If for the moment
this accepted as correct then we have the following. For the residues of the poles of tan z
we have when zk = π/2 + kπ that

(z − zk) tan z =

(
z − zk
cos z

)
sin z →

 1

d

dz
cos z


∣∣∣∣∣∣∣
z=zk

sin zk = −1 as z → zk.

Similarly for the residues of the poles of cot z we have when zk = kπ that

(z − zk) cot z =

(
z − zk
sin z

)
cos z →

 1

d

dz
sin z


∣∣∣∣∣∣∣
z=zk

cos zk = 1 as z → zk.

These results may be used later in the module in a technique to sum certain infinite series.

4.6 The logarithm function

We have already mentioned the principal valued logarithm function as

Log z = ln |z|+ iArg z,

provided z 6= 0, and because Arg z has a jump discontinuity across the negative real axis
the function is not analytic everywhere. The domain in which Log z is analytic is the slit
domain

G =
{
z = reiθ : r > 0, −π < θ < π

}
.

A so called “multi-valued function” is also defined by

w = log z
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(lower case letters are used to distinguish log and Log) which is taken to mean all values
of w which satisfy

z = ew.

The principal value logarithm function provides one of the values and the complete set is

log z := ln |z|+ i arg z

= ln |z|+ iArg z + i2kπ, k = 0,±1,±2, . . . .

Note that a “multi-valued function” is not a function as defined earlier as a function which
maps to C must only have one value but this is the terminology that is used. If we just
take one specific value for k and define

fk(z) = Log z + i2kπ (4.6.1)

then we do have a function which just differs from the principal valued logarithm function
by a constant and, from the section about the Cauchy Riemann equations in polar form,
we have

f ′k(z) =
1

z
.

The result about the derivative also follows by using the property

z = efk(z).

If we differentiate with respect to z then we obtain

1 = efk(z)f ′k(z) = zf ′k(z), i.e. f ′k(z) =
1

z
.

For some terminology, f0(z) defined in (4.6.1) is the principal valued logarithm func-
tion and is one specific branch of the function. The other functions fk(z) define other
branches. In all cases the half line where the function has a jump discontinuity is known
as the branch cut and the point at which the branch cut starts is known as the branch
point which is the point z = 0 for all the functions. These are illustrated in figure 4.3.

4.7 Complex powers

The exponential function ez is concerned with raising the real number e to any complex
power z and when we consider zn, n ∈ Z, we are considering any complex number z raised
to an integer power. We now consider more generally how to raise any complex number
z to any complex power α.

To start, recall that the multi-valued logarithm function w = log z means all solutions
of

ew = z,

and thus
z = elog z,

i.e. all the different values for log z all lead to just one value when combined with the
exponential in this way. By the properties of the exponential the integer powers of z can
be represented by

zn = en log z, n = 0,±1,±2, . . . . (4.7.1)
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x

y

0
The branch cut

Figure 4.3: The branch cut of the principal logarithm function

This motivates the following definition for any power

zα := eα log z (4.7.2)

which will usually be multi-valued. The principal value is taken to be

eαLog z.

This principal value version defines a function which is at least analytic at all points where
Log z is analytic.

We consider next how many different values we get in the multi-valued case for different
cases of α.

When α is an integer

When α = n is an integer the definition (4.7.2) corresponds to (4.7.1) and we just have one
value. We have no need to use the exponential and logarithm functions to just evaluate
terms such as 1, z, z2, . . ., 1/z, 1/z2, . . ..

When α = 1/n where n is an non-zero integer

Observe that with

w = z1/n = exp((log z)/n), wn = exp(log z) = z

and we have the situation considered in the introduction chapter about finding the nth
roots of z. Hence in this case z1/n means the n roots of z and to see how this is consistent
with what was done previously we do the following. With z = reiθ and θ = Arg z

Log z = ln r + iθ

and the principal value is

exp

(
ln r + iθ

n

)
= exp

(
ln r

n

)
exp

(
iθ

n

)
= r1/neiθ/n.
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All n values are described by

exp

(
ln r + iθ + i2kπ

n

)
= r1/neiθ/nωk, k = 0, 1, . . . , n− 1,

where ω = exp(i2π/n) is one of the n roots of unity.

When α = p/q is a rational number

When α = p/q is a rational number with p and q having no common factor we have

z1/q = exp((log z)/q), (4.7.3)

which means q different values, and

w = zp/q = exp

(
p

q
log z

)
=
(
z1/q

)p
also involves q values with each of the values being the pth power of what we get in (4.7.3).
The principal value is just the pth power of the principal value of z1/q.

When α is a irrational

In this case we get infinitely many values described by

zα = exp(αLog z + α(2kπi)), k = 0,±1,±2, . . . .

All the values have the same absolute value. The case k = 0 is the principal value.

When α ∈ C is not real

Again we have infinitely many values. We just consider the specific case of z = i and
α = i, which is commonly done in text books on complex variable theory. By using the
definition we have

ii = exp(iLog i+ i(2kπi)), k = 0,±1,±2, . . . .

Now
Log i = ln |i|+ iArg i = i

π

2
, and iLog i = −π

2
.

The case k = 0 gives the principal value which is

exp
(
−π

2

)
and all the values of ii are

exp
(
−π

2
− 2kπ

)
, k = 0,±1,±2, . . . .

An interesting feature of this case is that all the values of ii are real.
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Chapter 5

Contour integrals, the Cauchy
integral theorem and examples
involving trigonometric integrals

5.1 Introductory remarks

In this chapter we consider what is meant by contour integrals which we write as∫
Γ

f(z) dz

for a “contour” Γ in the complex plane and for a function f(z) defined on Γ and in
particular we consider results when f(z) is analytic. Before we define precisely what a
contour is and what the integral along a contour means we remark that it coincides with
the real integral case when Γ is just part of the real axis such as an interval (a, b), i.e.
when Γ = (a, b) then ∫

Γ

f(z) dz =

∫ b

a

f(x) dx.

Also, it is worth remarking that if f(x) is complex valued with f = u + iv, where u and
v are real, then ∫ b

a

f(x) dx =

∫ b

a

u(x) dx+ i

∫ b

a

v(x) dx.

There has already been an example on an exercise sheet which made use of this involving
the indefinite integral ∫

ekx dx, k = p+ iq, with p, q ∈ R

which corresponds to a definite integral of the form∫ x

a

eks ds =

[
eks

k

]x
a

=
1

k

(
ekx − eka

)
. (5.1.1)

As
ekx = epxeiqx = epx (cos(qx) + i sin(qx))
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this enables expressions for∫ x

a

eps cos(qs) ds and

∫ x

a

eps sin(qs) ds

to be obtained by just taking the real and imaginary parts of the right hand side of (5.1.1).

5.2 A recap of results about real integrals

5.2.1 The area under a curve

In the case of a continuous function

f : (a, b)→ R

the number ∫ b

a

f(x) dx

means the “area under the curve of f(x) from x = a to x = b”. To make this precise we
can divide the interval (a, b) by points a = x0 < x1 < · · · < xm = b and approximate the
area by the composite mid-point rule involving

Am =
m∑
i=1

hif(xi−1/2), hi = xi − xi−1, xi−1/2 =
xi−1 + xi

2
. (5.2.1)

If we consider the limit as m→∞ in such a way that maxi hi → 0 (i.e. the width of all
the strips tends to 0) then ∫ b

a

f(x) dx = lim
m→∞

maxi hi→0

Am (5.2.2)

as is illustrated in figure 5.1. Actually, we can do this a bit more rigorously by considering
what is known as a Riemann integral but for the purpose of this module it is sufficient
to just appreciate that the real integral means the area under the curve and this limit
in (5.2.2) exists when f(x) is continuous on (a, b). It also exists when f(x) has a finite
number of jump discontinuities.

5.2.2 Integration is the reverse of differentiation

To actually give expressions for integrals one thing that you learn early in a study of
integration is that when an anti-derivative F (x) exists, i.e.

F ′(x) = f(x)

then ∫ b

a

f(x) dx =

∫ b

a

F ′(x) dx = F (b)− F (a).

This is part of the fundamental theorem of calculus in that the integral of a derivative F ′

on (a, b) just involves function values at the end points of the interval, i.e. F (b)−F (a). In
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x
0
=a x

m
=b x

0
=a x

m
=b

Figure 5.1: Area under the curve (left hand side) approximated by the area of rectangular
strips (right hand side).

this sense integration is the reverse of differentiation. The other part of the fundamental
theorem of calculus is that when f is continuous

d

dx

∫ x

a

f(s) ds = f(x),

i.e. if we differentiate an integral of the type
∫ x
a

then we get the integrand value at the
upper limit.

5.2.3 Remarks about the direction of the integration

As a relatively small point to note at this stage, in the definition of the integral in (5.2.1)
and (5.2.2) we had an interval (a, b) which implies that we were assuming that a < b and
the integral is from x = a to x = b, i.e. there is a direction involved. If we consider
instead the integral from b to a then this is defined as∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

The reason for noting this here is that when contour integrals are considered in the next
section we need to know the direction involved.

5.3 Integrals along smooth arcs and along contours

In examples in this module a smooth arc will usually be either a straight line segment or
a circular arc but when general results are given the results will hold for any smooth arcs
and thus we need to define what this means.

Definition 5.3.1 Smooth arc. A set γ ⊂ C is a smooth arc if the set can be described
in the form

{z(t) : a ≤ t ≤ b}
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where z(t) is continuously differentiable on [a, b], z′(t) 6= 0 on [a, b] and the function z(t)
is one-to-one on [a, b].

Definition 5.3.2 Smooth closed curve. A set γ ⊂ C is a smooth closed curve if the
set can be described in the form as in the smooth arc case and the starting point z(a) and
the end point z(b) are the same but now we just require the one-to-one property to hold
on [a, b) and for the smoothness at the end points we require

z′(b) = z′(a).

A straight line segment or part of a circle are examples of smooth arcs which are not closed
whereas a complete circle is an example of a smooth arc which is closed. To emphasise
one of the requirements in the above definition, the one-to-one conditions means that if
a closed curve such as a circle is being considered then the curve is only traversed once
which is something you cannot spot if you just look a plot of such a curve.

Definition 5.3.3 Directed smooth arc. A smooth arc with a specific ordering of the
points is known as a directed smooth arc.

In the case of the notation defining a smooth arc there are two possibilities for the directed
smooth arc involving tracing the path by moving from t = a to t = b or alternatively
tracing the path from t = b to t = a. In either case we have a starting point and an end
point.

Definition 5.3.4 Contour (or piecewise smooth curve) A contour Γ is either just
a point or it is a finite sequence of directed smooth arcs γ1, γ2, . . ., γn such that the end
point of γk is the starting point of γk+1 for k = 1, 2, . . . , n− 1.

Examples of contours

In Figure 5.2 we give some examples of contours. Just to make clear, when we have more
than one piece in our contour the parts join to give something which is continuous but
the slope is usually not continuous at the join points.

5.3.1 The length of an arc and the length of a contour

If a smooth arc γ is described in the form {z(t) = x(t) + iy(t) : a ≤ t ≤ b}, with x(t) and
y(t) being real, then an approximation to the length is given by summing the lengths of
straight line segments approximating the arc as follows. With a = t0 < t1 < · · · < tm = b
the length of the arc is approximately

|z(t1)− z(t0)|+ |z(t2)− z(t1)|+ · · ·+ |z(tm)− z(tm−1)| =
m∑
i=1

|z(ti)− z(ti−1)|.

(As a straight line segment gives the route of the shortest path between two points this
is actually an under estimate of the length.) Now when ti − ti−1 is small

z(ti)− z(ti−1) ≈ z′(ti−1/2)(ti − ti−1), ti−1/2 :=
ti + ti−1

2
.
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z0

z1

z2

z3

Polygonal path
with n = 3 arcs.

Circle, anti-clockwise
direction (n = 1 arc).

Closed polygonal path
with n = 3 arcs.

Closed path,
n = 2 arcs.

Figure 5.2: Some examples of contours.

By considering the limit as m→∞ with maxi(ti − ti−1)→ 0 we get

l(γ) = length of γ =

∫ b

a

|z′(t)| dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt.

When we have a contour Γ involving arcs γ1, . . . , γn the length of Γ is defined to be

l(γ1) + l(γ2) + · · ·+ l(γn).

5.3.2 Contour integrals

The integral along a directed smooth arc can be defined as an appropriate limit involving
sums and to correspond to what was given at the start of the chapter each sum can be
taken to be of the form

m∑
i=1

hif(z(ti−1/2)), hi = z(ti)− z(ti−1), (5.3.1)

where, as before, a = t0 < t1 < · · · < tm = b and ti−1/2 = (ti + ti−1)/2. Using a similar
derivation to the case of deriving the expression for the length of the curve we now have

hif(z(ti−1/2)) = (z(ti)− z(ti−1))f(z(ti−1/2))

≈ f(z(ti−1/2))z′(ti−1/2)(ti − ti−1).

By considering the limit as m→∞ with maxi(ti − ti−1)→ 0 we get∫
γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt. (5.3.2)
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For the purpose of this module we take this as defining what is meant by the integral
along the directed arc γ. As the derivation applies to every possible parameterization of
γ the value given by (5.3.2) is the same for each parameterization.

As notation, if γ means a directed arc then −γ means the directed arc in the opposite
direction and ∫

−γ
f(z) dz = −

∫
γ

f(z) dz.

In the case of a contour Γ involving arcs γ1, . . . , γn the integral along Γ means∫
Γ

f(z) dz =

∫
γ1

f(z) dz + · · ·+
∫
γn

f(z) dz.

5.3.3 The ML inequality, a bound of the size of the integral

Before we consider examples there is one result that we will need in a few places concerning
the magnitude of a contour integral. If we let

M = max
z∈Γ
|f(z)|

then by the triangle inequality we can bound the sum used in (5.3.1) to give∣∣∣∣∣
m∑
i=1

hif(z(ti−1/2))

∣∣∣∣∣ ≤
m∑
i=1

|hi| |f(z(ti−1/2))| ≤M
m∑
i=1

|hi|.

Now
m∑
i=1

|hi| =
m∑
i=1

|z(ti)− z(ti−1)| ≤ length of Γ.

Although we have not rigorously considered the limiting process throughout we have done
enough for this module to justify that∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ML, where M = max
z∈γ
|f(z)| and L = length of γ.

This result is often known as the ML inequality due to the letters commonly used to
bound f(z) and for the length of Γ. The result is used at various times later in the
module often as part of an argument to explain why certain integrals are 0, e.g. there will
be cases when we can arrange to consider contours which are arbitrarily short in length
for functions which are bounded and we use it in the next chapter when we consider the
Cauchy integral formula.

5.3.4 Examples of contour integrals

1. Let
Cr =

{
z = z(θ) = reiθ : 0 ≤ θ ≤ 2π

}
denote a circle of radius r with increasing θ corresponding to the anti-clockwise
direction. We will sometimes use the terminology that the circle is traversed once
in the anti-clockwise direction.
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θ = 0, θ = 2πθ = π

θ = π/2

θ = 3π/2

0

r

Observe that
z′(θ) = ireiθ.

Consider f(z) = zn, n ∈ Z, so that we have

Irn :=

∫
Cr

f(z) dz =

∫ 2π

0

f(z(θ))z′(θ) dθ

=

∫ 2π

0

(reiθ)nireiθ dθ

= irn+1

∫ 2π

0

ei(n+1)θ dθ.

Now if n = −1 then we have rn+1 = r0 = 1 and we get

Ir−1 = i

∫ 2π

0

dθ = 2πi.

If n is any other integer than −1 then

In = irn+1

[
ei(n+1)θ

i(n+ 1)

]2π

0

= 0

as ei(n+1)2π = e0 = 1.

As a point about notation, when we have a loop it is common to indicate this with
the notation

Irn :=

∮
Cr

f(z) dz instead of just writing In :=

∫
Cr

f(z) dz.

The notation further emphasises that the contour is a loop. We use this notation
in what follows when we have a loop.

2. As a minor generalization of the previous example we can shift the centre of the
circle to z0 so that now

Cr =
{
z = z(θ) = z0 + reiθ : 0 ≤ θ ≤ 2π

}
and consider the integral of (z − z0)n when n is an integer to similarly get∮

Cr

(z − z0)n dz =

{
2πi, if n = −1,

0, n ∈ Z with n 6= −1.
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z0

r

Note that the answer does not depend on z0 or r and the value is only non-zero
when n = −1 when we are just considering integers for the power.

3. In the previous two examples we had closed loops (i.e. circles) and we now consider
contours which are not loops and consider two different paths joining the points 1
and i involving the straight line segment

Γ1 = {z1 + t(z2 − z1) : 0 ≤ t ≤ 1} , z1 = 1, z2 = i,

and the circular arc
Γ2 =

{
eit : 0 ≤ t ≤ π/2

}
and take f(z) = zn where n is an integer.

Γ1

Γ2

z1 = 1

z2 = i

We start by considering the case n 6= −1. In the case of Γ1 we have

z(t) = z1 + t(z2 − z1), z′(t) = z2 − z1

giving ∫
Γ1

f(z) dz =

∫ 1

0

(z1 + t(z2 − z1))n(z2 − z1) dt.

This can be done easily by noting that

d

dt
(z1 + t(z2 − z1))n+1 = (n+ 1)(z1 + t(z2 − z1))n(z2 − z1).

Hence ∫
Γ1

f(z) dz =

[
(z1 + t(z2 − z1))n+1

n+ 1

]1

0

=
1

n+ 1
(zn+1

2 − zn+1
1 ) =

1

n+ 1
(in+1 − 1).
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In the case of Γ2 we have
z(t) = eit, z′(t) = i eit

giving ∫
Γ2

f(z) dz =

∫ π/2

0

(
eit
)n
ieit dt = i

∫ π/2

0

ei(n+1)t dt

=
1

n+ 1

[
ei(n+1)t

]π/2
0

=
1

n+ 1
(in+1 − 1).

In both cases we get the same answer and thus for this function f(z) this sug-
gests that the complex number obtained may not depend on the path taken be-
tween z1 = 1 and z2 = i although at this stage only two different paths have been
considered. We show in the next section that the result is indeed path independent.

We now consider the case when n = −1. In the case of Γ1 we have∫
Γ1

f(z) dz =

∫ 1

0

(z1 + t(z2 − z1))−1(z2 − z1) dt

= [Log(z1 + t(z2 − z1))]10 = Logz2 − Logz1 = i
π

2
.

This is valid as the principal valued logarithm function is analytic on Γ1. In the
case of the circular are Γ2 we more easily get∫

Γ1

f(z) dz =

∫ π/2

0

i dt = i
π

2
.

The path independent observation also holds in this case.

Remarks

Observe that in the examples we obtained the result by being able to integrate some of
the “elementary functions” from knowledge of “standard derivatives”, i.e.

d

dθ

(
ei(n+1)θ

i(n+ 1)

)
= ei(n+1)θ,

d

dt

(
(z1 + t(z2 − z1))n+1

(n+ 1)

)
= (z1 + t(z2 − z1))n (z2 − z1),

d

dt
(Log(z1 + t(z2 − z1)) =

z2 − z1

z1 + t(z2 − z1)
.

The result involving the principal valued logarithm is valid provided the segment from
z1 to z2 does not cross the branch cut of the logarithm. It is the knowledge of the anti-
derivative in each case which gave us the results which do not depend on the path between
z1 and z2 and we consider this next.
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5.4 Independence of path in contour integrals

The key to being able to do the integrals in the examples was in knowing that the integrand
was the derivative of something and the fundamental theorem of calculus tells us how
to integrate derivatives. In each case the integrand considered was a function of the
parameter used to describe the contour. To consider this generally we suppose that when
we wish to integrate f(z) there exists an analytic function F (z) such that

f(z) = F ′(z)

on our contour Γ, i.e. in the previous jargon the function f has an anti-derivative F on
Γ. We suppose that our contour Γ involves n arcs γ1, γ2, . . . , γn and to make the notation
easy we note that it is always possible to arrange for the parameterization of γk to be
described in the form

γk = {z(t) : τk−1 ≤ t ≤ τk} , k = 1, 2, . . . , n.

Then ∫
Γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz =
n∑
k=1

∫ τk

τk−1

f(z(t))z′(t) dt.

Now by the chain rule

d

dt
F (z(t)) = F ′(z(t)) z′(z) = f(z(t)) z′(t).

Thus the integrand is the derivative of F (z(t)) and by the fundamental theorem of calculus
we get ∫

Γ

f(z) dz = (F (z(τ1))− F (z(τ0)) + (F (z(τ2))− F (z(τ1))

+ · · ·+ (F (z(τn))− F (z(τn−1)).

The sum is what is known as a telescoping sum in that all the intermediate terms cancel
and we obtain ∫

Γ

f(z) dz = F (z(τn))− F (z(τ0)).

The result just depends on F (z) evaluated at the final point z(τn) and the initial point
z(τ0) and thus in particular it does not depend on the path between the two points and
we state this as a theorem as follows.

Theorem 5.4.1 Suppose that the function f(z) is continuous in a domain D and has an
anti-derivative F (z) throughout D. Then for any contour Γ contained in D with initial
point zI and an end point zE we have∫

Γ

f(z) dz = F (zE)− F (zI). (5.4.1)
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Examples again – evaluated using path independent property

We consider again the examples considered in section 5.3.4.

For the function f(z) = zn with n as an integer and n 6= −1 we have

F (z) =
zn+1

n+ 1
, F ′(z) = f(z).

