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Exercises involving the use of residue theory

Question 1 is a trig. integral and similar to what was asked in the exercises associated with
chapter 5. The past exam questions in questions 5 and 6 just involve rational functions of z
and be tackled as a result of what is taught in the first week of the material on chapter 8,
i.e. from what is taught in week 23. Question 12 is a slight variation of something in the
lecture notes with the difference here that a quarter of a circle is used instead of a half
circle. Question 11 also just involves a rational function but has the additional difficulty
in that the residue at a double pole must be obtained.

The past exam questions in questions 7, 8, and 9 all have an integrand which contains
an exp(.) term and the material on this should be taught in week 24. Questions 2, 3, 4
and 10 all involve indented contours and the material on this should be taught in week 24.
In the case of question 10 there is the additional difficulty of a double pole as well.

Questions 14 and 13 involve loops which are respectively a rectangle and a square.
These can be considered at any time although they may be considered as among the more
difficult questions.

1. Show the following by first using the substitution z = €.

/27r dg _2_7T
o H+4sing 3

Solution

This is a trigonometric integral and the substitution z = e gives a closed loop
integral involving the unit circle traversed once in the anti-clockwise direction. We

have d dg 1 2 1
i < .
z=e, =i o= sin(6) ; (z z)
1 dg 1
- V= _ZF
<5+4sin 9) dz i (=),
where
1 1 1
F(z)=- = :
9 1 —2i(2 —
z 54__'(2__) bz —2i(z* — 1)
i z
Now
52z — 2i(2* — 1) = —i(22% + biz — 2) = —i(2z +i)(2 + 2i).
F(z) has a simple pole inside the unit circle at z = —i/2 and for the residue the use
of L’Hopital’s rule gives
Res(F, —i/2) = lim (2 +1/2)F(z)
z——1/2
B 1 B 1 11
b—diz|,__,, O5—4i(=i/2) 5-2 3
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By the Residue theorem

2m dé 2m
— =2 —i/2
/0 5+ 4sin 0 mRes(F, —i/2) = 3

2. Suppose that f(z) is analytic in an annulus {z : 0 < |z — x¢| < r} and has a simple
pole at zp € R. Let 0 < € < r and let Cf = {:L‘0+eei9: O§«9§7r} denote a
half circle with centre at xoy and radius e. If the half circle is traversed once in the
anti-clockwise direction then show that

lim f(2)dz = miRes(f, xg).

e—0 C:—

Solution

The function f(z) has a Laurent series

f(z) = o —i—Zanz—xo) :

z — X9 0

Let

oo
g an(z — )"

n=0

This defines an analytic function.

/Cef(z)dz—a_l/cezizxo +/CE o(2) d=.

As g(z) is analytic in the vicinity of ¢ it is bounded in magnitude by a constant
M. By the ML inequality

/OE g(z)dz

With the parametrization z(t) = xy + e’ we have

dz T
/ = / idt = mi.
c. # — o 0

11—{%/0 f(z)dz = mia_;.

<7meM — 0 ase—0.

Hence

3. Show the following.

p.V./ ﬂ&f)dx:—ﬂsin(?)) and p.v./ wdxzwcos(?)).
T — T —

—00 —00
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Solution

Let .
e3zz

fe) = ——.

Consider the indented contour shown below with C}; denoting the outer circle of
radiius R considered in the anti-clockwise sense and also let C'f denote the half
circle centered at 1 of radius € considered in the anti-clockwise sence. The closed
contour is

lR=CHU[-R,1—€U(-CHUI[l+¢R]

and hence as f(z) is analytic inside the contour

(/_lRﬁJr/li) f(x)dz + CRf(Z)hdZ:/(;Ef<z)hdZ'

—R

By Jordan’s lemma

(2)dz — 0 as R — oc.
Cr

By the result of the previous question

f(z)dz — miRes(f, 1) ase— 0.
CE

R—00,e—0

lim (/_;6 + /jﬁ) f(z)dz = miRes(f, 1) = mie* = m(—sin(3) +icos(3)).