When the contour is the circle Cr =
{
reiθ : 0 ≤ θ ≤ 2π

}
, r > 0, the points corresponding

to θ = 0 and to θ = 2π are the same and thus F (z(2π)) = F (z(0)) and we can immediately
deduce that ∮

Cr

f(z) dz = F (z(2π))− F (z(0)) = 0.

When n = −1, i.e. when f(z) = 1/z, we cannot proceed in exactly the same way as
the candidate for the anti-derivative is Log z which is not continuous on all parts of the
contour due to the jump discontinuity across the negative real axis. However we can still
use the path independent property if we start the contour on one side of the branch cut
and finish at the corresponding point on the other side of the branch cut. That is for
ε > 0 being small we let

f(z) =
1

z
, F (z) = Log z, and we let Cε

r =
{
reiθ : −π + ε ≤ θ ≤ π

}
.

The contour Cε
r is illustrated below.

0

rθ = π

θ = −π + ε

Branch cut

Cε
r

Note that the contour tends to the complete circle as ε→ 0. For the integral we have∫
Cεr

dz

z
= Log(reiπ)− Log(re−iπ+iε).

Now

Log(reiπ) = Log r + iπ,

Log(re−iπ+iε) = Log r − iπ + iε,
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and thus ∫
Cεr

dz

z
= 2πi− iε→ 2πi as ε→ 0.

Observe that we have obtained the same result as before and although the details have
been slightly longer here the result of (5.4.1) does enable us to deduce that if we take any
closed loop Γ which starts at one side of the branch cut and ends at the corresponding
point on the other side and has 0 inside the loop and we go anti-clockwise around the
loop then ∮

Γ

dz

z
= 2πi

and ∮
Γ

zn dz = 0, n an integer and n 6= −1.

We get 0 in all cases (i.e. for all integers n) if the loop does not have the point z = 0
as an interior point. This statement also applies to any complex power zα, α ∈ C, when
z = 0 is not an interior point.

We can generalise the above slightly by shifting the origin to give us the following.
If z0 is any point and if Γ is a contour which gives a closed loop in the anti-clockwise
direction then ∮

Γ

dz

z − z0

=

{
2πi, if z0 is inside the loop,

0, if z0 is outside the loop,

and ∮
Γ

(z − z0)n dz = 0, n an integer and n 6= −1.

In the case with the non-zero answer it needs to be understood that the path starts on
one side of the branch cut and ends on the other side and does not cross the branch cut at
any intermediate point. It is also worth repeating a previous point that the loop around
the point only goes around the point once and this will sometimes be expressed as we
“wind” around the point once in the anti-clockwise direction.

The examples above involving powers of (z − z0) for which the contour integral is 0
when the contour is a loop can be generalised to any function f(z) which has an anti-
derivative and we state this next as a corollary to theorem 5.4.1.

Corollary 5.4.1 If f is continuous in a domain D and there exists an analytic function
F such that F ′(z) = f(z) throughout D then∮

Γ

f(z) dz = 0

for all loops Γ lying in D.

Further results and remarks about the independence of path

A key result so far of this chapter is that if there exists an anti-derivative F (z) such that
f(z) = F ′(z) then the contour integrals involving f(z) can easily be determined as we
just need to evaluate F (z) at both ends of the contour. In particular, as mathematical
statements, we have shown the following when f has an anti-derivative.
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(i) Every loop integral vanishes, i.e. when Γ is a loop then∮
Γ

f(z) dz = 0. (5.4.2)

(ii) If Γ1 and Γ2 have the same initial and final points then∫
Γ1

f(z) dz =

∫
Γ2

f(z) dz. (5.4.3)

In fact (i) and (ii) are equivalent. An obvious question to ask is how can we determine
when f(z) has an anti-derivative. This will be answered properly in the next section
of this chapter when the Cauchy theorem is covered but a partial answer can be given
already. Specifically, if we have a continuous function f(z) and we know that contour
integrals involving f(z) are path independent then we can deduce the existence of F (z)
by giving an explicit expression for it as follows.

Let D be the domain of f(z), let z0 be any point in D and recall that a domain is a
open connected set. For any z ∈ D there is a path in D from z0 to z, which we call Γ(z),
and we can define

F (z) =

∫
Γ(z)

f(ζ) dζ. (5.4.4)

This is well defined as we are assuming that the integral does not depend on the path
between z0 and z. If we take ∆z to be sufficiently small in magnitude then z + ∆z ∈ D
and for the path from z0 to z+∆z we can take the path Γ(z) followed by the line segment
γ from z to z + ∆z so that

F (z + ∆z)− F (z) =

∫
γ

f(ζ) dζ =

∫ 1

0

f(z + t∆z)∆z dt.

Then

F (z + ∆z)− F (z)

∆z
− f(z) =

∫ 1

0

f(z + t∆z) dt− f(z) =

∫ 1

0

(f(z + t∆z)− f(z)) dt.

To show that the right hand side tends to 0 at ∆z → 0 we can first bound the integral as∣∣∣∣∫ 1

0

(f(z + t∆z)− f(z)) dt

∣∣∣∣ ≤ max
0≤t≤1

|f(z + t∆z)− f(z)| → 0 as ∆z → 0

because f is continuous. Thus the derivative of the function F (z) defined in (5.4.4) is the
function f(z). Hence the path independent property implies the existence of F and earlier
we noted that the existence of F implies the path independent property, i.e. results (i)
and (ii) are equivalent (as already stated above) and these are in turn equivalent to the
existence of an anti-derivative of f(z).

5.5 Cauchy’s integral theorem

In this section we show one of the most important theorems of this module which is when
we have a loop Γ with f(z) being continuous on Γ and analytic inside Γ then∮

Γ

f(z) dz = 0. (5.5.1)
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In the literature this is reported as being proved by Cauchy in the early part of the
nineteenth century under the assumption that not only does f ′(z) exist inside Γ but also
that f ′(z) is continuous. In the latter part of the nineteenth century Goursat showed that
the result can be proved without the need to assume that f ′(z) is continuous and this
version of the theorem is known as the Cauchy-Goursat theorem. In subsection 5.5.1 we
comment on a proof when f ′(z) is assumed to be continuous as is done in most text books
at this level. In subsection 5.5.2 we also comment on the other proof given in the book by
Saff and Snider which involves continuously deforming a loop. In subsection 5.5.3 we also
comment a longer proof closer to what Goursat shows. The proofs are not examinable and
nothing in this section is directly examinable although knowledge of (5.5.1) is needed to
give full explanation in some examples when we need to explain why the value of certain
given loop integrals are zero.

5.5.1 A proof using Green’s theorem

In a study of vector calculus, which has not been part of your course, a result that is
covered is Stoke’s theorem in three space dimensions and a two dimensional version of
this is known as Green’s theorem. For continuously differentiable functions V1(x, y) and
V2(x, y) Green’s theorem is the following where S is a region in R2 with boundary ∂S.∫∫

S

(
∂V2

∂x
− ∂V1

∂y

)
dxdy =

∮
∂S

V1dx+ V2dy.

The theorem relates the double integral over S to a line integral around the boundary ∂S
of S.

We now connect the above with the contour integrals of a function f(z) in the complex
plane. If Γ corresponds to ∂S, a loop in C, then we defined the integral in the form∮

Γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt,

with z(t), a ≤ t ≤ b being a parametric description of Γ. (Γ may actually involve several
directed smooth arcs to form the loop.) The interior of Γ gives us a simply connected
domain (i.e. it has no holes). For the contour integral parts we have

dz = dx+ idy,

f(z)dz = (u+ iv)(dx+ idy)

= (udx− vdy) + i(vdx+ udy).

The complex contour integral hence corresponds to two real integrals, i.e.∮
Γ

udx− vdy and

∮
Γ

vdx+ udy.

If we assume that f ′(z) exists and is continuous then by Green’s theorem∮
Γ

udx− vdy =

∫∫
S

(
−∂v
∂x
− ∂u

∂y

)
dxdy (with V1 = u, V2 = −v),
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and ∮
Γ

vdx+ udy =

∫∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy (with V1 = v, V2 = u).

f ′(z) existing throughout S means that f(z) is analytic and thus the Cauchy Riemann
equations hold and hence the integrands in the area integrals above are zero and conse-
quently ∮

Γ

f(z) dz = 0.

This completes the proof.
At the start of the section was stated that Goursat proved the result without the need

to assume that f ′(z) is continuous inside Γ and we now state this famous theorem.

Theorem 5.5.1 (Cauchy-Goursat theorem) If f is analytic in a simply connected
domain D and Γ is any loop (i.e. a closed contour) in D then∮

Γ

f(z) dz = 0.

Now from section 5.4 we have already had a result involving loop integrals in (5.4.2)
which is equivalent to (5.4.3) and which is also equivalent to f(z) having an anti-derivative.
Hence when f(z) is analytic in a simply connected domain we now know that all the above
hold and we state this in the following theorem.

Theorem 5.5.2 In a simply connected domain, an analytic function has an anti-derivative,
its contour integrals are independent of the path and its loop integrals vanish.

5.5.2 An overview on a proof by continuously deforming a smooth
contour

As already stated, none of the proofs given of the Cauchy Goursat theorem are examinable.
In the book by Saff and Snider a proof involving deforming contours is given. Without
going into too much detail we just give the main formula involved and assume that
everything is sufficiently smooth when needed to avoid too much detail.

Suppose that we a function z(s, t) from which we can give parametric descriptions of
two smooth loops

Γ1 = {z(0, t) : 0 ≤ t ≤ 1} ,
Γ2 = {z(1, t) : 0 ≤ t ≤ 1}

and for all s ∈ (0, 1) the following describes an intermediate smooth loop

{z(s, t) : 0 ≤ t ≤ 1} .

For any of these loops we define

I(s) =

∫ 1

0

f(z(s, t))
∂z

∂t
(s, t) dt.

We wish to show that this does not vary with s.
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Assuming that to get the expression for the derivative it is valid to partially differ-
entiate the integrand with respect to s we have, using the chain rule and the product
rule,

I ′(s) =

∫ 1

0

(
f ′(z(s, t))

∂z

∂s

∂z

∂t
+ f(z(s, t))

∂2z

∂s∂t

)
dt.

Now as mixed partial derivatives can be done in any order we have

∂

∂t

(
f(z(s, t))

∂z

∂s

)
= f ′(z(s, t))

∂z

∂t

∂z

∂s
+ f(z(s, t))

∂2z

∂t∂s
= integrand above.

Hence by the fundamental theorem of calculus

I ′(s) =

∫ 1

0

∂

∂t

(
f(z(s, t)

∂z

∂s

)
dt = f(z(s, 1))

∂z

∂s
(s, 1)− f(z(s, 0))

∂z

∂s
(s, 0).

For our smooth loops we have z(s, 0) = z(s, 1) and also for the partial derivatives and
thus I ′(s) = 0 and I(s) is a constant. Now when we have simply connected domain we
can continuously deform a loop to a point and the value of the integral when the loop is
just one point is zero (this follows by the ML inequality as L = 0) and thus the constant
is zero.

5.5.3 Comments on a proof given in Spiegel, p103–105

A proof is given in Spiegel which covers 2.5 full pages and has several parts. One of the
key parts is to show that the result holds when the boundary is a triangle. The other parts
then extend the result of being true for a triangle to being true for any closed polygon as
any closed polygon can be partitioned as a union of non-overlapping triangles. Finally,
as any smooth curve then be approximated arbitrarily closely by a polygon it is deduced
that the result is true for any loop.

In the case of the loop being a triangle the proof involves creating a sequence of nested
triangles Γ, Γ1

k1
, . . . ,Γnkn each of which is similar to the previous triangle and has 1/4 of

the area. We illustrate this in figure 5.3 in the case of an equilateral triangle uniformly
refined two times. Γ1

i , i = 1, 2, 3, 4 are the 4 triangles after the first refinement and Γ2
i ,

i = 1, . . . , 42 = 16 are the 16 triangles after the second refinement. 1 ≤ k1 ≤ 4 and
1 ≤ k2 ≤ 16 is such that Γ2

k2
is inside Γ1

k1
. The point about listing these is that the loop

integral around Γ can be written as∮
Γ

f(z) dz =
4∑
i=1

∮
Γ1
i

f(z) dz =
16∑
i=1

∮
Γ2
i

f(z) dz = · · ·

This follows as each internal edge involves one direction on one of the triangles and the
opposite direction on the other triangle which shares the edge and as a consequence due
to the internal edges is zero. Now by using the triangle inequality∣∣∣∣∮

Γ

f(z) dz

∣∣∣∣ ≤ 4∑
i=1

∣∣∣∣∣
∮

Γ1
i

f(z) dz

∣∣∣∣∣ ≤
16∑
i=1

∣∣∣∣∣
∮

Γ2
i

f(z) dz

∣∣∣∣∣ ≤ · · ·
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k1 is chosen so that it corresponds to the largest contribution of the 4 choices, k2 is chosen
so that it corresponds to the largest contribution of the 4 choices from the triangles inside
Γ1
k1

. Continuing this argument leads to the bound∣∣∣∣∮
Γ

f(z) dz

∣∣∣∣ ≤ 4n

∣∣∣∣∣
∮

Γnkn

f(z) dz

∣∣∣∣∣ .
If the length of Γ is L then the length of Γnkn is L/2n. The nested sequence of triangles
have a common point which we label here as z0. The detail then uses a relation given just
after the term analytic is defined earlier in the notes about a consequence of f(z) being
analytic at z0. Specifically, if f(z) is analytic at z0 then we can define a a continuous
function λ(z) by

λ(z) =

{
f(z)− f(z0)

z − z0
− f ′(z0), z 6= z0,

0, z = z0

.

Rearranging this gives

f(z) = f(z0) + f ′(z0)(z − z0) + λ(z)(z − z0).

Now as f(z0) + f ′(z0)(z − z0) is a polynomial it has an anti-derivative and thus∮
Γnkn

(f(z0) + f ′(z0)(z − z0)) dz = 0.

Hence ∮
Γnkn

f(z) dz =

∮
Γnkn

λ(z)(z − z0) dz.

To repeat, the length of Γnkn is L/2n and for all z on the triangle |z − z0| < L/2n. Now if
take and ε > 0 the the continuity of λ(z) at z = z0 implies that there exists a δ > 0 such
that whenever |z − z0| < δ we have |λ(z)| < ε. For sufficiently large n the triangle Γnkn
will be in this region and ML-inequality gives the bound∣∣∣∣∣

∮
Γnkn

λ(z)(z − z0) dz

∣∣∣∣∣ ≤
(
L

2n

)(
L

2n

)
ε =

L2

4n
ε.

Thus ∣∣∣∣∮
Γ

f(z) dz

∣∣∣∣ ≤ 4n

∣∣∣∣∣
∮

Γnkn

λ(z)(z − z0)dz

∣∣∣∣∣ ≤ L2ε.

As this is true for all ε > 0 it follows that the value of our loop integral is smaller than
any positive number and as a consequence our loop integral is 0.
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Figure 5.3: The equilateral triangle Γ, the 4 triangles after one uniform refinement, and
the 16 triangles after a further uniform refinement. In each case the arrows indicate the
direction of the integration for each triangle being considered.
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5.5.4 Domains which are not simply-connected and deforming
contours

The path independent results in section 5.4 required only that the domain being considered
is connected whereas the Cauchy theorem considered here has required that the domain
is simply connected. In particular the results of section 5.4 involving anti-derivatives
enabled us to be able to integrate functions f(z) with poles and in particular we showed
that when we have a loop Γ in the anti-clockwise direction, which winds once around
points, ∮

Γ

dz

z − z0

=

{
2πi, if z0 is inside Γ,

0, if z0 is outside Γ,

and when z0 is inside Γ we also have∮
Γ

dz

(z − z0)n
= 0, for n = 2, 3, . . .

In all cases when z0 is not inside Γ and we have an analytic function inside the loop the
Cauchy integral theorem tells us that we get 0. The Cauchy theorem does not apply in
the cases when z0 is inside the loop as the function is not analytic at all points inside
the loop. However we can use the Cauchy theorem to “deform” the contour involved as
follows.

Suppose that f(z) is analytic between the loop Γ and the loop Γ̃, as illustrated below,
and we want to compute the integral around Γ in the anti-clockwise sense.

A BÃ B̃

Γup

Γlow

−Γ̃up

−Γ̃low

Upper part

Lower part
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We let A and B be points on Γ and similarly let Ã and B̃ be points on Γ̃. Referring
to the diagram the doubly connected domain between Γ and Γ̃ can de divided into two
simply connected domains by considering the upper part above A to Ã and B to B̃ and
the lower part which is below these line segments. The Cauchy theorem applies to the
simply connected domains. Now let Γup and Γ̃up be the parts of the loops in the upper
domain (with both considered in the anti-clockwise sense) as shown in the figure. Note
that the contour around the edge of the upper domain in the anti-clockwise sense involves
going around Γup in the anti-clockwise sense and with going around Γ̃up in the clockwise
sense (this is why it is shown as −Γ̃up in the figure). We have a similar situation in the
lower domain and if we let Γlow and Γ̃low be the parts of the loops in the lower domain
(with both considered in the anti-clockwise sense) then the contour around the edge of the
lower domain in the anti-clockwise sense involves going around Γlow in the anti-clockwise
sense and with going around Γ̃low in the clockwise sense (this is why it is shown as −Γ̃low

in the figure). The paths along the line segments from A to Ã and from B to B̃ are in
the opposite sense in the lower domain compared with the upper domain. In terms of the
integrals the Cauchy theorem gives for the upper and lower simply connected domains
respectively the following.∫

Γup

f(z) dz −
∫

Γ̃up

f(z) dz +

∫ Ã

A

f(z) dz +

∫ B

B̃

f(z) dz = 0,∫
Γlow

f(z) dz −
∫

Γ̃low

f(z) dz +

∫ A

Ã

f(z) dz +

∫ B̃

B

f(z) dz = 0.

Adding these last two results, dealing with the cancellations along the lines joining the
loops, and collecting the parts involving Γ and Γ̃ gives∫

Γup

f(z) dz +

∫
Γlow

f(z) dz =

∫
Γ̃up

f(z) dz +

∫
Γ̃low

f(z) dz

which is equivalent to ∮
Γ

f(z) dz =

∮
Γ̃

f(z) dz.

It is in this sense that we can deform Γ to Γ̃ without changing the value of the integral when
f(z) is analytic between Γ and Γ̃. In particular, if f(z) just has an isolated singularity
at z0 which is inside Γ then we can deform Γ to a circle (with a choice of the radius)
with z0 as the centre and attempt to directly determine the integral and we have already
directly computed integrals of the type 1/(z − z0)n, n = 1, 2, . . . when we have circles
centred at z0.

5.6 Examples of integrating rational functions

Later in the module the residue theorem will be covered for evaluating integrals involving
loops for general functions f(z) which are analytic except at isolated pole singularities.
In the case of rational functions which we can express, or partially express, in terms of
partial fractions we can do this already as follows. If we just restrict to the case

R(z) =
p(z)

q(z)
, q(z) = (z − z1)(z − z2) · · · (z − zn),
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where p(z) is a polynomial and z1, . . . , zn are distinct then we have already shown that

R(z) = (polynomial) +
n∑
k=1

Ak
z − zk

with

Ak =
p(zk)

q′(zk)
, k = 1, . . . , n. (5.6.1)

More generally, if instead the denominator is of the form

q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn , rk ≥ 1

then we still have a relation of the form

R(z) = (a function with an anti-deriv) +
n∑
k=1

Ak
z − zk

.

It is convenient at this stage to introduce some notation which we will use later for a
residue which is

Res(R, zk) = Residue of the function R at the point zk.

If we have a loop Γ in the anticlockwise sense, and for ease of labelling we have z1, . . . , zm
inside the loop and the other points outside of the loop, then∮

Γ

R(z) dz =

∮
Γ

(a function with an anti-deriv) dz +
n∑
k=1

Ak

∮
Γ

dz

z − zk
(5.6.2)

=
m∑
k=1

Ak

∮
Γ

dz

z − zk
(5.6.3)

= 2πi
m∑
k=1

Ak = 2πi
m∑
k=1

Res(R, zk), (5.6.4)

where (5.6.3) follows from (5.6.2) as the loop integral of a function with an anti-derivative
is zero and we have already directly obtained integrals involving terms such as 1/(z− zk).
The final answer just depends on the residues at the points z1, . . . , zm which are inside
the loop and the residue Ak is given explicitly in (5.6.1) in the case of a simple pole. This
result is a particular case of the Residue theorem which is covered later in the module.

5.6.1 Application to trigonometric integrals over [0, 2π] — using
the the unit circle

We consider here integrals involving cos θ and sin θ over a 2π-range of the form∫ 2π

0

R(cos θ, sin θ) dθ

where R(cos θ, sin θ) is a rational function of cos θ and sin θ. Thus as examples, we can
have the following.
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1. ∫ π

−π

4dθ

5 + 2 cos θ
.

2. ∫ 2π

0

(cos θ)2n dθ.

3. ∫ π

−π

dθ

1 + sin2 θ
.

4. ∫ 2π

0

sin2 θ

5 + 4 cos2 θ
.

Note that in each case the integrand is real and we hence get a real value for the
integral.

The technique to determine each of these is by using the substitution

z = eiθ, and note that
dz

dθ
= ieiθ = iz,

dθ

dz
=

1

iz
,

and as θ varies from −π to π or from 0 to 2π this corresponds to z traversing the unit
circle once in the anti-clockwise direction. To write all parts in terms of z we have for the
trig. functions

cos θ =
1

2

(
eiθ + e−iθ

)
=

1

2

(
z +

1

z

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
=

1

2i

(
z − 1

z

)
.

Let C denote the unit circle. In the general case this gives∫ 2π

0

R(cos θ, sin θ) dθ =

∮
C

R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
dz

iz
.

Let

F (z) =
1

z
R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
.

As R(., .) is a rational function of its arguments it follows that F (z) is a rational function
of z and hence F (z) has isolated singularities which are poles. If the poles of F (z) which
are inside the unit circle are at z1, z2, . . . , zm then by the Residue theorem result that we
already have ∫ 2π

0

R(cos θ, sin θ) dθ =

∮
C

1

i
F (z) dz = 2π

m∑
k=1

Res(F, zk).

We illustrate this using the examples listed earlier.

1. Let

I =

∫ π

−π

4dθ

5 + 2 cos θ
.
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With the substitution z = eiθ this leads to

F (z) =
1

z

 4

5 +

(
z +

1

z

)
 =

4

z2 + 5z + 1
.

The poles of F (z) are at the zeros of the denominator which are

z1 =
−5 +

√
21

2
and z2 =

−5−
√

21

2
.

The roots are real and the product of the roots is z1z2 = 1 and by inspection |z1| < 1
and |z2| > 1. Hence we only have one simple pole inside the unit circle and by the
Residue theorem result

I = 2πRes(F, z1).

To get the residue we have

Res(F, z1) = lim
z→z1

(z − z1)F (z) = lim
z→z1

4(z − z1)

z2 + 5z + 1
=

4

2z1 + 5
=

4√
21
.

Hence

I =
8π√
21
.

2. Let now

I =

∫ 2π

0

(cos θ)2n dθ.

With the substitution z = eiθ this leads to

F (z) =
1

z

(
1

2

(
z +

1

z

))2n

=
1

22n

1

z

(
z +

1

z

)2n

.

This has a pole at z = 0 of order 2n + 1. In this case we can get the residue by
considering the binomial expansion(

z +
1

z

)2n

=
2n∑
k=0

(
2n

k

)
zk
(

1

z

)2n−k

.

We need the constant term from this part to get the residue and this corresponds
to k = n in the sum and we obtain

Res(F, 0) =
1

22n

(
2n

n

)
=

1

22n

(2n)!

(n!)2 .

Thus

I =
2π

22n

(2n)!

(n!)2 .

The cases when n = 0 and n = 1 can be quickly checked and we get 2π and π
respectively.
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3. Let now

I =

∫ π

−π

dθ

1 + sin2 θ
.

With the substitution z = eiθ this leads to

F (z) =
1

z

 1

1− 1

4

(
z − 1

z

)2


=

4z

4z2 − (z2 − 1)2 =
4z

−z4 + 6z2 − 1
.

The denominator is a quadratic in z2 and at a root

z2 =
−6±

√
36− 4

−2
= 3±

√
8.

Let ±z1 be such that z2
1 = 3−

√
8 which are the positions of the poles of F (z) inside

the unit circle. (If ±z2 denote the two points such that z2
2 = 3 +

√
8 then |z2| > 1,

i.e. the other poles of F (z) are outside the unit circle.) For the residue at z1 we
have

Res(F, z1) = lim
z→z1

(z − z1)F (z)

= 4z1 lim
z→z1

(
z − z1

−z4 + 6z2 − 1

)
= 4z1

(
1

−4z3 + 12z1

)
=

(
1

−z2
1 + 3

)
=

1√
8
.

Similarly

Res(F, −z1) =
1√
8
.

Hence

I = 2π (Res(F, z1) + Res(F, −z1)) =
4π√

8
= (
√

2)π.

In this particular example the amount of detail when using this residue technique
could have been shortened by noting that sin2 θ has period of π as we can write

sin2 θ =
1− cos(2θ)

2
.

Hence

1 + sin2 θ =
3− 2 cos(2θ)

2
and

1

1 + sin2 θ
=

2

3− 2 cos(2θ)
.

Then

I = 2

∫ π

0

dθ

1 + sin2 θ
= 4

∫ π

0

dθ

3− 2 cos(2θ)
.
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Now make the substitution t = 2θ and note that

θ =
t

2
, and

dθ

dt
=

1

2

we get

I = 2

∫ 2π

0

dt

3− 2 cos(t)
.

If we apply the technique to this version with z = eit then we get

dt

dz

(
2

3− 2 cos(t)

)
=

1

i
F (z)

where now

F (z) =
1

z

(
2

3− (z + 1/z)/2

)
=

4

6z − z2 − 1
.

z2 − 6z + 1 = 0 when z = 3±
√

8

and the root which is inside the unit circle is at z0 = 3−
√

8.

I =

∮
C

1

i
F (z) dz = 2πRes(F, z0).

For the residue we have

Res(F, z0) = lim
z→z0

(z − z0)F (z) =
4

6− 2z0

=
2

3− z0

=
2√
8

=
1√
2
.

We again get
I =
√

2π.

4. Let now

I =

∫ 2π

0

sin2 θ

5 + 4 cos2 θ
dθ.

We can just apply the usual technique with the substitution z = eiθ with the ex-
pression in its current form but the details are on the long side. To shorten things
a little we can note what was done in the second version of the previous example in
that the integrand in terms of θ as written has period π and we can express both
sin2 θ and cos2 θ in terms of cos(2θ).

sin2 θ

5 + 4 cos2 θ
=

(1− cos(2θ))/2

5 + 2(1 + cos(2θ))
=

1− cos(2θ)

14 + 4 cos(2θ)
.

To further simplify before integration is attempted we note that

1− cos(2θ) = −1

4
(14 + 4 cos(2θ)) +

18

4

and thus
1− cos(2θ)

14 + 4 cos(2θ)
= −1

4
+

9/4

7 + 2 cos(2θ)
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giving

I = −π
2

+
9

4

∫ 2π

0

dθ

7 + 2 cos(2θ)
.

As the contribution from (0, π) and (π, 2π) are the same we have

I = −π
2

+
9

2

∫ π

0

dθ

7 + 2 cos(2θ)
.

If we let t = 2θ then dθ/dt = 1/2 and we have

I = −π
2

+
9

4

∫ 2π

0

dt

7 + 2 cos(t)
.

We now make the substitution z = eit and have

dt

dz

(
dt

7 + 2 cos(t)

)
=

1

i
F (z) with F (z) =

1

z

 1

7 + z +
1

z

 =
1

z2 + 7z + 1
.

F (z) has two simple poles at points given by

z1 =
−7 +

√
45

2
and z2 =

−7−
√

45

2

with the point z1 inside the unit circle. For the residue we have

Res(F, z1) = lim
z→z1

z − z1

z2 + 7z + 1
=

1

2z1 + 7
=

1√
45
.

I = −π
2

+
9π

2
√

45
= −π

2
+

3π

2
√

5
.
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Chapter 6

Cauchy’s integral formula,
consequences and bounds

The latter parts of this chapter, specifically the parts after Liouville’s theorem on page
6-13, are not examinable.

6.1 A recap of some properties of analytic functions

We start by collecting together the definition of an analytic function together with some
of the key results about such functions encountered so far.

1. f(z) is complex differentiable at z0 if

f ′(z0) := lim
h→0

f(z0 + h)− f(z0)

h

exists, i.e. the limit is independent of how h→ 0.

2. A function f is analytic at z0 if f is differentiable at all points in some neighbourhood
of z0.

3. Let f = u + iv with u(x, y) and v(x, y) being real valued. The Cauchy Riemann
equations are

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

When u and v have continuous partial derivatives in a domain D the function
f = u + iv is analytic on D if and only if the Cauchy Riemann equations are
satisfied throughout D.

4. Cauchy-Goursat theorem: If f is analytic in a simply connected domain D and Γ is
any loop (i.e. a closed contour) in D then∮

Γ

f(z) dz = 0.

5. The Cauchy-Goursat theorem implies the existence of an anti-derivative F (which
is analytic) such that f(z) = F ′(z) when f(z) is analytic in a simply-connected
domain.
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6. If f is analytic between loops Γ1 and Γ2 then∮
Γ1

f(z) dz =

∮
Γ2

f(z) dz.

7. For a particular loop integral which gives a non-zero value we have∮
Γ

dz

z − z0

=

{
2πi, if z0 is inside Γ,

0, if z0 is outside Γ.

In the remainder of this chapter we show that an analytic function can be represented
by an integral (the Cauchy integral formula) and we will then go on to justify the previous
claim that being able to differentiate once in the complex sense actually implies that we
must be able to differentiate infinitely many times.

6.2 The Cauchy integral formula

To derive the integral formula let Γ denote a closed positively orientated loop traversed
once and suppose that f(z) is analytic in a simply connected domain D which contains Γ
and further let z0 be a point inside Γ. Also let Cr be a circle centred at z0 with radius r
where r is sufficiently small such that the circle is inside Γ. A set-up of this type is shown
below.

z0

Cr

Γ

Now if we consider the integral ∮
Γ

f(z)

z − z0

dz
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then although f(z)/(z − z0) is not analytic at all points inside Γ it is analytic between Γ
and Cr and thus ∮

Γ

f(z)

z − z0

dz =

∮
Cr

f(z)

z − z0

dz

and we can take r to be arbitrarily small. To obtain the value we write

f(z) = f(z0) + (f(z)− f(z0))

so that
f(z)

z − z0

=
f(z0)

z − z0

+
f(z)− f(z0)

z − z0

.

We can integrate the first term and hence∮
Cr

f(z)

z − z0

dz = 2πif(z0) +

∮
Cr

f(z)− f(z0)

z − z0

dz.

We explain next that the last integral in the above is 0 and the key to showing this is to
get a suitable bound on the magnitude of the integrand valid for all r > 0.

To get a bound let

M(r) = max {|f(z)− f(z0)| : z ∈ Cr}

and note that M(r) → 0 as r → 0 as f(z) is continuous in D. On the circle we have
|z − z0| = r and thus on the circle the integrand is bounded by∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ ≤ M(r)

r
.

As the length of Cr is 2πr the use of the ML inequality gives the bound∣∣∣∣∮
Cr

f(z)− f(z0)

z − z0

dz

∣∣∣∣ ≤ M(r)

r
(2πr) = 2πM(r)→ 0 as r → 0.

As the value of the integral does not depend on r it follows that it must be less than
2πM(r) for all r and this is only possible if the value is 0.

To summarize, we have shown that when z0 is inside a positively orientated loop Γ
traversed once and f(z) is analytic on and inside Γ we have

f(z0) =
1

2πi

∮
Γ

f(z)

z − z0

dz. (6.2.1)

This is known as the Cauchy integral formula.

6.2.1 Representations for f(z), f ′(z), . . ., f (n)(z), . . .

The result in (6.2.1) tells us that when f is known to be analytic on Γ and inside Γ then
the value of f(z) at any point z inside Γ is completely determined by the values of the
function on Γ. That is if we first change the integration variable in (6.2.1) from z to ζ

f(z0) =
1

2πi

∮
Γ

f(ζ)

ζ − z0

dζ
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and then replace z0 by z we have the representation

f(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ.

As we next show, we can differentiate the expression on the right hand side to get an
expression for f ′(z) which will in turn show that f ′(z) is also analytic and we can continue
this process to establish that the nth derivative f (n)(z) is analytic and in each case we
have a representation as an integral.

The expressions for the derivatives can be obtained relatively easily if we just accept
that that we can differentiate through the integral. With the expression being considered
as a function of ζ and z in the meaning of the following partial derivatives we have

∂

∂z

(
1

ζ − z

)
=

1

(ζ − z)2 ,

∂2

∂z2

(
1

ζ − z

)
=

2

(ζ − z)3 ,

· · · · · ·
∂n

∂zn

(
1

ζ − z

)
=

n!

(ζ − z)n+1 ,

and the result is that

f (n)(z) =
n!

2πi

∮
Γ

f(ζ)

(ζ − z)n+1 dζ, n = 0, 1, 2, . . .

To properly justify this it is necessary to justify that we can interchange the operations
of taking the derivative and of doing the integral (which both involve taking limits) and
we consider this next just in the case of f ′(z) and to this end we consider the following.
Let

I =
f(z + h)− f(z)

h
− 1

2πi

∮
Γ

f(ζ)

(ζ − z)2 dζ.

Our aim is to show that this tends to 0 as h → 0. We first substitute the integral
representations for f(z + h) and f(z) and combine the integrands to give

I =
1

2πi

∮
Γ

f(ζ)

(
1

h

(
1

ζ − (z + h)
− 1

ζ − z

)
− 1

(ζ − z)2

)
dζ.

Now
1

h

(
1

ζ − (z + h)
− 1

ζ − z

)
=

1

(ζ − (z + h))(ζ − z)

and
1

(ζ − (z + h))(ζ − z)
− 1

(ζ − z)2 =
h

(ζ − z)2(ζ − (z + h))

and our expression for I is

I =
h

2πi

∮
Γ

f(ζ)
1

(ζ − z)2(ζ − (z + h))
dζ.
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To justify that this tends to 0 as h → 0 it is sufficient to show that the integral remains
bounded as h→ 0 and we can achieve this by proving that the integrand is bounded for
all ζ on Γ. Let

M = max {|f(ζ)| : ζ ∈ Γ}

and for z inside Γ let d be the distance of z from Γ, i.e.

d = min
ζ∈Γ
|ζ − z|.

Now for some values of h the point z + h may be closer to Γ than is z but when h is
sufficiently small we can guarantee that it is not too much closer with in particular

|ζ − (z + h)| ≤ d

2
, for all ζ ∈ Γ,

and thus for ζ ∈ Γ ∣∣∣∣ f(ζ)

(ζ − z)2(ζ − (z + h))

∣∣∣∣ ≤ M

d3/2
.

Hence by the ML inequality

|I| ≤ h

2π

(
M

d3/2

)
length(Γ)→ 0 as h→ 0.

Thus we have shown that

lim
h→0

f(z + h)− f(z)

h
=

1

2πi

∮
Γ

f(ζ)

(ζ − z)2 dζ,

i.e. we have shown that

f ′(z) =
1

2πi

∮
Γ

f(ζ)

(ζ − z)2 dζ.

It is the fact that we have this representation which enables us to deduce that f ′(z) is
also analytic and we can similarly get a representation for f ′′(z) and continue the process
for all the derivatives.

To summarize, if f is analytic in a domain D then f ′, f ′′, . . . exist and are also analytic
and if Γ is any positively orientated loop which is traversed once and which contains z0

then

f (n)(z0) =
n!

2πi

∮
Γ

f(z)

(z − z0)n+1 dz. (6.2.2)

The representation (6.2.2) is known as the generalised Cauchy integral formula. In the
next chapter we will consider the Taylor series representation of an analytic function and
it is worth noting here that we have a representation for the Taylor coefficients of the
form

f (n)(z0)

n!
=

1

2πi

∮
Γ

f(z)

(z − z0)n+1 dz. (6.2.3)
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6.2.2 A comment about representation of functions by integrals

If Γ denotes a closed loop traversed once in the anti-clockwise direction and if g(ζ) is any
continuous function defined on Γ (but possibly not defined anywhere else) then we can
define a function of the form

G(z) =

∮
Γ

g(ζ)

ζ − z
dζ.

By the same technique as was used in the previous section it can be shown that this
defines an analytic function for z inside Γ and it also defines an analytic function for z
outside Γ. We will meet an expression of this type to represent the remainder in a Taylor
expansion in this next chapter and we consider a particular case of this here.

Consider the case when we have a function f which is analytic on Γ and inside Γ and
we let

g(ζ) =
1

2πi

(
f(ζ)

ζ − z0

)
,

where z0 is a point inside Γ, and hence

G(z) =

∮
Γ

g(ζ)

ζ − z
dζ =

1

2πi

∮
Γ

f(ζ)

(ζ − z0)(ζ − z)
dζ.

When z = z0 we have the generalised Cauchy integral formula case and

G(z0) = f ′(z0).

When z 6= z0 we can use partial fractions to re-write part of the integrand, i.e.

1

(ζ − z0)(ζ − z)
=

A

ζ − z0

+
B

ζ − z

and for all ζ

1 = A(ζ − z) +B(ζ − z0) giving B = −A =
1

z − z0

.

Thus

G(z) =

(
1

z − z0

)
1

2πi

(
−
∮

Γ

f(ζ)

ζ − z0

dζ +

∮
Γ

f(ζ)

ζ − z
dζ

)
=
f(z)− f(z0)

z − z0

where the last equality is from noting that each integral is directly of the form where the
Cauchy integral formula applies. Thus to summarize, we have shown that the function

G(z) =

{
f ′(z0), if z = z0,
f(z)− f(z0)

z − z0
, if z 6= z0,

is analytic inside Γ as well as having an integral representation.
Just for information at this stage, the generalisation that we show in the next chapter

is that

G(z) =
1

2πi

∮
Γ

f(ζ)

(ζ − z0)n+1(ζ − z)
dζ =


f (n+1)(z0)
(n+ 1)!

, if z = z0,

f(z)−
n∑
k=0

f (k)(z0)

k!
(z − z0)k

(z − z0)n+1 , if z 6= z0.
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6.2.3 Morera’s theorem characterising the analytic property

As another immediate consequence of the previous sections and the results about anti-
derivatives we obtain another way of determining whether or not a given function f is
analytic in a domain D which has the name of Morera’s theorem which we state next.

Theorem 6.2.1 If f is continuous in a domain D and if∮
Γ

f(z) dz = 0

for every closed contour Γ in D then f is analytic in D.

Proof: The properties that f is continuous and that all loop integrals are 0 implies that
there exists an anti-derivative F , i.e. there exists an analytic function F such that F ′ = f .
(This was shown in the last part of section 5.4.) The result of the last section implies
that F ′, F ′′ etc. are also analytic and thus in particular f = F ′ is analytic. �

This theorem can be considered as the reverse of the Cauchy integral theorem, i.e. if
f is analytic then all loop integrals of f are 0 and if all loop integrals of f are 0 then f is
analytic.

We have not encountered a situation yet when this result would have helped to deter-
mine that a given function f is analytic as in all cases we have had an explicit expression
for f(z) and we could determine the analyticity more directly. However the result is
needed later in the module when series are considered and our knowledge of f(z) is only
as the limit of a uniformly convergent series involving analytic functions and Morera’s
theorem is the result that will be used to explain why the limit function is also analytic.

6.2.4 The differentiability of u and v when f = u+ iv is analytic

If f = u + iv is analytic in a domain D, with u and v being real valued, then by the
Cauchy Riemann equations we can represent f ′(z) in the following ways

f ′(z) =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
.

As f ′ is also analytic all of the 4 partial derivatives above are also continuously differen-
tiable with respect to x and y, i.e. u and v are twice continuously differentiable, and we
can represent f ′′ in several ways, i.e.

f ′′(z) =
∂2u

∂x2 + i
∂2v

∂x2 =
∂2v

∂x∂y
− i ∂

2u

∂x∂y

=
∂2v

∂x∂y
− i ∂

2v

∂y∂x
= −∂

2u

∂y2 − i
∂2v

∂y2 .

This process can be repeated indefinitely and we deduce that all partial derivatives of u
and v exist are are continuous in a domain D.

A particular outcome of the result about the differentiability of u and v is that when
f is analytic the functions u and v always have continuous partial derivatives of all orders
to be able to deduce that both u and v are harmonic functions, i.e.

∇2u = 0 and ∇2v = 0.
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6.2.5 The existence of the harmonic conjugate in simply con-
nected domains

When we have an analytic function we immediately have two related harmonic functions
and in term 1 several examples were considered in which a harmonic function u was given
and a harmonic conjugate v was constructed using the Cauchy Riemann equations. If you
revisit that section then there is a comment that this is always possible in a domain which
is simply connected and we are now in a position to justify that comment as follows.

Suppose that D is a simply connected domain and suppose that φ is harmonic in
D. Now if φ is the real part of an analytic function then the derivative of that analytic
function is given by

g(z) = u1 + iv1 =
∂φ

∂x
− i∂φ

∂y
. (6.2.4)

Hence we start by defining g in this way and consider its properties, i.e. is g(z) always
analytic and does it have an anti-derivative inD. Now by considering the Cauchy Riemann
equations applied to u1 + iv1 we have

∂u1

∂x
− ∂v1

∂y
=

∂2φ

∂x2 +
∂2φ

∂y2 = 0, as φ is harmonic,

∂u1

∂y
+
∂v1

∂x
=

∂2φ

∂y∂x
− ∂2φ

∂x∂y
= 0,

as mixed partial derivatives can be done in any order, which shows that g is analytic. The
property that D is simply connected implies that there exists an anti-derivative G = u+iv,
with

g = G′ =
∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y
. (6.2.5)

Now if we compare (6.2.4) and (6.2.5) it follows that

∂(u− φ)

∂x
=
∂(u− φ)

∂y
= 0

and u and φ only differ by a constant, i.e.

φ = u+ c,

where c is a constant, and φ is the real part of the analytic function G(z) + c and the
existence of a harmonic conjugate v = Im(G+ c) has been established.

To illustrate why we cannot always get another function v such that u+ iv is analytic
throughout D when D is not simply connected we just need to consider the case when D
is the annulus

D = {z : 0 < r1 < |z| < r2}
and we have the function

u(x, y) = ln(r) = ln |z| = 1

2
ln(x2 + y2).

This function is harmonic in D but no harmonic conjugate v exists such that u + iv is
analytic in D. If we remove part of D to create the simply connected domain

D′ = {z ∈ D : Arg z 6= π}
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then the harmonic conjugate
v = Arg z

is such that
u+ iv = ln |z|+ iArg z = Log(z)

is analytic in D′ but the function is not analytic throughout D due to the branch cut
along the negative real axis.

6.2.6 Examples involving evaluating loop integrals

At the end of chapter 5 there were examples involving loop integrals and rational functions.
In the following examples we now consider integrands which are more general.

1. Let C denote the contour which is the circle centred at 0 and radius 2 and traversed
once in the anti-clockwise direction.

(a) Evaluate

I =

∮
C

sin(3z)

z − π/2
dz.

To picture the contour and the pole of the integrand we have the following.

π/2

0 2

C

The simple pole at z0 = π/2 is inside C and if we let f(z) = sin(3z) then
the function f(z) is analytic on and inside C and hence the conditions of the
Cauchy integral formula apply and we have

I = 2πif(π/2) = (2πi) sin(3π/2) = −2πi.

(b) Evaluate

I =

∮
C

sin z

z2(z − 4)
dz.

To picture where the poles of the integrand are relative to the contour we have
the following.
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0 2 4

C

The pole at z0 = 0 is inside C but the simple pole at 4 is outside the contour.
We let

f(z) =
sin z

z − 4

which is analytic inside C. By the generalised Cauchy integral formula to
represent the first derivative we get

I = 2πif ′(0).

The formula for the first derivative is used here as the integrand is f(z)/z2.
Now

f ′(z) = (sin z)
d

dz

(
1

z − 4

)
+ (cos z)

(
1

z − 4

)
giving f ′(0) = −1

4

and thus
I = −π

2
i.

As a comment here, the integrand actually has a simple pole at z = 0 as
sin(z)/z has removable singularity at z = 0 with a limit value of 1 as z → 0.
Thus we could have taken

g(z) =
sin(z)

z(z − 4)
.

The integral formula just involves the values of this on the boundary and this
is analytic inside the circle when the value at z = 0 is the limit as z → 0. If
we assume that here then

g(0) := lim
z→0

g(z) =
1

−4

and we get the same result as above, i.e.

I = 2πig(0) = −π
2
i.

2. In section 5.6 we established the residue theorem result for any rational function of
the form

R(z) =
p(z)

q(z)
,
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where p(z) and q(z) are polynomials, although we restricted some of the discussion
to a rational function with simple poles. In the general case of poles of any order
as a result of the denominator being of the form

q(z) = (z − z1)r1(z − z2)r2 · · · (z − zn)rn ,

with rk ≥ 1 for k = 1, . . . , n, it is still true that∮
Γ

R(z) dz = 2πi
m∑
k=1

Res(R, zk),

where z1, . . . zm are inside Γ and zm+1, . . . , zn are outside Γ. With the use of partial
fractions and the Cauchy integral formulas we are now in a position to cope with
functions of the form f(z)/q(z) where now f(z) is any function which is analytic
inside the loop Γ but the denominator is still a polynomial as we describe next.

When we only have simple poles we have the partial fraction representation of 1/q(z)
of the form

1

q(z)
=

n∑
k=1

Ak
z − zk

and Ak = lim
z→zk

z − zk
q(z)

=
1

q′(zk)
.

In this case if f(z) is any function which is analytic inside the loop Γ then

g(z) =
f(z)

q(z)
=

n∑
k=1

Ak
f(z)

z − zk

Hence if Γ denotes a positively orientated loop considered once and if z1, . . . , zm are
inside Γ and zm+1, . . . , zn are outside Γ then∮

Γ

g(z) dz = 2πi
m∑
k=1

Akf(zk).

The term in the sum is Res(g, zk) since

Res(g, zk) = lim
z→zk

(z − zk)g(z) = lim
z→zk

f(z)

(
z − zk
q(z)

)
= lim

z→zk
f(z) lim

z→zk

(
z − zk
q(z)

)
, by the properties of limits,

= f(zk)Ak.

Thus again we have ∮
Γ

g(z) dz = 2πi
m∑
k=1

Res(g, zk).

If q(z) has multiple zeros then the representation for 1/q(z) is of the form

1

q(z)
=

(
A1,1

z − z1

+ · · ·+ Ar1,1
(z − z1)r1

)
+ · · ·+

(
A1,n

z − zn
+ · · ·+ Arn,n

(z − zn)rn

)
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and thus

f(z)

q(z)
=

(
A1,1f(z)

z − z1

+ · · ·+ Ar1,1f(z)

(z − z1)r1

)
+ · · ·+

(
A1,nf(z)

z − zn
+ · · ·+ Arn,nf(z)

(z − zn)rn

)
.

The integral in this case needs the use of generalised Cauchy integral formula al-
though it can still be shown to be the case that∮

Γ

g(z) dz = 2πi
m∑
k=1

Res(g, zk).

This will not be pursued further here as in a later chapter we will extend this further
to the case of any function which is analytic inside Γ except at a finite number of
isolated singularities at points z1, . . . , zm and to achieve the extension to this more
general case we will need Laurent series representations of the function about each
isolated singularity. Laurent series will be covered after Taylor series in the next
chapter.

6.3 Bounds for analytic functions

One of the consequences of the Cauchy integral formula is that if z0 is inside a positively
orientated loop Γ and if f is analytic on and inside Γ then

f (n)(z0) =
n!

2πi

∮
Γ

f(z)

(z − z0)n+1 dz, n = 0, 1, 2, . . .

It is convenient now to take as the loop a circle

CR =
{
z = z0 +Reit : 0 ≤ t ≤ 2π

}
and as the value of the integral does not depend on the loop used it follows that

f (n)(z0) =
n!

2πi

∮
CR

f(z)

(z − z0)n+1 dz (6.3.1)

=
n!

2πi

∫ 2π

0

f(z0 +Reit)Rieit

Rn+1ei(n+1)t
dt (6.3.2)

=
n!

2πRn

∫ 2π

0

f(z0 +Reit)e−int dt. (6.3.3)

The case n = 0 is known as the mean value property.
For some bounds let

M(R) = max {|f(z)| : z ∈ CR} = max
{
|f(z0 +Reit)| : 0 ≤ t ≤ 2π

}
.

The magnitude of the integrand is bounded by M(R) and thus we obtain

|f (n)(z0)| ≤ n!

2πRn

∫ 2π

0

M(R) dt =
n!M(R)

Rn . (6.3.4)

We start with the case of entire functions and what is known as Liouville’s theorem
and recall that an entire function is analytic in the entire complex plane.

Theorem 6.3.1 The only bounded entire functions are constant functions.

– Cauchy’s integral formula, consequences and bounds– 6–12 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 6–13

Proof: We show that f(z) is a constant by showing that f ′(z) = 0 and thus con-
sider (6.3.4) with n = 1.

Now as |f(z)| is assumed to be bounded we have that there exists a constant K ≥ 0
such that

M(R) ≤ K for all R.

Hence for all points z0 and for all R we have

|f ′(z0)| ≤ K

R
→ 0 as R→∞.

As |f ′(z0)| is less than every positive number we have f ′(z0) = 0 at every point z0 ∈ C
and thus f(z) is a constant.

�

A polynomial is an entire function and Liouville’s theorem is a key step in proving
that when the degree of the polynomial is at least 1 it must have at least one zero in the
complex plane and this is known as the fundamental theorem of algebra. The proof
of this is a bit technical and it is not examinable but the result should be known. Thus
this is where the non-examinable material in this chapter starts.

Theorem 6.3.2 Every non-constant polynomial with complex coefficients has at least one
zero.

Proof: Let
p(z) = anz

n + · · ·+ a1z + a0, n ≥ 1, an 6= 0

denote the polynomial and let

f(z) =
1

p(z)
.

We use a proof by contradiction to show that p(z) must have a zero and hence we
start by assuming that p(z) has no zeros in C. An immediate consequence of this is that
the function f(z) is an entire function and we will get a contradiction if we can show that
f(z) is bounded as Liouville’s theorem would then imply that it is a constant function
which contradicts the degree n being at least 1.

To get a bound we first consider what happens for large |z|. Now

p(z)

zn
= an +

an−1

z
+ · · ·+ a0

zn
→ an 6= 0 as |z| → ∞.

This in turn implies that there exists R > 0 such that for |z| ≥ R we have∣∣∣∣p(z)

zn

∣∣∣∣ ≥ |an|2
and equivalently

∣∣∣∣ znp(z)

∣∣∣∣ ≤ 2

|an|

from which it follows that

|f(z)| =
∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ 2

|an||zn|
≤ 2

|an|Rn .
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Hence |f(z)| is bounded in the region |z| ≥ R. The region |z| ≤ R is a closed bounded
region and as the entire function f(z) is continuous on the region it is bounded in this
region. Thus |f(z)| is bounded in the entire complex plane and, as mentioned above,
this implies that f(z) is constant which in turn implies that p(z) is constant. This is
the contradiction as we are assuming that n ≥ 1, an 6= 0 and p(z) is a non-constant
polynomial. �

We finish the chapter by just stating a few results about where the largest value of
|f(z)| can occur when f(z) is analytic with the final result being one version of what
is known as the maximum modulus theorem which basically states that on a bounded
domain the largest value can only occur on the boundary of the domain when the function
is not a constant. No proofs are given here but it is worth noting that a named result
which we have already established. When we take n = 0 in (6.3.3) we get the mean
value property

f(z0) =
1

2π

∫ 2π

0

f(z0 +Reit) dt. (6.3.5)

This says that the value at z0 is the average of the values on the circle of radius R for all
values of R such that f(z) is analytic inside the circle of this radius.

Lemma 6.3.1 If f(z) is analytic in a domain D and |f(z)| is constant in D then f(z)
is a constant.

As a note, this was on an exercise sheet when analytic functions were first discussed.

Lemma 6.3.2 Suppose f(z) is analytic in a disk centred at z0. If the maximum value of
|f(z)| over the disk is the value at the centre, i.e. the value |f(z0)|, then f(z) is constant
on the disk.

The next result is one version of the maximum modulus principle.

Theorem 6.3.3 If f is analytic in a domain D and |f(z)| achieves its maximum value
at a point z0 ∈ D then f is a constant in D.

If we now restrict to a bounded domain D and to functions f(z) which are analytic in
D and continuous in D and on its boundary then we know that |f(z)| is bounded and it
attains its maximum value. The previous theorem tells us that if f(z) is not constant in
D then the maximum value cannot be attained in D and thus it can only be attained on
the boundary and this is another version of the maximum modulus principle.
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Chapter 7

Taylor series and Laurent series

7.1 Introductory comments

Much of the module MA3614 is about analytic functions f(z) of a complex variable z
and in many cases f(z) has just been an extension of a real valued function f(x) of a
real variable x to the complex plane. For example, the real valued functions x, x2, . . .,
ex, . . . have been generalised to z, z2, . . ., ez. Much of chapter 4 about the elementary
functions was about such functions. We have also considered functions which are not
analytic everywhere such as the following

1

z − z0

,
1

(z − z0)2 , . . . , tan z =
sin z

cos z
, . . . , exp(−1/z2), . . .

which have isolated singularities. In these examples 1/(z − z0)m, m ≥ 1 being an integer
has a pole of order m at z0, tan z has infinitely many simple poles at π/2 + kπ, k =
0,±1,±2, . . . and exp(−1/z2) has a singularity at z = 0 which, as we will see, is classified
as an essential singularity. In addition, functions such as the principal valued logarithm
Log z and the principal valued root function zα, α 6∈ Z have been introduced which have
branch cuts starting at the branch point z = 0, i,e. z = 0 is not an isolated singularity,
but the functions are analytic if we restrict to a region which does not include the branch
cut.

This chapter is about representing analytic functions by a Taylor series about a point
z0 and conversely if we have a power series then we show that this defines an analytic
function within a disk. Thus, as an example, if our function is

ez := ex(cos y + i sin y)

then we show that this implies that

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · · .

Conversely, if

g(z) :=
∞∑
1

zn

n2

then we show that g(z) defines a function which is analytic in a disk |z| ≤ R for all R < 1
and there is a point on |z| = 1 where it is not analytic. (Actually the series is not defined
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for any z with |z| > 1 but it can be shown that the function defined in |z| < 1 can be
analytically continued across part of the unit circle but not all of it and it is in this sense
that there is at least one point on |z| = 1 at which the function is not analytic.) Hence,
when f(z) is analytic we will be concerned with series of the form

∞∑
n=0

an(z − z0)n

and we generalise to the case when f(z) has an isolated singularity at z0 to a series of the
form

∞∑
n=−∞

an(z − z0)n,

i.e. with negative powers as well. A series of this type is known as a Laurent series.
In this chapter there will not be rigorous proofs for all the results and the full longer

proofs that are included, e.g. of the Taylor series representation and of the Laurent series
representation, will not be examinable in their complete form. However, some of the
techniques in these proofs may correspond, or nearly correspond, to what appears on the
exercise sheets.

7.2 A revision of definitions and results about series

of numbers

We collect together here some definitions and results about series which you should have
done before year 3. Before year 3 you probably only considered series involving real
numbers but all of the following also apply to complex numbers as often just the magnitude
of numbers are involved and these are non-negative real numbers.

First a reminder of some definitions and results about the convergence of sequences.

Definition 7.2.1 A sequence z0, z1, z2, . . . converges to z if for every ε > 0 there exists
an N = N(ε) such that

|zn − z| < ε for all n ≥ N.

Definition 7.2.2 A sequence z0, z1, z2, . . . is a Cauchy sequence if for every ε > 0
there exists an N = N(ε) such that

|zn − zm| < ε for all n ≥ N and m ≥ N.

As in the real case we have convergence if and only if a sequence is a Cauchy sequence.

Definition 7.2.3 Let c0, c1, c2, . . . denote a sequence. A series is an expression of the
form

c0 + c1 + c2 + · · ·

which we write as
∞∑
k=0

ck.
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The sequence s0, s1, s2, . . . with

sn =
n∑
k=0

ck

is known as the sequence of partial sums. The series converges if the sequence of
partial sums converges and it diverges if the sequence of partial sums diverges. When we
have convergence we say that

s =
∞∑
k=0

ck

is the sum of the series.

Definition 7.2.4 If the series
∑
|ck| converges then

∑
ck is said to be absolutely con-

vergent.

For a collection of results about series we have the following.

• If a series
∑
ck converges then cn → 0 as n→∞.

• If the series
∑
|ck| converges then

∑
ck converges.

One way to show this is to use the Cauchy sequence property and the triangle in-
equality to show that the partial sums of

∑
ck are a Cauchy sequence.

• Comparison test: If |ck| ≤ Mk for all k ≥ K and
∑
Mk converges then

∑
ck

converges.

• From the identity

(1− c)(1 + c+ c2 + . . .+ cn) = 1− cn+1

we have that the geometric series diverges if |c| ≥ 1 and
∑
ck converges if |c| < 1

with
∞∑
k=0

ck =
1

1− c
.

• Ratio test: If |ck+1/ck| → L as k → ∞ then the series converges if L < 1 and it
diverges if L > 1.

This is proved by comparing with a geometric series.

• Root test: If |ck|1/k → L as k → ∞ then the series converges if L < 1 and it
diverges if L > 1.

This is proved by comparing with a geometric series.
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7.3 Series of functions and uniform convergence

We next discuss definitions and results about series of functions and this will include a
new result about the uniform convergence of a sequence of analytic functions.

Let
∑∞

0 fk(z) denote a series of functions with each term f0(z), f1(z), . . . in the series
being defined on the same domain D. Also let

Fn(z) =
n∑
k=0

fk(z), n = 0, 1, 2, . . .

be the corresponding sequence of partial sums.

Definition 7.3.1 The series converges pointwise if the sequence (Fn(z)) converges for
each z in the domain D.

Definition 7.3.2 The series converges uniformly to F (z) on D if for every ε > 0
there exists N = N(ε) such that for all n ≥ N

|Fn(z)− F (z)| < ε

for all z ∈ D.

In the case of uniform convergence we prove this if we can show that

sup
z∈D
|Fn(z)− F (z)| → 0 as n→∞.

Here sup is the notation for the least upper bound and in our contexts the value will
correspond to the maximum of the expression on the boundary of D. In the case of series
a usable test which gives a sufficient condition to prove that a series converges uniformly
is the Weierstrass M-test which is as follows.

Theorem 7.3.1 If |fk(z)| ≤ Mk for all z ∈ D and
∑
Mk converges then the series

converges uniformly in D.

Thus in practice you rarely need to compute the supremum as a suitable bound is usually
sufficient to establish the uniform convergence property.

One important result about uniform convergence that you meet in the case of real
valued functions of a real variable which also holds in the complex case with an almost
identical proof is the following.

Theorem 7.3.2 If Fn(z), n = 0, 1, 2, . . . are continuous in D and Fn → F uniformly
on D then the limit function F (z) is also continuous in D.

In the case of contour integrals that are considered in this module we have the following
which is effectively the same as what is done with real integrals.

Theorem 7.3.3 If Fn(z), n = 0, 1, 2, . . . are continuous in D and Fn → F uniformly in
D and Γ is a contour (which has finite length) then∫

Γ

Fn(z) dz →
∫

Γ

F (z) dz as n→∞.
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Proof: Let
Mn = sup

z∈D
|Fn(z)− F (z)|

and note that the uniform convergence means that Mn → 0 as n→∞. Now by the ML
inequality ∣∣∣∣∫

Γ

Fn(z) dz −
∫

Γ

F (z) dz

∣∣∣∣ =

∣∣∣∣∫
Γ

(Fn(z)− F (z)) dz

∣∣∣∣
≤ (length of Γ)Mn → 0 as n→∞.

�

For a new result relating to analytic functions we have the following.

Theorem 7.3.4 Let Fn(z) be a sequence of analytic function in a simply connected do-
main D and converging uniformly to F (z) in D. Then F (z) is analytic in D.

Proof: Let Γ denote any closed loop in D. As Fn(z) is analytic in D we can use Cauchy’s
theorem to deduce that ∮

Γ

Fn(z) dz = 0, n = 0, 1, 2, . . . .

As we are given that Fn → F uniformly in D the previous theorem gives∮
Γ

F (z) dz = lim
n→∞

∮
Γ

Fn(z) dz = 0.

As this is true for all loops Morera’s theorem (see page 6-7) implies that F (z) is analytic
in D. �

We will use the result in theorem 7.3.3 in a few places and in the case of series this
means that if

F (z) =
∞∑
k=0

fk(z),

with the series converging uniformly in D, then∫
Γ

∞∑
k=0

fk(z) dz =
∞∑
k=0

∫
Γ

fk(z) dz.

That is, term-by-term integration gives us the integral of a function defined by a series.
In this chapter fk(z) is of the form (z − z0)k.

7.4 Taylor series for an analytic function

If a function f(z) is analytic in a domain then from the results of chapter 6 a consequence
of the Cauchy integral formula is that f ′, f ′′, . . . are also analytic and we can always
consider f(z0), f ′(z0), . . ., f (n)(z0), . . . for all points z0 in the domain.
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Definition 7.4.1 If f(z) is analytic at z0 then the series

f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2!
(z − z0)2 + · · · =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k

is called the Taylor series for f(z) around z0. When z0 = 0 the series is known as the
Maclaurin series for f(z).

The purpose of this section is to show that this series converges uniformly in a disk centred
at z0 and the sum is f(z). We are also interested in the size of the disk for which we have
the representation, i.e. if {z : |z − z0| < R} denotes the disk then how large can we take
R? As we will see this can be answered quite easily as either R = ∞, which is the case
with entire functions, or it is such that the circle |z − z0| = R contains at least one point
for which f(z) is not analytic with f(z) being analytic for all z inside the disk. For the
uniform convergence we need to restrict to a closed disk of the form |z − z0| ≤ R′ < R.
Thus, as we next prove, the series converges in the largest disk for which f(z) is analytic.

Theorem 7.4.1 If f(z) is analytic in the disk |z − z0| < R then the Taylor series con-
verges to f(z) for all z in this disk and in any closed disk |z−z0| ≤ R′ < R the convergence
is uniform.

Proof: The proof involves using the Cauchy integral formula and writing the term
1/(ζ − z) in the integrand in such a way that we get the terms in the series.

First we need to identify where f(z) is analytic, the closed disk where we show that the
convergence is uniform and the contour C which we use in the Cauchy integral formula.
Let R′ < R and let

D′ = {z : |z − z0| ≤ R′}

be the closed disk for the uniform convergence part. For the loop we want something
which surrounds D′ and it needs to be where f(z) is analytic and we choose

C = {ζ : |ζ − z0| = R1} where R1 =
R′ +R

2
< R.

With this choice, we have that when z ∈ D′ and ζ ∈ C the bound

|ζ − z| ≥ R1 −R′ =
R′ +R

2
−R′ = R−R′

2
> 0.

As R′ < R can be taken arbitrarily close to R we will establish the convergence for all z
with |z − z0| < R if we can establish the uniform convergence for all z ∈ D′.
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z0

C

The closed disk D′

Disk of radius R′

Circle of radius R

The integral formula gives

f(z) =
1

2πi

∮
C

f(ζ)

ζ − z
dζ.

Now we need to introduce z0 into the expression in the integrand and we can do this by
writing

ζ − z = (ζ − z0)− (z − z0) = (ζ − z0)

(
1−

(
z − z0

ζ − z0

))
.

To shorten the writing of the expressions that we need let

α =
z − z0

ζ − z0

, so that ζ − z = (ζ − z0)(1− α) (7.4.1)

and note that for z ∈ D′ and ζ ∈ C we have

|α| ≤ R′

R1

< 1 and |1− α| ≥ 1− |α| ≥ R1 −R′

R1

> 0.

This is needed as we expand in powers of α the term (1− α)−1 by noting the relation

(1− α)(1 + α + α2 + · · ·+ αn) = 1− αn+1

giving
1

1− α
= 1 + α + α2 + · · ·+ αn +

(
αn+1

1− α

)
and the integrand to consider is

f(ζ)

ζ − z
=

f(ζ)

(ζ − z0)(1− α)
=

f(ζ)

ζ − z0

(
1 + α + α2 + · · ·+ αn +

(
αn+1

1− α

))
.
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Now

1

2πi

∮
C

(
f(ζ)

ζ − z0

)
αk dζ =

1

2πi
(z − z0)k

∮
C

f(ζ)

(ζ − z0)k+1
dζ =

f (k)(z0)

k!
(z − z0)k

by the generalised Cauchy integral formula in the case of the kth derivative. Thus we get

f(z) =

(
n∑
k=0

f (k)(z0)

k!
(z − z0)k

)
+ Tn(z)

where the first part is the Taylor polynomial and where Tn(z) denotes the remainder term
and to complete the proof we need to show that the remainder term tends to 0 uniformly
in D′.

Part of the expression for Tn(z) involves(
f(ζ)

ζ − z0

)(
αn+1

1− α

)
and from (7.4.1) ζ − z = (ζ − z0)(1− α) and thus this is

(z − z0)n+1 f(ζ)

(ζ − z0)n+1(ζ − z)

and we get a representation for Tn(z) as

Tn(z) =
(z − z0)n+1

2πi

∮
C

f(ζ)

(ζ − z0)n+1(ζ − z)
dζ.

The uniform convergence of Tn(z) to 0 on D′ is because f(ζ) is bounded on the circle C,
|ζ − z| > (R−R′)/2 for all ζ ∈ C and z ∈ D′ and we have∣∣∣∣∣

(
z − z0

ζ − z0

)n+1
∣∣∣∣∣ = |αn+1| ≤

(
R′

R1

)n+1

→ 0 as n→∞.

�

Remark about Tn(z) and R

In the proof we get an integral representation for Tn(z) which is the difference between
f(z) and the Taylor polynomial involving terms up to (z − z0)n which is valid for all z in
the disk. If we restrict z to be sufficiently close to z0 then

1

2πi

∮
C

f(ζ)

(ζ − z0)n+1(ζ − z)
dζ ≈ 1

2πi

∮
C

f(ζ)

(ζ − z0)n+2 dζ =
f (n+1)(z0)

(n+ 1)!
,

by using the formula for f (n+1)(z0), which gives us the usual estimate

Tn(z) ≈ f (n+1)(z0)

(n+ 1)!
(z − z0)n+1.

As stated in the theorem, the Taylor series result holds for the largest possible disk
centred at z0 such that f(z) is analytic for |z − z0| < R. When f(z) is not an entire
function, so that R < ∞, this implies that if we take R as large as possible then f(z) is
not analytic in |z − z0| < R + ε for any ε > 0. Another way of stating this is that there
is at least one point on the circle |z − z0| = R where f(z) is not analytic and we will see
this when examples are considered.
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The Taylor series for f ′(z)

When f(z) is analytic the derivatives are also analytic and we can consider the Taylor
series for these as well. The Taylor series for f ′(z) about z0 is obtained by just replacing
f by f ′ giving

f ′(z) = f ′(z0) + f ′′(z0)(z − z0) +
f ′′′(z0)

2!
(z − z0)2 + · · ·

and as f ′(z) is analytic in the same domain as f(z) it follows that the series also converges
uniformly in {z : |z − z0| ≤ R′} for all R′ < R. Note that this series is exactly the same
as what is obtained by differentiating the series for f(z) term-by-term. That is we can
get the series for f ′, f ′′, . . . by term-by-term differentiation and we can also get the series
for the anti-derivative by integrating term-by-term.

The Maclaurin series for even and odd functions

When z0 = 0 the Taylor series is known as the Maclaurin series and we have

f(z) =
∞∑
n=0

f (n)(0)

n!
zn with

f (n)(0)

n!
=

1

2πrn

∫ π

−π
f(reit) e−int dt,

where we can take any value of r > 0 such that f(z) is analytic in the domain containing
the disk {z : |z| ≤ r}. We give some examples shortly and in a few of these we have
functions which are odd functions or even functions and thus we first prove why we only
have odd or even powers in these cases. To do this we consider the part (−π, 0) of (−π, π)
and let s = t+ π so that t = s− π. With this substitution

eit = ei(s−π) = −eis, e−int = (−1)ne−ins,

so that ∫ 0

−π
f(reit) e−int dt = (−1)n

∫ π

0

f(−reis) e−ins ds

giving
f (n)(0)

n!
=

1

2πrn

∫ π

0

(
f(reit) + (−1)nf(−reit)

)
e−int dt.

If f(z) is even, i.e. f(−z) = f(z), then the integrand is 0 when n is odd. Thus there
cannot be any odd powers in the series of an even function, the series for an even function
can only involves even powers. Similarly, if f(z) is odd, i.e. f(−z) = −f(z), then the
integrand is 0 when n is even and and thus the series only involves odd powers.

The Taylor series for real valued functions

In practice we are often interested in analytic functions f(z) which are such that when
z = x ∈ R we have f(x) ∈ R, i.e. the value is real when the argument is real. In these
cases all the coefficients in the Taylor series about a point z0 = x0 ∈ R are also real. This
follows almost immediately by letting f = u+ iv, with as usual u and v being real valued,
and noting that f(z) being real on the real axis implies that for all x

v(x, 0) = 0 implying that
∂n

∂xn
v(x, 0) = 0, n = 0, 1, 2, . . .
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The analyticity of f(z) means that we get the value of the derivative by differentiating in
any direction and thus if we differentiate in the x-direction then we get

f (n)(x0) =
∂n

∂xn
u(x, 0) + i

∂n

∂xn
v(x, 0) =

∂n

∂xn
u(x, 0).

Related to this remark that real valued functions have real coefficients when we expand
about a point on the real axis we consider again something that was done in chapter 3
when analytic functions were first defined. It was stated that if f(z) is analytic and not
a constant then g(z) = f(z) is not analytic. However it can be quite quickly shown from
the definition that if we define

h(z) = g(z) = f(z) (7.4.2)

then h(z) is analytic. For a general function f(z) analytic in a disk |z| < R with the
Maclaurin series

f(z) = a0 + a1z + a2z
2 + · · ·+ a+ nzn + · · ·

it follows that
f(z) = a0 + a1z + a2z

2 + · · ·+ anz
n + · · ·

and
h(z) = a0 + a1z + a2z

2 + · · ·+ anz
n + · · · .

The coefficients in the Maclaurin expansion of h(z) are the complex conjugate of the
coefficients of the Maclaurin series for f(z). When all the coefficients are real we have

f(z) = f(z).

This was mentioned on a exercise sheet when f(z) is a polynomial with real coefficients
and this now shows that it is true more generally.

Combining functions

We consider now some elementary operations that can be done with Taylor series. Firstly,
if we have the Taylor series for f(z) about z0 and we consider the function

h(z) = c f(z), where c is a constant,

then
h(n)(z0) = c f (n)(z0)

which tells us that we get the Taylor series for h(z) by just multiplying each term by the
constant c. Similarly, if g(z) is another function analytic at z0 and we now define

h(z) = f(z) + g(z)

then we can add the series for f(z) and g(z) term-by-term as

h(n)(z0) = f (n)(z0) + g(n)(z0).
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Examples of entire functions

1. Let z = x+ iy and let

f(z) = ez = ex(cos y + i sin y).

With this as the definition of ez and with f = u + iv and that f(z) is analytic
everywhere we can get the derivative by just differentiating in the x direction so
that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex (cos y + i sin y) = ez.

All the derivatives are ez and they all have the value 1 when z = 0 and we have

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · · (7.4.3)

It is in this sense the exponential function which was defined using x and y can be
written as a function of z alone. As f(z) is an entire function it follows that the
series converges uniformly in every closed disk of the form {z : |z| ≤ R}.

2.

e−z = 1− z +
z2

2!
+ · · ·+ (−1)n

zn

n!
+ · · · (7.4.4)

which has been obtained by just replacing z by −z in (7.4.3).

3. Let f(z) = cos z. This is an even function and hence only even powers are involved.
If we differentiate 2 times then we get − cos z and this is sufficient to deduce that

f(0) = f (4)(0) = f (8)(0) = · · · = f (4k)(0) = 1,

f (2)(0) = f (6)(0) = f (10)(0) = · · · = f (2+4k)(0) = −1

and

cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · · (7.4.5)

4. Let f(z) = sin z. As f(0) = 0 and f ′(z) = cos z we can get the Taylor series for
this by just integrating (7.4.5) term-by-term to give

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

5. Let

f(z) = cosh z =
1

2

(
ez + e−z

)
.

This is an even function and we can get the series by adding (7.4.3) and (7.4.4)
term-by-term and then dividing by 2 to give

cosh z = 1 +
z2

2!
+
z4

4!
+
z6

6!
+ · · · (7.4.6)

The terms in the series are the even power terms in the ez series.
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6. Let

f(z) = sinh z =
1

2

(
ez − e−z

)
.

This is an odd function and it is the derivative of cosh z and hence we can get the
terms by differentiating (7.4.6) term-by-term to give

sinh z = z +
z3

3!
+
z5

5!
+
z7

7!
+ · · · (7.4.7)

The terms in the series are the odd power terms in the ez series.

In all of the above examples there are several techniques to get the Maclaurin series for
the function being considered.

Examples of functions which are not entire

1. Let

f(z) =
1

1− z
= 1 + z + z2 + · · · =

∞∑
n=0

zn, which is valid for |z| < 1. (7.4.8)

This is the geometric series and which of course is also the Maclaurin series of f(z).
This function has a simple pole at z = 1 and is analytic for |z| < 1 which is evident
by both considering the left hand side of (7.4.8) and by considering the convergence
of the series.

We can also expand about a point other than z0 = 0 and we consider next taking
z0 = −1.

Without using Taylor series we can get the series by first writing

1− z = (1− z0)− (z − z0) = 2− (z + 1) = 2

(
1−

(
z + 1

2

))
.

By using the geometric series approach we get

(1− z)−1 =
1

2

∞∑
n=0

(
z + 1

2

)n
, which is valid for

∣∣∣∣z + 1

2

∣∣∣∣ < 1.

The radius of this disk is 2 which is because this is the distance of the position of
the simple pole from the point z0 = −1.

If we instead derive this by successively differentiating f(z) then we have

f(z) = (1− z)−1,

f ′(z) = (1− z)−2,

f ′′(z) = 2(1− z)−3,

· · · · · ·
f (n)(z) = n!(1− z)−(n+1).

Hence
f (n)(−1) = n!2−(n+1)
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10-1

Figure 7.1: The circles of convergence when we expand about −1 and when we expand
about 0. The simple pole at z = 1 is on both circles.

in agreement with the result obtained by just using geometric series. We illustrate
the circles of convergence when we take z0 = −1 and when we take z0 = 0 in
figure 7.1.

2. As we have already stated, term-by-term differentiation is valid and hence differen-
tiating the series for (1− z)−1 term-by-term gives

1

(1− z)2 = 1 + 2z + 3z2 + · · ·+ nzn−1 + · · · , |z| < 1.

With an absolutely convergent series it is valid to multiply by z term-by-term to
deduce that

z

(1− z)2 = z + 2z2 + 3z3 + · · ·+ nzn + · · · , |z| < 1.

This function is known as the Koebe function and it appears when functions which
are analytic in the unit disk and normalised by f(0) = 0 and f ′(0) = 1 are consid-
ered. It can be shown that this function is one-to-one in the unit disk and in some
sense it is maximal in that if a function is of the form

z + a2z
2 + a3z

3 + · · ·+ anz
n + · · ·

is analytic in the unit disk and it is one-to-one in the disk then it can be shown that

|an| ≤ n.

This was proved by de Branges in about 1984/5 and which had previously been a
conjecture by Bierberbach in 1916. It is reported that de Branges’ first version of
the proof was 350 pages long. The difficult property to deal with when considering
functions of this type is that the function must be one-to-one in the unit disk.

3. Let
f(z) = Log (1− z)

where, as usual, Log denotes the principal valued logarithm. f(z) has a branch
point at z = 1 and as 1 − z is negative when z = x > 1 it follows that the branch
cut does not cross the unit disk |z| < 1. In the unit disk the derivative is

f ′(z) = − 1

1− z
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and as we have the series for this and as f(0) = Log 1 = 0 we can get the series for
f(z) by term-by-term integration to give

−Log (1− z) = z +
z2

2
+
z3

3
+ · · ·+ zn

n
+ · · · , which is valid for |z| < 1.

4. Let
f(z) = (1 + z)α, α 6∈ Z,

where we mean the principal valued version of this function, i.e.

f(z) = exp(αLog (1 + z)).

As in the previous example this is a function with a branch point which in this case
is at z = −1 and the branch cut is along z = x < −1. In the unit disk the function
is analytic and for the derivatives

f ′(z) = α(1 + z)α−1,

f ′′(z) = α(α− 1)(1 + z)α−2,

· · · · · ·
f (n)(z) = α(α− 1) · · · (α− n+ 1)(1 + z)α−n.

The Maclaurin series for this function is known as the generalised binomial series
and is

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 + · · ·+ α(α− 1) · · · (α− n+ 1)

n!
zn + · · ·

and is valid for |z| < 1.

Taylor series for a product of functions

Previously we noted that if we have the Taylor series for f(z) then we get the Taylor
series for cf(z), where c is a constant, by just multiplying each term by c. We also
had an example where we obtained the series for the Koebe function z/((1 − z)2) from
1/((1− z)2) by just multiplying each term by z. We can also deal with the more general
case of multiplying the series for f(z) and g(z) to get the Taylor series for h(z) = f(z)g(z)
as follows.

Suppose

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · · ,
g(z) = b0 + b1(z − z0) + b2(z − z0)2 + · · ·

then
h(z) = c0 + c1(z − z0) + c2(z − z0)2 + · · ·

where

c0 = a0b0,

c1 = a1b0 + a0b1,

c2 = a2b0 + a1b1 + a0b2,

· · · = · · ·
cn = anb0 + an−1b1 + · · ·+ a1bn−1 + a0bn.
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The series
∞∑
n=0

cn(z − z0)n, cn = anb0 + an−1b1 + · · ·+ a1bn−1 + a0bn (7.4.9)

is known as the Cauchy product of the two series. This can be shown to be valid by
considering the Taylor series for h(z) = f(z)g(z) and using the Leibnitz’s formula for the
nth derivative of a product.

h = fg,

h′ = f ′g + fg′,

h′′ = f ′′g + 2f ′g′ + fg′′,

· · · · · ·

h(n) =
n∑
k=0

(
n

k

)
f (k)g(n−k). (7.4.10)

Now

h(n)(z0) = n!cn, f (k)(z0) = k!ak, g(n−k)(z0) = (n− k)!bn−k, (7.4.11)(
n

k

)
=

n!

k!(n− k)!
. (7.4.12)

By using (7.4.10), (7.4.11) and (7.4.12) we verify (7.4.9).

The first few terms for tan z

We typically use the technique of multiplying two series together described above just
to get the first few terms as more and more work is needed for each further term in the
series. We illustrate this here to get the first few terms of the Maclaurin series of tan z.
Now let

f(z) = tan z =
sin z

cos z
. (7.4.13)

This function has simple poles at points where cos z = 0 and from this we deduce that
the Maclaurin series converges for |z| < π/2. As tan z is an odd function we know that
the Maclaurin series only involves odd powers and hence we have

tan z = b1z + b3z
3 + b5z

5 + · · · .

The aim here is to get b1, b3 and b5 without differentiating tan z but instead using the
known series for sin z and cos z and we use the result about the product of series by
re-writing (7.4.13) as

sin z = (cos z) (tan z) .

We substitute in the series to give(
z − z3

6
+

z5

120
+ · · ·

)
=

(
1− z2

2
+
z4

24
+ · · ·

)
(b1z + b3z

3 + b5z
5 + · · · ).

By equating the coefficients of the powers (which is basically the Cauchy product result)
we get the following.

– Taylor series and Laurent series– 7–15 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 7–16

Equating coefficient of z:
1 = b1.

Equating coefficient of z3:

−1

6
= b3 −

b1

2
= b3 −

1

2
, hence b3 =

1

2
− 1

6
=

1

3
.

Equating coefficient of z5:

1

120
= b5 −

b3

2
+
b1

24
, hence b5 =

1

6
− 1

24
+

1

120
=

16

120
=

2

15
.

Thus we have

tan z = z +
z

3
+

2z5

15
+ · · ·

If you continue this process to get the coefficients of z7 and z9 etc. then this gets messy
by hand calculation. For information, it can be shown that the coefficient of z7 is 17/315
and the coefficient of z9 is 62/2835.

The generalised L’Hopital’s rule

Earlier in the module L’Hopital’s rule was given to determine a limit of f(z)/g(z) as
z → z0 when f(z0) = g(z0) = 0 and g′(z0) 6= 0. We now use Taylor series to extend the
result to cases where f(z) and g(z) have a multiple zero at z0.

If
g(z0) = g′(z0) = · · · = g(m−1)(z0) = 0 and g(m)(z0) 6= 0

and if
f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0

then the first few terms of the Taylor series for f(z) and g(z) are 0 and near z0 we have

f(z) =
f (m)(z0)

m!
(z − z0)m +

f (m+1)(z0)

(m+ 1)!
(z − z0)m+1 + · · ·

g(z) =
g(m)(z0)

m!
(z − z0)m +

g(m+1)(z0)

(m+ 1)!
(z − z0)m+1 + · · · .

If z 6= z0 and we take out a factor of (z − z0)m/m! in both then for the ratio we have

f(z)

g(z)
=
f (m)(z0) + (f (m+1)(z0)/(m+ 1))(z − z0) + · · ·
g(m)(z0) + (g(m+1)(z0)/(m+ 1))(z − z0) + · · ·

→ f (m)(z0)

g(m)(z0)
as z → z0.

7.5 Power series

In the previous section we started with an analytic function f(z) and showed that it could
be represented by a Taylor series in a disk {z : |z − z0| < R} with R being as large as
possible such that f(z) is analytic in the disk. Thus in that section the sum of the series
was known, i.e. f(z), and we considered the validity and properties of the representation.
In this section we start with the reverse of this in that we are given a power series and
we want to know if a sum exists (i.e. if it converges), and if the sum exists does it define
an analytic function in some region.
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Definition 7.5.1 A series of the form

∞∑
n=0

an(z − z0)n

is called a power series and the terms a0, a1, . . . are the coefficients of the power series.

The definition gives no indication as to whether or not the series converges but note
that it trivially converges when z = z0 with a sum of a0. There are series which only
converge at the point z0 and you may have met the series

∞∑
n=0

n!zn, i.e. an = n! and z0 = 0,

and applied the ratio test using the terms involving zn and zn+1 to give

(n+ 1)!zn+1

n!zn
= (n+ 1)z

which remains bounded as n→∞ only when z = 0. From this we deduce that the series
only converges when z = 0.

The domain in which a power series converges is a disk and we justify this next
although rigorous proofs will not be given in all cases. First suppose that there exists a
point z1 6= z0 such that the series converges and let

r = |z1 − z0| > 0.

The convergence of the series implies that the terms tend to 0, i.e.

an(z1 − z0)n → 0 as n→∞

and in particular this implies that the sequence (an(z1 − z0)n) is bounded and we let

M = sup {|an|rn : n = 0, 1, 2, . . .} .

If we take any z in any disk of the form {z : |z − z0| ≤ r′ < r} then the terms in the
power series satisfy

|an(z − z0)n| =
∣∣∣∣anrn(z − z0

r

)n∣∣∣∣ ≤M

(
r′

r

)n
.

Now as r′/r < 1 the right hand side is a convergent geometric series and by the Weier-
strass M-test it follows that the power series converges uniformly for all z satisfying
|z − z0| ≤ r′ < r. Thus to summarise, this reasoning has shown that convergence at z1

means that the series must converge at all points closer to z0.
The previous argument started with the statement “suppose that there exists a point

z1 6= z0 such that . . .”. The existence of such a point depends on the coefficients a0, a1, . . ..
When the root test and/or the ratio test can be used and are such that

n
√
|an| → α ∈ R as n→∞
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then the root test applied to the power series gives

|an(z − z0)n|1/n → |α| |z − z0|

and we have convergence if
|α| |z − z0| < 1

and we have divergence if
|α| |z − z0| > 1.

When α = 0 we have convergence for all z but otherwise if we define

R =
1

α
=

1

lim
n→∞

|an|1/n

then we know that the series converges uniformly when |z − z0| ≤ r < R and it diverges
for |z − z0| > R. R is known as the radius of convergence and {z ∈ C : |z − z0| = R}
is known as the circle of convergence. In many situations the ratio test is easier to
use than the root test. If the sequence (an) is such that the ratio test can be used, i.e.
|an+1/an| → α as n → ∞ then it can be shown that |an|1/n → α and we get the same
outcome that the series converges when |z−z0| ≤ r < R and it diverges when |z−z0| > R.

In all the examples given in these notes the sequence a0, a1, . . . generating the series
are such that the ratio test and/or the root test can be applied. For a rigorous treatment
you also need to cope with the situation that the sequence (|an|1/n) is not a convergent
sequence. If this sequence is not bounded then we know that the series only converges at
z = z0 which was the case when an = n!. To cope with the remaining case when (|an|1/n)
is bounded but does not converge we can define

bn = sup
{
|am|1/m : m ≥ n

}
. (7.5.1)

As n increases the set being considered in (7.5.1) reduces and hence we conclude that
the sequences b0, b1, . . . is a decreasing sequence of non-negative numbers and by the
monotone convergence theorem it converges. There is a name and notation for this limit
which is

α = lim sup |an|1/n = lim
n→∞

sup
{
|am|1/m : m ≥ n

}
= lim

n→∞
bn.

This value α is the same as that described above when the sequence (|an|1/n) converges
and all that has been done here is to indicate that a decision about convergence can, in
theory, be made for any series. The outcome is that if we define

R =
1

lim sup |an|1/n

then the power series converges for |z − z0| < R and diverges for |z − z0| > R. The
understanding here is that if the sequence (|an|1/n) is unbounded then R = 0 and if the
denominator is 0 then R =∞. We summarise this in the following theorem.

Theorem 7.5.1 For any power series

∞∑
n=0

an(z − z0)n

there exists a real number R between 0 and ∞ inclusive which depends on the coefficients
a0, a1, . . . such that we have the following.
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(i) The series converges for |z − z0| < R.

(ii) The series converges uniformly in every closed subdisks |z − z0| ≤ R′ < R.

(iii) The series diverges for |z − z0| > R.

The radius R is called the radius of convergence of the power series.

If we truncate a power series then we have a polynomial and the result tells us that a
sequence of polynomials, which are analytic, converges uniformly in a disk of the form

{z : |z − z0| ≤ R′ < R} .

A sequence of analytic functions which converges uniformly gives us a limit function which
is analytic. Let f(z) denote the limit function, i.e.

f(z) =
∞∑
n=0

an(z − z0)n.

By using the generalised Cauchy integral formula applied to f with any loop Γ in the disk
and with z0 being inside the loop we have

f (m)(z0)

m!
=

1

2πi

∮
Γ

f(z)

(z − z0)m+1 dz

=
1

2πi

∮
Γ

∑∞
n=0 an(z − z0)n

(z − z0)m+1
dz

=
1

2πi

∞∑
n=0

an

∮
Γ

(z − z0)n

(z − z0)m+1 dz

= am,

where the interchange of the sum with the integral is valid because the sequence converges
uniformly and we get a non-zero value only when n = m in the last part. Hence the power
series that we started with is the Taylor series of the analytic function f(z) which is the
sum of the series.

Concluding remarks about the size of R

In section 7.4 we used the Cauchy integral formula for a given function f(z) to derive the
Taylor series representation

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

which, by construction, converges inside a disk which we write here as {z : |z − z0| < RT}
whenever f(z) is analytic inside this disk. The largest value for RT corresponds to a circle
which contains at least one point for which f(z) is not analytic. The result of this current
subsection about power series tell us us that the series cannot converge for |z − z0| > R
with

R =
1

lim sup |an|1/n
, where an =

f (n)(z0)

n!
.
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We must have RT = R. This follows by showing that if RT < R or if RT > R then we
get a contradiction. If RT < R then we know that the series defines an analytic function
inside the circle of convergence and in particular this would imply that the function is
analytic at all points on |z − z0| = RT < R which is in contradiction with f(z) being not
analytic somewhere on this circle. If RT > R then by the construction in section 7.4 we
have that the series converges at points satisfying RT > |z − z0| > R. But the theory of
this subsection tells us the terms in the series are unbounded when |z − z0| > R and the
series diverges which is our contradiction.

Examples

1. Consider

f(z) =
∞∑
n=1

zn

n
.

Here an = 1/n and the ratio test and the root test can both be applied. By using
the ratio test ∣∣∣∣an+1

an

∣∣∣∣ =
n

n+ 1
=

1

1 + 1/n
→ 1 as n→∞.

Hence the radius of convergence is R = 1. This is consistent with what was done
earlier as we showed that

−Log (1− z) =
∞∑
n=1

zn

n

and we know that −Log (1− z) is not analytic at z = 1.

We do not consider what happens on the circle of convergence but it is interesting
to note that in this particular case it can be shown that

−Log (1− eiθ) =
∞∑
n=1

einθ

n
, 0 < θ < 2π,

i.e. the series converges at all points on the unit circle except z = 1. You may have
considered this in a previous analysis module when θ = π and the point z = −1
and used the alternating series test.

2. Consider

f(z) =
∞∑
n=1

zn

n2 .

As before the ratio test can be used and we get∣∣∣∣an+1

an

∣∣∣∣ =

(
n

n+ 1

)2

→ 1 as n→∞

which tells us that the radius of convergence is again R = 1 and there must be at
least one point on |z| = 1 where the function is not analytic. (As before, not being
analytic is in the sense of the function being analytically continued to a larger region
by crossing part of the unit circle.) In this case the series does actually converge
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when |z| = 1. It is possible here to identify a point on |z| = 1 where f(z) is not
analytic as follows. Let g be a function such that g(0) = 1 and for z 6= 0

g(z) = −Log (1− z)

z
=
∞∑
n=1

zn−1

n
= 1 +

z

2
+
z2

3
+ · · · .

This function is analytic in the unit disk and the anti-derivative G(z) with G(0) = 0
has the series

G(z) = z +
z2

22 + · · ·+ zn

n2 + · · ·

which is our function f(z). If G(z) was analytic at z = 1 then this would imply
that g(z) = G′(z) is also analytic at z = 1 but g(z) has a branch point at z = 1.
Thus although f(1) is bounded the function is not analytic at z = 1 or to be more
precise we cannot analytically continue f to a function defined in a larger region
which contains z = 1. (Analytic continuation is not a topic to be covered as part of
this module and please note that if a function represented by a power series can be
analytically continued outside of the circle of convergence then the continuation is
not represented by the power series.)

7.6 Laurent series

Taylor series are concerned with series of the form
∞∑
n=0

an(z − z0)n

which represent analytic functions in a disk centred at z0, i.e. in a domain of the form
{z : |z − z0| < R}. In this section we consider representing functions which may have
isolated singularities by series of the form

∞∑
n=−∞

an(z − z0)n (7.6.1)

in an annulus of the form {z : r < |z − z0| < R}. As the series can have positive and
negative powers this allows for singularities on and inside the inner circle |z − z0| = r. A
series of the type (7.6.1) is known as a Laurent series and it reduces to a power series
when an = 0 for n < 0. When we have such a representation the part with non-negative
powers, i.e.

∞∑
n=0

an(z − z0)n

gives a function analytic inside the outer circle and the part with negative powers, i.e.

−1∑
n=−∞

an(z − z0)n =
∞∑
n=1

a−n
(z − z0)n

gives a function which is analytic outside of the inner circle.
Before we prove that a function which is analytic in an annulus must have a Laurent se-

ries representation we consider some examples of how we can construct the representation
in some specific cases.
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Examples

1. Let

f(z) =
1

1− z
.

This is a one-term Laurent series if we take z0 = 1.

If we take z0 = 0 then the geometric series is the Taylor series for |z| < 1 and we
have

f(z) =
1

1− z
= 1 + z + z2 + · · · =

∞∑
0

zn.

In the Laurent series terminology this is the Laurent series with r = 0 and R = 1
and as it is the Taylor series there are no negative powers.

We can use the above to get a series valid for |z| > 1 by letting w = 1/z, so that
z = 1/w, and letting

f(z) =
1

1− 1/w
=

w

w − 1
= −

(
w

1− w

)
= −w

(
1 + w + w2 + · · ·

)
= −

(
1

z
+

1

z2 +
1

z3 + · · ·
)

(7.6.2)

which is a Laurent series involving only negative powers. In the notation of Laurent
series r = 1 and R =∞. In this case we obtained the series for |z| > 1 by considering
the Maclaurin series for

g(w) =
w

w − 1
with w =

1

z
.

2. Let now

f(z) =
1

(1− z)(2− z)
.

We can use partial fractions to write this in the form

f(z) =
A

1− z
+

B

2− z
with 1 = A(2− z) +B(1− z) giving A = 1, B = −1,

i.e.

f(z) =
1

(1− z)(2− z)
=

1

1− z
− 1

2− z
.

f(z) has 2 simple poles and is analytic in the annulus {z : 1 < |z| < 2} and we can
represent the function in this domain by a Laurent series by combining the Taylor
series for −1/(2− z) valid for |z| < 2 with the Laurent series for 1/(1− z) valid for
|z| > 1 which was obtained in the previous example. We can get the Taylor series
for −1/(2− z) by using a geometric series by writing

2− z = 2
(

1− z

2

)
so that

(2− z)−1 =
1

2

(
1 +

z

2
+
(z

2

)2

+ · · ·
)
. (7.6.3)
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By combining (7.6.2) and (7.6.3) we get a Laurent series which is valid in 1 < |z| < 2
given by

f(z) = −1

2

(
1 +

z

2
+
(z

2

)2

+ · · ·
)
−
(

1

z
+

1

z2 +
1

z3 + · · ·
)
.

In this case r = 1 and R = 2 and we cannot take a smaller value for r due to the
simple pole at z = 1 and we cannot take a larger value for R due to the simple pole
at z = 2.

3. Let now

f(z) =
ez

z2 ,

which has a double pole at z = 0. If we consider an annulus centred at z0 = 0 then
by using the Maclaurin series of ez we get

f(z) =
1

z2

(
1 + z +

z2

2!
+ · · ·+ zn

n!
+ · · ·

)
=

1

z2 +
1

z
+

1

2!
+
z

3!
+ · · · .

This is a Laurent series with r = 0 and R =∞.

In all the examples presented the function being considered is analytic in an annulus
and the Laurent series was obtained using Taylor series of part of the term defining the
function. As we next show when we have a function which is analytic in an annulus a
Laurent series representation is always possible and it is unique and thus if any method
is used to generate such a series then it has found the series. Later we will be concerned
with the case when r = 0 with the function having an isolated singularity at z0 but note
that when r > 0, and no smaller value can be used, all we know is that if it is possible to
consider f(z) in |z − z0| ≤ r then it is not analytic somewhere in this region.

Theorem 7.6.1 Let f(z) be analytic in an annulus r < |z − z0| < R. Then f(z) can be
expressed in this annulus as the sum of two series

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n

with both series converging in the annulus and converging uniformly in any closed sub-
annulus r < ρ1 ≤ |z − z0| ≤ ρ2 < R. The coefficients an are given by

an =
1

2πi

∮
C

f(z)

(z − z0)n+1 dz, (7.6.4)

where C is any positively orientated simple closed curve lying in the annulus which has z0

as an interior point as illustrated below.
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z0 r R

C

Proof: The proof is similar to the proof of the Taylor series representation and starts by
representing f(z) using the Cauchy integral formula with the extra complexity being that
our domain is not simply connected and thus some care is needed in using this formula
with the choice of the loop Γ which surrounds the point z.

Take a point z satisfying r < ρ1 ≤ |z − z0| ≤ ρ2 < R and define

R1 =
r + ρ1

2
> r and R2 =

R + ρ2

2
< R.

In this way f(ζ) is analytic on both circles

C1 = {ζ : |ζ − z0| = R1} and C2 = {ζ : |ζ − z0| = R2}

and the point z is bounded away from any point on these circles. We will consider
contour integrals involving these circles and in these the direction of integration will be
anti-clockwise on the outer circle C2 and clockwise on the inner circle C1 as illustrated
below.

z0 C1 C2
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For our given point z we consider loops Γ and Γ′ as shown below which are each
composed of parts of C1 and C2 joined by radial lines.

z0

z

Γ z0

z

Γ′

With this set-up f(z) is analytic inside both Γ and Γ′ and we can use the Cauchy
integral formula and Cauchy’s theorem to deduce that

f(z) =
1

2πi

∮
Γ

f(ζ)

ζ − z
dζ (7.6.5)

and
1

2πi

∮
Γ′

f(ζ)

ζ − z
dζ = 0 (7.6.6)

as the integrand is analytic inside Γ′. Now the union of Γ and Γ′ includes all the points on
C1 and C2 (considered just once) and also all the points on the radial line segments. When
we consider contour integrals the direction of integration on the radial line segments in
the case of Γ is opposite to that of Γ′ and hence it follows that for any suitable integrand∮

Γ

· dζ +

∮
Γ′
· dζ =

∮
C1

· dζ +

∮
C2

· dζ

as the contributions from the radial line segments cancel. By using this result and (7.6.5)
and (7.6.6) we get the representation that we need in this proof which is

f(z) =
1

2πi

∮
C1

f(ζ)

ζ − z
dζ +

1

2πi

∮
C2

f(ζ)

ζ − z
dζ.

The term involving C2 defines a function which is analytic inside C2 and the term involving
C1 defines a function which is analytic outside C1 and we show next that both can be
represented by series.

The term involving C2 corresponds to what appeared in the Taylor series proof and
thus we have

1

2πi

∮
C2

f(ζ)

ζ − z
dζ =

∞∑
k=0

ak(z − z0)k, ak =
1

2πi

∮
C2

f(ζ)

(ζ − z0)k+1
dζ

with the series converging uniformly in |z − z0| ≤ ρ2.
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For the integral involving C1 we handle this by doing similar manipulations to that
involving C2 except that now we need to note that z is further from z0 than are points
ζ ∈ C1 and thus we now write

ζ − z = (ζ − z0)− (z − z0) = (z − z0)(β − 1) = −(z − z0)(1− β), where β =
ζ − z0

z − z0

.

For all ζ ∈ C1 and with |z − z0| ≥ ρ1 we have

|β| ≤ R1

ρ1

< 1.

As |β| < 1 we have, as in the Taylor series proof, that

1

ζ − z
=
−1

z − z0

(
1 + β + β2 + · · ·+ βn +

βn+1

1− β

)
.

As in the Taylor series proof we consider things term-by-term and consider

− 1

2πi

∮
C1

βk−1f(ζ)

z0 − z
dζ =

a−k

(z − z0)k
with a−k = − 1

2πi

∮
C1

f(ζ)(ζ − z0)k−1 dζ.

With a similar argument to what was used in the Taylor series proof it can be shown that

max
ρ1≤|z−z0|≤ρ2

∣∣∣∣∮
C1

βn+1

(z − z0)(1− β)
dζ

∣∣∣∣→ 0 as n→∞.

Putting everything together we have in the case of the circle C1 that

1

2πi

∮
C1

f(ζ)

ζ − z
dζ =

∞∑
k=1

a−k(z − z0)−k, a−k = − 1

2πi

∮
C1

f(ζ)(ζ − z0)k−1 dζ

with the series converging uniformly in |z − z0| ≥ ρ1.
The region where the terms involving C1 and C2 both converge uniformly is ρ1 ≤

|z − z0| ≤ ρ2. The only remaining thing to do in the proof is to explain why we can
change the contour in the coefficients to C in each case. In the case of C2 this is because
the integrand is analytic between and C2 and C and hence

an =
1

2πi

∮
C2

f(z)

(z − z0)n+1 dz =
1

2πi

∮
C

f(z)

(z − z0)n+1 dz.

In the case of C1 this is because the integrand is analytic between and C1 and C and for
both to correspond to the same direction we need to consider the contour −C1.

a−n = − 1

2πi

∮
C1

f(z)(z − z0)n−1 dz =
1

2πi

∮
C

f(z)(z − z0)n−1 dz.

�
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Further comments about the Laurent series

Uniqueness

A function analytic in an annulus centred at z0 hence has a Laurent series involving
positive and negative powers of z − z0. Conversely if we are given a Laurent series with
the part involving positive powers converging for |z − z0| < R and the one with negative
powers converging for |z − z0| > r and r < R then this can be shown to define a function
analytic in the annulus r < |z − z0| < R. We mention this as it follows that once z0 is
specified the Laurent series representation of a given function is unique as the coefficients
are given by (7.6.4) in the previous theorem. It is rare in practice to evaluate the integrals
to actually get the coefficients as other techniques are usually easier involving using Taylor
series for different parts of whatever expression is being considered.

Term-by-term differentiation

Recall again our representation in r < |z − z0| < R

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)−n

which we may write as

f(z) = f1(z) + f2(z), f1(z) =
∞∑
n=0

an(z − z0)n, f2(z) =
∞∑
n=1

a−n(z − z0)−n.

f1(z) is analytic in the disk {z : |z − z0| < R} and f2(z) is analytic in the outer region
{z : |z − z0| > r}. If we let

g2(z) =

{
f2(1/(z − z0)), 0 < |z − z0| < 1/r,

0, z = 0

then g2(z) is analytic in the disk {z : |z − z0| < 1/r} and has the series representation

g2(z) =
∞∑
n=1

a−n(z − z0)n.

Thus
f(z) = f1(z) + g2(1/(z − z0)).

In the case of power series and Taylor’s series we showed that it is valid to differentiate
term-by-term the series for f(z) to get the series for f ′(z), f ′′(z) etc.. It was the uniform
convergence of the series which enabled this. We can do the same here with

f ′(z) = f ′1(z)− 1

(z − z0)2 g
′
2(1/(z − z0)) =

∞∑
n=0

nan(z − z0)n−1 −
∞∑
n=1

nan

(z − z0)n+1 .
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Example

Let

f(z) =
1

ez − 1
, 0 < |z| < 2π.

The function has simple poles at points where ez = 1, i.e. at z = 0, ±2πi, ±4πi, . . . and
thus the annulus is between the pole at z = 0 and the poles at z = ±2πi. We consider
how to get the first 3 non-zero terms in the Laurent series. We can adapt the method
used to get the first few terms in the Maclaurin series of tan z to get the Maclaurin series
for f(z) as we have the relation

f(z) (ez − 1) = 1.

Thus if we let
f(z) =

c−1

z
+ c0 + c1z + · · ·

then

1 =

(
z +

z2

2
+
z3

6
+ · · ·

)(c−1

z
+ c0 + c1z + · · ·

)
.

Equating constant term.
1 = c−1.

Equating coefficient of z.

0 = c0 +
c−1

2
, c0 = −1

2
.

Equating coefficient of z2.

0 = c1 +
c0

2
+
c−1

6
, c1 =

1

4
− 1

6
=

1

12
.

7.7 Zeros and isolated singularities

When polynomials were considered at the start of chapter 4 about the elementary func-
tions there are only a finite number of terms to consider and we defined what is meant by
a zero of multiplicity m of a polynomial p(z) of degree n ≥ m and when partial fraction
were considered the knowledge of the multiplicity was needed in constructing a partial
fraction representation of 1/p(z). We now generalise what is meant by a zero of multi-
plicity m to any analytic function f(z) and classify isolated singularities which involve
negative powers as appeared in the Laurent series.

Definition 7.7.1 Let f(z) be a function analytic at z0. z0 is called a zero of multi-
plicity m if

f(z0) = f ′(z0) = · · · = f (m−1)(z0) = 0 and f (m)(z0) 6= 0.
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By considering the Taylor series of f(z) around z0 this implies that it is of the form

f(z) = (z − z0)m (am + am+1(z − z0) + · · · ) , am =
f (m)(z0)

m!
6= 0.

The function
g(z) = am + am+1(z − z0) + am+2(z − z0)2 + · · ·

has the same radius of convergence as the series for f(z) and is such that g(z0) = am 6= 0.
As g(z) is analytic and non-zero at z0 it follows by continuity that g(z) 6= 0 in some
neighbourhood |z − z0| < δ of z0. Thus since

f(z) = (z − z0)mg(z) (7.7.1)

it follows that f(z) is non-zero in 0 < |z − z0| < δ. Hence when we have an analytic
function f(z) with f(z0) = 0 then either all the derivatives of f(z) are zero at z0 and
f(z) = 0 everywhere or f(z) is of the form (7.7.1) and has no other zero in a neighbourhood
of z0, i.e. the zero at z0 is isolated. Although it was not stated when it was described
but this is what we had when the generalised L’Hopital rule was described.

As another case where the the result that analytic functions which are not identically
zero can only have isolated singularities consider again (7.4.2) where we had that f(z)
being analytic implied that f(z) is also analytic. When f is such that f(x) ∈ R when
x ∈ R it follows that the difference f(z) − f(z) is zero on the real axis from which we
deduce that the difference must be zero for all z where f(z) is defined.

We now consider isolated singularities. If we have a function f(z) which is analytic in
a domain such as 0 < |z − z0| < R but which is not analytic at z0 then we say that f(z)
has an isolated singularity at z0. The theory of the previous section implies that such a
function has a representation of the form

f(z) =
∞∑

n=−∞

an(z − z0)n, 0 < |z − z0| < R (7.7.2)

and we classify the type of singularity by the coefficients which appear in this Laurent
series.

Definition 7.7.2 With the conditions which lead to (7.7.2) we have the following terms.

1. If an = 0 for all n < 0 then f(z) has a removable singularity at z0.

2. Suppose m ≥ 1. If a−m 6= 0 and an = 0 for all n < −m then we have a pole of
order m at z0.

3. If an 6= 0 for an infinite number of negative index values n then f(z) has an essen-
tial singularity at z0.

Examples

1. Let

f(z) = exp

(
1

z

)
= 1 +

(
1

z

)
+

(
1

2

) (
1

z2

)
+ · · ·+

(
1

n!

) (
1

zn

)
+ · · ·

This has an essential singularity at z = 0.
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2. Let

f(z) =
sin z

z
.

As specified here this it is not defined at z = 0 but we know that

sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

from which it follows that for z 6= 0

sin z

z
= 1− z2

3!
+
z4

5!
− z6

7!
+ · · · .

The Laurent series has no negative powers and hence f(z) has a removable singu-
larity at z = 0.

To show that f(z) has a removable singularity at z0 it is sufficient to show that there
is a finite limit as z → z0 as in this example. If we then define f(z0) to correspond
to the limiting value then we get a function which is analytic at z0. That is, if we
define

g(z) =

{
sin z
z , z 6= 0,

1, when z = 0,

then we have a function with the Maclaurin series

g(z) = 1− z2

3!
+
z4

5!
− z6

7!
+ · · ·

and this is analytic everywhere, i.e. an entire function.

A few more points about zeros, poles and essential singularities

1. If f(z) has a pole of order m ≥ 1 at z0 then from the Laurent series representation

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1 + · · · , 0 < |z − z0| < R

and the function

g(z) = (z − z0)mf(z) =
∞∑
n=0

a−m+n(z − z0)n, 0 < |z − z0| < R

has a removable singularity at z0 and if we define g(z0) = a−m then we have an
analytic function. Thus a function with a pole of order m can always be represented
in the form

f(z) =
g(z)

(z − z0)m

where g(z0) 6= 0 and g(z) is analytic in a neighbourhood of z0,

2. If f(z) has a zero of multiplicity m ≥ 1 at z0 then 1/f(z) has a pole of order m
at z0.
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3. If f(z) has a pole of orderm ≥ 1 at z0 then g(z) = 1/f(z) has a zero of multiplicitym
at z0 provided we define g(z0) = 0.

4. As already stated, if f(z) is analytic in 0 < |z − z0| < R and there is a finite limit
of f(z) as z → z0 then f(z) has a removable singularity at z0 and we can define, or
re-define, f(z0) to give us an analytic function. In the case of a pole of order m at
z0 we can similarly do this by multiplying by (z − z0)m and in particular this tells
us that |f(z)| tends to ∞ as z gets closer and closer to z0 along any path.

The situation with essential singularities is more complicated as is illustrated by
considering exp(1/z). If we let z = reiθ then

1

z
=

1

r
(cos θ − i sin θ)

and as
exp(x+ iy) = exp(x)(cos y + i sin y)

we have

exp

(
1

z

)
= exp

(
cos θ

r

)(
cos

(
sin θ

r

)
− i sin

(
sin θ

r

))
.

If we consider the behaviour as r → 0 with θ being constant then we get ∞ if
cos θ > 0, we get 0 if cos θ < 0 and we have that the magnitude remains at 1 if
cos θ = 0.
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Chapter 8

Residue theory

8.1 Introduction

In this chapter we return to the problem of evaluating integrals of the form∮
Γ

f(z) dz (8.1.1)

where f(z) is a simple closed positively orientated contour and where now f(z) can be
any function which is analytic on Γ and inside Γ except for a finite number of isolated
singularities. In this case we show that the value of the integral can be expressed in
terms of the residues of f(z) inside Γ and we then use this result to help evaluate certain
real integrals. The theory also enables us to estimate the location of zeros of analytic
functions.

8.2 A recap of previous material on integrals involv-

ing loops

We start by recapping previous material on integrals of the type (8.1.1) inorder to indicate
what is new in this chapter and specifically we note the following.

1. If f has an anti-derivative which is continuous in a region containing Γ then∮
Γ

f(z) dz = 0.

This was covered on page 5-12 and takes care of powers zn for all integers n except
n = −1.

2. If f(z) is analytic on and inside Γ, i.e. we have no isolated singularities, then∮
Γ

f(z) dz = 0

by the Cauchy-Goursat theorem which was covered at the end of chapter 5.
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3. If the integrand is of the form

f(z) =
g(z)

(z − z0)m+1 ,

where m is an integer and where g(z) is analytic on and inside Γ, then∮
Γ

f(z) dz =

∮
Γ

g(z)

(z − z0)m+1 dz = 2πi
g(m)(z0)

m!

by the generalised Cauchy integral formula. This was done at the start of chapter 6.
This result hence deals with the case of one specific isolated singularity at z = z0

inside Γ.

4. An extension of the previous case was to the case when f(z) was of the form

f(z) =
g(z)

Q(z)

where Q(z) is any polynomial as we can always express Q(z) in a factored form and
represent 1/Q(z) in partial fraction form. For example, if Q(z) = (z−z1) · · · (z−zn)
with z1, . . . , zn being distinct then

1

Q(z)
=

n∑
k=1

Ak
z − zk

, Ak = lim
z→zk

z − zk
Q(z)

=
1

Q′(zk)

and
g(z)

Q(z)
=

n∑
k=1

(
1

Q′(zk)

)
g(z)

z − zk

so that∮
Γ

f(z) dz =
n∑
k=1

(
1

Q′(zk)

)∮
Γ

g(z)

z − zk
dz = 2πi

m∑
k=1

g(zk)

Q′(zk)
= 2πi

m∑
k=1

Res(f, zk),

where z1, . . . , zm are the points which are inside Γ. Polynomials Q(z) with multiple
roots can also be dealt with in a similar way with the details being slightly longer
and with the value also depending on derivatives of g(z) at the roots of Q(z).

The extension in this chapter to what has already been done is that f(z) can now have
any isolated singularity, i.e. we are no longer restricted to cases where the singularity
arises by dividing by polynomials, and the tool that enables us to handle any isolated
singularity is the knowledge of the existence of a Laurent series in the vicinity of each
isolated singularity and recall that Laurent series was considered in section 7.6.

8.3 The residue theorem

Before the general case of a finite number of isolated singularities is covered we consider
first the case when there is just one isolated singularity at a point z0 inside the loop Γ.
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As f(z) is analytic inside Γ except at the point z0 it follows that there is a region of the
form

0 < |z − z0| < r

in which f(z) has a Laurent series

f(z) =
∞∑
−∞

an(z − z0)n

with the series converging uniformly in a region 0 < |z − z0| ≤ r′ < r. Let C denote the
circle {z : |z − z0| = ρ}, ρ < r′, and note that f(z) is analytic between C and Γ which
enables us to write∮

Γ

f(z) dz =

∮
C

f(z) dz =
∞∑

n=−∞

∮
C

an(z − z0)n dz = 2πia−1.

The value just depends on one of the coefficients in the Laurent series and there is a name
and notation associated with this.

Definition 8.3.1 If f(z) has an isolated singularity at z0 then the coefficient a−1 of
1/(z − z0) in the Laurent series of f(z) around z0 is called the residue of f at z0 and
is denoted by Res(f, z0).

Thus with this notation we have∮
Γ

f(z) dz = 2πiRes(f, z0).

When the function f being considered is clear we sometimes shorten Res(f, z0) to just
Res(z0).

As a final point before the case of more than one isolated singularity is considered,
recall the reasoning which enables us to replace Γ by C (which was given on page 5-19)
as we generalise this in a moment. With reference to the figure 8.1 given on page 8-4 the
doubly connected region between Γ and the circle C is divided into two simply connected
regions each of which are bounded by parts of Γ and C and straight lines joining the two
curves as in the figure. As f(z) is analytic inside the loop containing the upper part and
it is also analytic inside the loop containing the lower part the Cauchy theorem tells us
that these loop integrals of f(z) are 0 and when we consider the union of the two contours
the contributions from the straight line segments cancel and we get all of Γ and all of the
circle C. Thus with reference to the labelling in the diagram we have∫

Γup

f(z) dz +

∫
Γlow

f(z) dz −
∫
Cup

f(z) dz −
∫
Clow

f(z) dz = 0

which leads to the result. One way of interpreting the result is that Γ ∪ (−C) is the
boundary of the region in which f(z) is analytic and thus the integral around the entire
boundary is 0.

If we now have n isolated singularities inside Γ at points z1, . . . , zn then as these points
are isolated it is possible to construct circles C1, . . . , Cn of sufficiently small radius so that
the circles do not intersect and if each of the circles is considered in the anti-clockwise
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Γup

Γlow

−Cup

−Clow

Upper part

Lower part

Figure 8.1: The doubly connected region between the inner curve C and the outer curve
Γ is divided into two simply connected regions. The boundary of these lower and upper
regions gives us two loops and we can use the Cauchy theorem with each loop.

sense then Γ ∪ (−C1) ∪ · · · ∪ (−Cn) bounds a multi-connected region in which f(z) is
analytic. Here it is assumed that zk is the centre of the circle Ck. A set-up of this type
is illustrated in the top left plot in figure 8.2 on page 8-6 in the case n = 4. It is always
possible to divide the the multi-connected region into two parts by joining the n circles in
some way and with connecting to the outer boundary Γ and this is illustrated in the top
right plot in figure 8.2. From the division of the multi-connected region into two simply
connected regions we can consider the integrals involving the boundary of the simply
connected regions and this is illustrated in the bottom two plots of figure 8.2. Observe
that part of Γ is part of the boundary of one of regions and the other part is part of the
boundary of the other region. We have a similar situation with the circles with part of a
circle being part of the boundary of one of the regions and the other part is part of the
boundary of the other region. In each case the direction of integration on the circles is
in the clockwise sense. In the case of the straight line segments which join the different
parts, we have one direction for one of the regions and the opposite direction for the other
region. As we account for all of Γ and all of the n circles, Cauchy’s theorem applied to
both regions leads to∮

Γ∪(−C1)∪···∪(−Cn)

f(z) dz =

∮
Γ

f(z) dz +
n∑
k=1

∮
−Ck

f(z) dz = 0
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and this re-arranges to ∮
Γ

f(z) dz =
n∑
k=1

∮
Ck

f(z) dz

with all integrals being in the anticlockwise sense. As there is just one isolated singularity
inside Ck we have, as before, ∮

Ck

f(z) dz = 2πiRes(f, zk).

and we have established the Cauchy Residue Theorem which we state below.

Theorem 8.3.1 If Γ is a simple closed positively orientated contour and f is analytic
inside and on Γ except at points z1, . . . , zn inside Γ, then∮

Γ

f(z) dz = 2πi
n∑
k=1

Res(f, zk).

Example

Let C = {z : |z| = 2π} with the circle traversed once in the anti-clockwise sense and
consider ∮

C

tan z dz.

To help with the description let

f(z) = tan z =
sin z

cos z
.

The singularities of tan z are at the points where cos z = 0 and such points which satisfy
|z| < 2π are ±π/2 and ±3π/2. By the residue theorem we thus have∮

C

tan z dz = 2πi (Res(f, −3π/2) + Res(f, −π/2) + Res(f, π/2) + Res(f, 3π/2)) .

To determine the residues note that cos z only has simple zeros and hence tan z only has
simple poles and the Laurent series about z = π/2 is of the form

tan z =
a−1

z − π/2
+ a0 + a1(z − π/2) + · · ·

so that
(z − π/2) tan z = a−1 + a0(z − π/2) + · · ·+ a1(z − π/2)2 + · · ·

and we can get the residue by taking the limit in the right hand side as z → π/2. In this
case

Res(f, π/2) = lim
z→π/2

(z − π/2) sin z

cos z

=

(
lim
z→π/2

sin z

)(
lim
z→π/2

(z − π/2)

cos z

)
=

sin(π/2)

− sin(π/2)
= −1.
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Figure 8.2: A contour containing 4 isolated singularities (top left). Lines joining the
singular points and the boundary are added to divide the region into two part (top right).
The contour for the top part (bottom left) and the contour for the bottom part (bottom
right).
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The same working is involved with all the residues and we have

Res(f, −3π/2) = Res(f, −π/2) = Res(f, π/2) = Res(f, 3π/2) = −1

so that ∮
C

tan z dz = 2πi (−1− 1− 1− 1) = −8πi.

A technique for determining the residue when we have a pole of
order m

To use the Cauchy Residue theorem we need to be able to obtain the residue at each point
inside Γ at which f(z) has an isolated singularity and as the previous example illustrated
it is not usually necessary to first obtain the entire Laurent series expansion. All we need
is knowledge of the existence of the Laurent expansion and a technique for determining
a−1 and in the case of a pole at z0 of order m this can be done as follows.

As we know that f(z) has a pole of order m at z0 we know that the Laurent series
close to z0 is of the form

f(z) =
a−m

(z − z0)m
+

a−m+1

(z − z0)m−1 + · · ·+ a−1

(z − z0)
+ a0 + a1(z − z0) + · · ·

To get a function which is finite as z → z0 we multiply by (z − z0)m giving

(z − z0)mf(z) = a−m + a−m+1(z − z0) + · · ·+ a−1(z − z0)m−1 + a0(z − z0)m + · · · .

If we differentiate m− 1 times then the part before a−1 disappears and we have

dm−1

dzm−1 ((z − z0)mf(z)) = (m− 1)!a−1 +m!a0(z − z0) + · · ·

and if we take the limit as z → z0 this leads to an expression for a−1. Thus if m = 1 no
differentiation is needed and we have

a−1 = lim
z→z0

(z − z0)f(z)

and when m ≥ 2 we have

a−1 =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1 ((z − z0)mf(z)) .

8.4 Trigonometric integrals over [0, 2π] — using the

the unit circle

This section is short as we have already considered integrals of this type in section 5.6.1.
We just restrict the details here to the integrals involved and the technique used. The
integrands contain cos θ and sin θ over a 2π-range and the integrals are of the form∫ 2π

0

R(cos θ, sin θ) dθ
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where R(cos θ, sin θ) is a rational function of cos θ and sin θ.
The technique to determine each of these is by using the substitution

z = eiθ, and note that
dz

dθ
= ieiθ = iz,

dθ

dz
=

1

iz
,

and as θ varies from 0 to 2π this corresponds to z traversing the unit circle once in the
anti-clockwise direction. In terms of z we have

cos θ =
1

2

(
eiθ + e−iθ

)
=

1

2

(
z +

1

z

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
=

1

2i

(
z − 1

z

)
.

Let C denote the unit circle. In the general case this gives∫ 2π

0

R(cos θ, sin θ) dθ =

∮
C

R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
dz

iz
.

Let

F (z) =
1

z
R

(
1

2

(
z +

1

z

)
,

1

2i

(
z − 1

z

))
.

As R(., .) is a rational function of its arguments it follows that F (z) is a rational function
of z and hence F (z) has isolated singularities which are pole singularities. If the poles of
F (z) which are inside the unit circle are at z1, z2, . . . , zm then by the Residue theorem∫ 2π

0

R(cos θ, sin θ) dθ =

∮
C

1

i
F (z) dz = 2π

m∑
k=1

Res(F, zk).

8.5
∫∞
−∞ f (x) dx integrals — using a half circle

We now consider using the Residue theorem to help in evaluating certain real integrals of
the type ∫ ∞

−∞
f(x) dx. (8.5.1)

Before the technique is described we need to first indicate what an integral with infinite
limits means. In the case that the upper limit only is infinite and a ∈ R we define∫ ∞

a

f(x) dx := lim
b→∞

∫ b

a

f(x) dx (8.5.2)

and in the case that the lower limit only is infinite (i.e. −∞) we define∫ a

−∞
f(x) dx := lim

c→−∞

∫ a

c

f(x) dx (8.5.3)

provided the limit exists in each case. When both limits exist we define∫ ∞
−∞

f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx. (8.5.4)

Thus when the usual integral notation is used the integral in (8.5.1) exists when two
different limits exist.

– Residue theory, real integrals and zeros of equations– 8–8 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 8–9

Sometimes the meaning of (8.5.1) is extended to deal with situations in which the
limit in (8.5.2) and the limit in (8.5.3) do not exist but that

lim
ρ→∞

∫ ρ

−ρ
f(x) dx

does exist. When this limit exists we write

p.v.

∫ ∞
−∞

f(x) dx = lim
ρ→∞

∫ ρ

−ρ
f(x) dx

and the value is called the Cauchy principal value of the integral of f over (−∞,∞).
When (8.5.2) and (8.5.3) both exist the Cauchy principal value is the same as the
value (8.5.4). In the examples considered in this section the function f(x) being consid-
ered is always such that the value (8.5.4) exists and we do not need the Cauchy principal
value notation here although you do sometimes see this in books even when it is not
strictly needed. The Cauchy principal value notation is needed later in section 8.7 when
we deal with integrands which are infinite at certain finite points on the contour being
considered.

We illustrate the technique of using the Residue theorem to evaluate integrals of this
type with some examples and then summarize the procedure.

1. Determine

I =

∫ ∞
−∞

dx

x2 + 2x+ 2
.

To start let

f(z) =
1

z2 + 2z + 2
=

1

(z + 1)2 + 1

and observe that this has simple poles at the points

z1 = −1 + i and z2 = z1 = −1− i.

To use the Residue theorem we need a closed loop and for this to help in determining
the value I we need part of the loop to be part of the real axis. A convenient choice
for such a loop is to consider a half circle in the upper half plane and specifically we
choose to take a half circle C+

R in the upper half plane in the anti-clockwise sense
joined to the interval [−R,R] as illustrated in the diagram and we let ΓR denote
the closed loop. In the diagram R >

√
2 so that z1 is inside the loop with z2 always

being outside of the loop.
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x

y

−R 0 R

C+
R

z1 = −1 + i

z2 = −1− i

By the Residue theorem we have∮
ΓR

f(z) dz = 2πiRes(f, z1).

We only have a simple pole and the residue is given by

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

z2 + 2z + 2
=

1

2z1 + 2
=

1

2i
.

Hence for R >
√

2 we have ∮
ΓR

f(z) dz = π.

To use this to determine I note that as ΓR = [−R,R] ∪ C+
R we have∮

ΓR

f(z) dz =

∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz. (8.5.5)

Now on C+
R the integrand is “small” in magnitude when R is large but the length

of the half circle is πR and the length increases with R and for the integral to tend
to 0 as R → ∞ we need the integrand to tend to 0 sufficiently fast. This can be
established quite easily in this case as the denominator is dominated by the z2 term
when R is large so that for z ∈ C+

R the triangle inequality gives

|2z + 2| ≤ 2R + 2 and |z2 + 2z + 2| ≥ |z2| − |2z + 2| ≥ R2 − (2R + 2)

and hence

|f(z)| ≤ 1

R2 − 2R− 2
.

Thus ∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ (length of C+
R )(bound on |f(z)|)

=
πR

R2 − 2R− 2
→ 0 as R→∞.
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Thus by taking the limit as R→∞ in (8.5.5) we get∫ ∞
−∞

f(x) dx = π.

As some comments on this example, note that in the justification that the contribu-
tion from the part involving C+

R tends to 0 as R→∞ we can take R to be as large as
we want when using the triangle inequality and we do not need to get the sharpest
possible inequalities as we only interested in showing that the term tends to 0 as
R→∞. This particular example can of course be evaluated using techniques that
you have met before year 3 as

x2 + 2x+ 2 = (x+ 1)2 + 1

and if we make the substitution

x = −1 + tan θ

then the limits on θ are −π/2 to π/2 and

(x+ 1)2 + 1 = 1 + tan2 θ = sec2 θ and
dx

dθ
= sec2 θ

so that

I =

∫ ∞
−∞

dx

x2 + 2x+ 2
=

∫ π/2

−π/2
dθ = π.

2. Determine

I =

∫ ∞
0

dx

x4 + 16
.

Let

f(z) =
1

z4 + 16
.

As this function f(z) is even we have

I =
1

2

∫ ∞
−∞

dx

x4 + 16
.

and thus we can evaluate the integral by considering the integral on (−∞,∞).

There are 4 solutions to
z4 = −16 = 24eiπ

and two of the solutions are in the upper half and are given by

z1 = 2eiπ/4 =
√

2(1 + i), z2 = 2e3iπ/4 =
√

2(−1 + i).

The function f(z) has simple poles at these points. Let R > 0. With C+
R denoting

the upper half circle and with ΓR = [−R,R] ∪ C+
R being a loop we need R > 2 for

the 2 points to be inside the loop. By the residue theorem∮
ΓR

f(z) dz = 2πi (Res(f, z1) + Res(f, z2)) .

– Residue theory, real integrals and zeros of equations– 8–11 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 8–12

For the residues we have

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

z4 + 16
=

1

4z3
1

=
z1

4z4
1

= − z1

64
.

Similarly

Res(f, z2) = lim
z→z2

(z − z2)f(z) = lim
z→z2

z − z2

z4 + 16
=

1

4z3
2

=
z2

4z4
2

= − z2

64
.

Hence the loop integral value is∮
ΓR

f(z) dz = 2πi

(
−(z1 + z2)

64

)
= 2π

(
2
√

2

64

)
=
π
√

2

16
.

To use this to determine I note that as ΓR = [−R,R] ∪ C+
R we have∮

ΓR

f(z) dz =

∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz.

When z ∈ C+
R we have |z| = R and |z4 + 16| ≥ R4 − 16 so that

|f(z)| ≤ 1

R4 − 16
.

Thus ∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ (length of C+
R )(bound on |f(z)|)

=
πR

R4 − 1
→ 0 as R→∞.

Thus by taking the limit as R→∞ in the relation relating the loop integral to the
contributions from [−R,R] and C+

R we have∫ ∞
−∞

f(x) dx =
π
√

2

16

and

I =

∫ ∞
0

f(x) dx =
π
√

2

32
.

The general technique for this type of integral

As the examples have illustrated, we take a half circle C+
R and a closed loop

ΓR = [−R,R] ∪ C+
R

and we have a function f(x) with no singularities on the real line. If f(z) has isolated
singularities at points z1, . . . , zm in the upper half plane then these are inside the loop ΓR
when R is sufficiently large and by the Residue theorem we have∮

ΓR

f(z) dz =

∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz = 2πi
m∑
k=1

Res(f, zk).
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Provided f(z) is such that ∫
C+
R

f(z) dz → 0 as R→∞ (8.5.6)

we get ∫ ∞
−∞

f(x) dx = 2πi
m∑
k=1

Res(f, zk).

We consider now a sufficient condition on f(z) for (8.5.6) to be true and suppose that
M(R) is such that |f(z)| ≤M(R) for |z| = R. Then as πR is the length of C+

R we have∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πRM(R)

and we have the required outcome if RM(R) → 0 as R → ∞. Suppose that f(z) is a
rational function of the form

f(z) =
P (z)

Q(z)
, with P (z) = apz

p + · · ·+ a1z + a0, Q(z) = bqz
q + · · ·+ b1z + b0

and with ap 6= 0, bq 6= 0. If we divide the numerator and denominator by the highest
power of z in each case then we have

f(z) =
zp

zq

(
ap + ap−1/z + · · · a0/(z

p)

bq + bq−1/z + · · ·+ b0/(z
q)

)
= zp−q

(
ap + ap−1/z + · · · a0/(z

p)

bq + bq−1/z + · · ·+ b0/(z
q)

)
so that

zq−pf(z)→ ap
bq

as |z| → ∞.

This tells us the behaviour of |f(z)| as |z| → ∞. When |z| = R is sufficiently large there
exists M(R) such that

Rq−pM(R) ≤ 2

∣∣∣∣apbq
∣∣∣∣ and hence RM(R) ≤ 2

∣∣∣∣apbq
∣∣∣∣ 1

Rq−p−1 . (8.5.7)

As the degrees p and q are integers the bound on the right hand side of (8.5.7) tends to
0 as R→∞ provided

q − p− 1 ≥ 1, giving q ≥ p+ 2.

In the examples this condition was satisfied with p = 0 and q = 2 when

f(z) =
1

z2 + 2z + 2

and with p = 0 and q = 4 when

f(z) =
1

z4 + 16
.
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8.6
∫∞
−∞ f (x) cos mx dx and

∫∞
−∞ f (x) sin mx dx, integrals

— using half circles in the upper and lower half

planes

We now consider evaluating integrals of the form∫ ∞
−∞

f(x) cos(mx) dx and

∫ ∞
−∞

f(x) sin(mx) dx,

where m is real and f(x) is a real valued rational function, i.e. f(x) = P (x)/Q(x) where
P (x) and Q(x) are polynomials with real coefficients and we assume that Q(x) does not
have a zero on the real line. With such integrals the integrand is now of the form

g(x) = f(x) cos(mx) or g(x) = f(x) sin(mx)

and as we will see the oscillation of the integrand leads to the integrals existing when
deg(Q) ≥ deg(P ) + 1. We can consider similar techniques to section 8.5 but adjustments
are needed as to what we take for g(z) and we will now use half circles in the upper half
plane and the lower half plane, in the most general case, depending on the integrand being
considered which we next discuss.

The previous section suggests that we consider

g(z) = f(z) cos(mz) or g(z) = f(z) sin(mz) (8.6.1)

but this does not help in this case as

cos(mz) =
1

2

(
eimz + e−imz

)
and sin(mz) =

1

2i

(
eimz − e−imz

)
and each of the terms eimz and e−imz is bounded in one of the half planes and unbounded
in the other half plane. Thus if we take g(z) as just given then it is unbounded on a half
circle in the upper half plane and also on a half circle in the lower half plane. Having
determined why (8.6.1) does not help we now instead consider separately the cases

g(z) = f(z)eimz or g(z) = f(z)e−imz

and we later combine the results to get the integral we want to evaluate. With z = x+ iy
and with m > 0 we have

eimz = e−myeimx and e−imz = emye−imx.

When we consider half circles we need to take the upper half circle C+
R in the case of eimz

and we need to take the lower half circle C−R in the case of e−imz so that the exponential
term has magnitude e−|my| ≤ 1 on the half circle being used. We show below the two
half circles to consider and we let now Γ+

R denote the closed half circle in the upper half
plane, which is in the anti-clockwise direction, and let Γ−R denote the closed half circle in
the lower half plane, which is in the clockwise direction.

– Residue theory, real integrals and zeros of equations– 8–14 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 8–15

x

y

−R 0 R

C+
R

x

y

−R
0

R

C−R

As a note, in all the examples that will be considered in this module the need to use the
lower half circle can be avoided.

Example

Evaluate

I =

∫ ∞
−∞

x sin x

1 + x2 dx.

This is an integral of the type being considered corresponding to m = 1 (as sin(mx)
is just sin x) and as indicated above we first consider the integral involving

g(z) =

(
z

1 + z2

)
eiz.

This has simple poles at ±i. With R > 1 and with Γ+
R = [−R,R] ∪ C+

R the Residue
theorem gives ∮

Γ+
R

g(z) dz = 2πiRes(g, i).

Now for the residue at z = i we have

Res(g, i) = ie−1 lim
z→i

z − i
1 + z2 = ie−1

(
1

2i

)
=

e−1

2

and ∮
Γ+
R

g(z) dz = πi e−1.

In this particular example if we use a result that the integral over C+
R tends to 0 as R→∞

then we get ∫ ∞
−∞

x eix

1 + x2 dx = πie−1

and if we take the imaginary part then we get

I =

∫ ∞
−∞

x sin x

1 + x2 dx = πe−1.

If the above had not been spotted then we would also need we consider the integral
involving

g(z) =

(
z

1 + z2

)
e−iz
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along the closed curve Γ−R which is in the clockwise direction and we do this now to
illustrate how this is handled. As the direction is the clockwise direction the Residue
theorem gives ∮

Γ−R

g(z) dz = −2πiRes(g, −i).

Now for the residue at z = −i we have

Res(g, −i) = −ie−1 lim
z→−i

z + i

1 + z2 = −ie−1

(
1

−2i

)
=

e−1

2

and ∮
Γ−R

g(z) dz = −πi e−1.

As R → ∞ the integrals over the half circles C+
R and C−R tend to 0, as we show in a

moment, and as Γ+
R = [−R,R] ∪ C+

R and Γ−R = [−R,R] ∪ C−R we get

I =

∫ ∞
−∞

x sin x

1 + x2 dx =
1

2i

(∫ ∞
−∞

x eix

1 + x2 dx−
∫ ∞
−∞

x e−ix

1 + x2 dx

)
=

1

2i

(
πie−1 − (−πie−1)

)
= πe−1.

We have obtained the answer in the example but we have not justified yet that∫
C+
R

(
z

1 + z2

)
eiz dz → 0 and

∫
C−R

(
z

1 + z2

)
e−iz dz → 0 as R→∞.

This is a bit harder to do and the result which covers this type of situation is known as
Jordan’s lemma which we consider next.

Theorem 8.6.1 If m > 0 and P/Q is the quotient of two polynomials such that

deg(Q) ≥ 1 + deg(P )

then

lim
R→∞

∫
C+
R

eimz
P (z)

Q(z)
dz = 0

where C+
R is the upper half circle of radius R and if m < 0 then

lim
R→∞

∫
C−R

e−imz
P (z)

Q(z)
dz = 0

where C−R is the lower half circle of radius R.
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Proof: On the upper half circle

z = R eiθ = R(cos θ + i sin θ),
dz

dθ
= iR eiθ, 0 ≤ θ ≤ π

and ∫
C+
R

eimz
P (z)

Q(z)
dz = i

∫ π

0

exp(imR(cos θ + i sin θ))
P (Reiθ)

Q(Reiθ)
Reiθ dθ.

The condition that deg(Q) ≥ 1 + deg(P ) implies that for sufficiently large R there exists
a constant A such that ∣∣∣∣iP (Reiθ)

Q(Reiθ)
Reiθ

∣∣∣∣ ≤ A.

Now
| exp(imR(cos θ + i sin θ))| = exp(−imR sin θ)

and thus we get the bound∣∣∣∣∣
∫
C+
R

eimz
P (z)

Q(z)
dz

∣∣∣∣∣ ≤ A

∫ π

0

exp(−imR sin θ) dθ.

Now as sin θ has symmetry about θ = π/2 the integrand above has symmetry about
θ = π/2, i.e. ∫ π/2

0

exp(−imR sin θ) dθ =

∫ π

π/2

exp(−imR sin θ) dθ,

and we can further simplify slightly to∣∣∣∣∣
∫
C+
R

eimz
P (z)

Q(z)
dz

∣∣∣∣∣ ≤ 2A

∫ π/2

0

exp(−imR sin θ) dθ.

To complete the proof when m > 0 we need to show that the right hand side above tends
to 0 as R→∞ which we do as follows.

When R is large exp(−imR sin θ) is very small at θ = π/2 and over most of the range
[0, π/2] but it is 1 at θ = 0. The part of [0, π/2] where this is close to 1 diminishes as
R increases and we need to make use of this observation to show that the integral gets
smaller in magnitude as R increases. This can be done by considering the graph of sin θ
to observe that in (0, π/2) the curve is above the straight line joining (0, 0) to (π/2, 1) to
give the inequality

sin θ >
2θ

π
.
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0 π/2

1

y = sin θ

y = 2θ
π

θ

To prove this inequality without need for the diagram we can define

h(θ) = sin θ − 2θ

π
, h′(θ) = cos θ − 2

π
.

We have h(0) = h(π/2) = 0 with h′(θ) > 0 for 0 ≤ θ < α and h′(θ) < 0 for α < θ ≤ π/2
where α is such that h′(α) = 0, i.e. cos α = 2/π. h(θ) increases in (0, α) and decreases in
(α, π/2) and and the property that h(0) = h(π/2) = 0 is sufficient to establish that it is
positive in (0, π/2).

With this lower bound on sin θ we have for 0 < θ < π/2 that

exp(−mR sin θ) ≤ exp(−2mRθ/π).

The right hand side here, i.e. the bound, is something that we can give expression for its
integral. Thus we can bound the integral by∫ π/2

0

exp(−mR sin θ) dθ ≤
∫ π/2

0

exp(−2mRθ/π) dθ

=
π

2mR
[exp(−2mRθ/π)]0π/2

=
π

2mR
(1− exp(−mR))

≤ π

2mR
→ 0 as R→∞.

We have hence shown that∫
C+
R

eimz
P (z)

Q(z)
dz → 0 as R→∞.

The proof for the lower half circle when m < 0 that∫
C−R

e−imz
P (z)

Q(z)
dz → 0 as R→∞

is similar.
�
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8.7 Indented contours

In all the previous integrals considered the integrand has been bounded on the contour in
the integral. We now consider cases in which the integrand can be unbounded at certain
points with the integral still being finite. A standard example of this type is with ε > 0
the integral ∫ 1

ε

dx√
x

= 2
[√
x
]1
ε

= 2(1−
√
ε)→ 2 as ε→ 0.

We thus say that ∫ 1

0

dx√
x

= lim
ε→0

∫ 1

ε

dx√
x

= 2.

The integrand becomes unbounded as x→ 0 but the integral is finite.
As another example, suppose a < 0 < b, and again assume that ε > 0, and consider∫ b

ε

dx

x
= ln(b)− ln(ε)

and similarly ∫ −ε
a

dx

x
= −

∫ |a|
ε

dx

x
= ln(ε)− ln(|a|).

In both these cases the limit does not exist as ε→ 0 but the sum of the two terms remains
constant. This leads to the Cauchy principal value which in this case is defined as

p.v.

∫ b

a

dx

x
:= lim

ε→0

(∫ −ε
a

dx

x
+

∫ b

ε

dx

x

)
= ln(b)− ln(|a|).

This is an example in which the integral only exists in a Cauchy principal value sense and
as we see in a moment when we use contour integration to evaluate certain integrals we
obtain the Cauchy principal value.

We consider next the example of evaluating

I = p.v.

∫ ∞
−∞

eix

x
dx

and once determined we obtain ∫ ∞
−∞

sin x

x
dx = Im(I)

with this integral existing in the “usual sense” as sin(x)/x has a removable singularity at
x = 0.

To deal with this integral we take a closed contour ΓR in the anti-clockwise sense
which involves a half circle C+

R of radius R, a half circle −C+
ε of radius ε (traversed in

the clockwise sense) and line segments [−R,−ε] and [ε, R] as shown in the diagram. The
contour ΓR is described as an indented contour.

– Residue theory, real integrals and zeros of equations– 8–19 –



2024:04:21:15:26:01 c© M. K. Warby MA3614 Complex variable methods and applications 8–20

x

y

−R −ε 0 ε R

−C+
ε

C+
R

Let

f(z) =
eiz

z
.

The function f(z) is analytic inside ΓR and thus∮
ΓR

f(z) dz = 0.

As the closed loop ΓR is the union of 4 parts this implies that∮
ΓR

f(z) d =

∫ ε

−R
f(x) dx+

∫ R

ε

f(x) dx+

∫
C+
R

f(z) dz −
∫
C+
ε

f(z) dz = 0. (8.7.1)

By Jordan’s lemma on page 8-16 we have∫
C+
R

f(z) dz → 0 as R→∞.

To deal with the half circle of radius ε we make use of the Laurent series representation
of f(z) in the vicinity of z = 0. The Laurent series is

f(z) =
1

z

(
1 + (iz) +

(iz)2

2
+ · · ·

)
=

1

z
+ (analytic function).

On C+
ε we have z = εeiθ, 0 ≤ θ ≤ π giving∫

C+
ε

dz

z
= i

∫ π

0

dθ = iπ

and as the length of C+
ε tends to 0 as ε→ 0 we have∫

C+
ε

(analytic function) dz → 0 as ε→ 0.

From (8.7.1) if we let R→∞ and let ε→ 0 then we have

p.v.

∫ ∞
−∞

eix

x
dx = iπ.
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If we take the real and imaginary parts then we obtain

p.v.

∫ ∞
−∞

cos x

x
dx = 0

and ∫ ∞
−∞

sin x

x
dx = π.

As already indicated, there is no need for the principal value in the last case as (sin z)/z
is bounded with the limit as z → 0 being 1. As the integrand here is even we have∫ 0

−∞

sin x

x
dx =

∫ ∞
0

sin x

x
dx

and hence ∫ ∞
0

sin x

x
dx =

π

2
.

8.8 The argument principle and Rouche’s theorem

The Residue theorem applies to functions which are analytic except for a finite number of
isolated singularities and if we restrict to functions whose isolated singularities are poles,
i.e. no essential singularities, then we say that the function is meromorphic.

Let f be a meromorphic function and let

G(z) =
f ′(z)

f(z)
.

The function G(z) is also meromorphic and has poles at the poles of f(z) and also at the
zeros of f(z) and we investigate the isolated singularities of G(z) next.

If f(z) has a zero at z0 of multiplicity m then the derivative has a zero at z0 of
multiplicity m− 1 and we have the representations

f(z) = (z − z0)mh(z),

f ′(z) = m(z − z0)m−1h(z) + (z − z0)mh′(z),

where h(z) is analytic in a vicinity of z0 and h(z0) 6= 0. These relations imply that in a
vicinity of z0 we have

G(z) =
f ′(z)

f(z)
=

m

z − z0

+
h′(z)

h(z)
.

HenceG(z) has a simple pole at z0 and the residue is the integerm which is the multiplicity
of the zero.

If f(z) has a pole at zp of order n then it has a representation in the vicinity of zp of
the form

f(z) =
φ(z)

(z − zp)n
,

where φ(z) is analytic in a vicinity of zp and φ(zp) 6= 0. Differentiating gives

f ′(z) =
−n

(z − zp)n+1φ(z) +
φ′(z)

(z − zp)n
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and

G(z) =
f ′(z)

f(z)
=

−n
(z − zp)

+
φ′(z)

φ(z)
.

Hence G(z) has a simple pole at zp and the residue is the negative integer −n.
All the singularities of G(z) are thus simple poles and the residues are integers indi-

cating the multiplicity of a zero or the order of a pole. If we apply the Residue theorem
to G(z) then we get what is known as the argument principle which we state next.

Theorem 8.8.1 If f is analytic and non-zero at each point of a simple closed positively
orientated contour C and it is meromorphic inside C then

1

2πi

∮
C

f ′(z)

f(z)
dz = N0(f)−Np(f),

where

N0(f) = number of zeros inside C (counting multiplicities),

Np(f) = number of poles inside C (counting orders appropriately).

When we restrict to analytic functions then we have the following corollary.

Corollary 8.8.1 If f is analytic and non-zero at each point of a simple closed positively
orientated contour C and it is analytic inside C then

1

2πi

∮
C

f ′(z)

f(z)
dz = number of zeros inside C (counting multiplicities). (8.8.1)

This corollary gives information about the location of zeros of an analytic function. Firstly,
the value in (8.8.1) must be an integer and if can estimate it sufficiently accurately to
determine the integer then we know exactly how many zeros lie inside C. Related to this
last comment, if g(z) is another analytic function which is “small” relative to f(z) on C
then we would expect

N0(f) =
1

2πi

∮
C

f ′(z)

f(z)
dz and N0(f + g) =

1

2πi

∮
C

f ′(z) + g′(z)

f(z) + g(z)
dz

to be the same integer, i.e. f + g has the same number of zeros inside C as does f . This
is essentially Rouche’s theorem which we state and prove next.

Theorem 8.8.2 If f and g are analytic inside and on a simple closed contour C and if
the strict inequality

|g(z)| < |f(z)|

holds at each point of C, then f and f + g must have the same total number of zeros
(counting multiplicities) inside C.
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Proof: Let

F (z) =
g(z)

f(z)

so that for z ∈ C
|F (z)| < 1

and note that
g = fF, and g′ = fF ′ + f ′F.

Now
f ′ + g′

f + g
=
f ′ + fF ′ + f ′F

f + fF
=
f ′(1 + F ) + fF ′

f(1 + F )
=
f ′

f
+

F ′

1 + F
.

Hence

N0(f + g)−N0(f) =
1

2πi

∮
C

F ′

1 + F
dz.

On the contour C we have |F (z)| < 1 and we have the geometric series expansion

F ′

1 + F
= F ′(1− F + F 2 − F 3 + · · · )

and as the series converges uniformly term-by-term integration is valid and gives∮
C

F ′

1 + F
dz =

∞∑
k=0

(−1)k
∮
C

F kF ′ dz.

As F kF ′ has the anti-derivative F k+1/(k + 1) which is analytic on C we have∮
C

F kF ′ dz = 0

giving

N0(f + g)−N0(f) =
1

2πi

∮
C

F ′

1 + F
dz = 0.

�

As a remark, the last part of the proof could have been done differently by observing
that

d

dz
Log(1 + F (z)) =

F ′(z)

1 + F (z)
.

The property that |F (z)| < 1 for all z ∈ C implies that 1 +F (z) is in the right half plane,
i.e.

Re(1 + F (z)) ≥ 1− |F (z)| > 0 ∀z ∈ C,

and as a consequence Log(1 + F (z)) is continuous on C. Thus our integrand has a
continuous anti-derivative on the loop and we hence have∮

C

F ′

1 + F
dz = 0.
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Examples

1. The following was taken from Question 1(b) of the May 2011 exam paper and was
concerned with showing that all the zeros of a given polynomial lie in the annulus
1/2 < |z| < 2.

Let
h(z) = z5 + 3z3 − 1.

To investigate the zeros of this polynomial we take

f(z) = z5 and g(z) = 3z3 − 1.

f(z) has a zero of multiplicity 5 at z = 0. Now on |z| = 2 we have |f(z)| = 32 and

|g(z)| ≤ 2|z|3 + 1 = 3× 8 + 1 = 25 < 32.

Thus on the circle |z| = 2 we have |g(z)| < |f(z)| and h = f + g also has 5 zeros in
|z| < 2 by Rouche’s theorem.

If we consider what is known as the reverse polynomial then we have

z5h(1/z) = z5(1/z5 + 3/z3 − 1) = 1 + 3z2 − z5

and if we now define f and g by

f(z) = −z5, g(z) = 1 + 3z2

then we have on |z| = 2 that |f(z)| = 32 and |g(z)| ≤ 1 + 3|z|2 ≤ 13 < 32. Thus
the reverse polynomial also has 5 zeros inside |z| = 2 by Rouche’s theorem. Now
if z1, . . . , z5 are the roots of h(z) then 1/z1, . . . , 1/z5 are the roots of the reverse
polynomial and we have shown that

|zk| < 2 and

∣∣∣∣ 1

zk

∣∣∣∣ < 2

so that
1

2
< |zk| < 2, k = 1, 2, 3, 4, 5.

Rouche’s theorem applied twice hence shows that all the zeros of h(z) lie in the
annulus 1/2 < |z| < 2.

This was not part of the question but to check this you can use the following
statements in matlab.

a=[1 0 3 0 0 -1]’;

r=roots(a);

[real(r), imag(r), abs(r)]

which gives
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-0.054470434414810 1.738049470684216 1.738902812342030

-0.054470434414810 -1.738049470684216 1.738902812342030

0.385725592900579 0.591941938660390 0.706526356028934

0.385725592900579 -0.591941938660390 0.706526356028934

-0.662510316971538 0.000000000000000 0.662510316971538

We have one real root and two complex conjugate pairs of roots and all have mag-
nitude between 1/2 and 2 as the application of Rouche’s theorem above has shown.

2. We can use Rouche’s theorem to prove the fundamental theorem of algebra which
was previously done on page 6-13. If

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, an 6= 0

and we take f(z) = anz
n and g(z) = an−1z

n−1 + · · ·+ a1z + a0 then for sufficiently
large R we have |f(z)| > |g(z)| for all z satisfying |z| = R. We know that f(z) has
a zero at 0 of multiplicity n and thus p(z) = f(z) + g(z) also has n zeros (counting
multiplicities) inside the circle |z| = R.
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