By taking the real an imaginary parts gives the stated results.

4. Verify that
o 1.2
/ smzx Qo — z
0 xXr 2

Solution
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First note that the integrand is even and that

1— 2
sin? x = —C;S( z)

[ /Oosiandx
0 T
1 00 12
_ _/ szxd:p
2/ o «x

1 [~1- 2
:_/ co;(x)dx

Thus

4/ o x
= }LRQ p-v. /_Z L ;262%@" dx.
The principal value is needed here as the imaginary part has a pole at x = 0.
Let 2iz
fle)="—
z

Let 0 < e < R and let
Ir=[-R,—€JU(-CHU[e, RIUCE

where CF and C7, be half circles of radius € and R respectively in the upper half
plane as illustrated in the following diagram.

/\y

The function f(z) is analytic inside I'r and hence
—€ R
/ f(z)dz + f(z)dz—i—/ f(:v)dx+/ f(z)dz =0. (%)
-R —-cf € cy

On C’;g we have

. 2
[1—e**| <2 and \f(z)\gﬁ.
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As the length of C}; is 7R we have

2rR 2
]7;2 :%%O as R — oo.

f(z)dz

Ch

<

Thus letting R — oo in (x) gives

—e f(x) da:—l—/oo f(z)dz = . f(z)dz.

Now f(z) has a simple pole at z = 0 and we can get the Laurent series as follows.

‘ 2i2)?2

. 2i2)2
e = _(2i) = Z) +
1_ e?iz

2i : .
= —— — analytic function.
z

1 ™
/ —dz:i/ df = im.
ct < 0

f(z)dz — (mwi)(—2i) =27 ase— 0.
cf

If we let 2z = e e then

From this it follows that

Hence

and as this is real we get
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5. The following was part of question 4 in the May 2023 MAS3614 exam paper. This
part of the question was worth 9 marks of the 20 marks in the entire question.

Let a, b and ¢ be real numbers with a > 0 and let

1

f(z) = az’> +bz+c

(a) When b* # 4ac indicate all the poles of f(z) and determine the residue at
each pole. Similarly, in the case b* = 4ac indicate all the poles of f(z) and
determine the residue at each pole.

(b) Let Cg denote the circle with centre 0 and radius R > 0 traversed once in the
anti-clockwise sense. By any means explain why

f(z)dz=0
Cr

when R is sufficiently large.

(c) Let C}; denote the half circle with centre at 0 and radius R > 0 in the upper
half plane traversed in the anti-clockwise direction and let I'y denote the closed
loop composed of the real interval [— R, R] followed by the half circle C};. The
half circle C}, and the closed loop are illustrated in the diagram below.

Y

—-R R

Use the M L inequality to explain why

lim f(z)dz =0.

R—o0 +
CR

Further, in the case 4ac > b* use the loop I'g to determine an expression in
terms of a, b and ¢ of the value

oo

—00

You need to explain all your steps.

Solution
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()

By the quadratic formula f(z) has poles at

—b —Vb? — dac —b+ Vb? — dac
Z1 = Zo — .
! 2a r 2a
When b> # 4ac these points are distinct and we have simple poles. By

L’Hopital’s rule the residues are

2—21 1 1
Res(f, z1) = lim = — 7
(£, 21) oz az? +bz+c 2az1 +b b2 — 4ac
2—22 1 1

Res(f, = lim - '
(f ZQ) z1—>Z2 CLZ +bz+c 2&2’2 +b b% — 4ac

When b? = 4ac we have z; = 2o = —b/(2a) and
1
f(z) =

a(z — z1)*
We just have one double pole and the residue is 0.

When b? = 4ac there is no residue and when z; # 2 the sum of the residues
is 0. The poles are inside Cr when R is sufficiently large. By the residue
theorem the integral is 0.

Let z be such that |z| =
laz?| = aR?, |bz4c| <|b|R+|c|, |az® +bz+c|>aR*— (|b|R+ |c|).
The right hand side is positive when R is sufficiently large and
1
T
The length of C} is L = 7R. By the ML inequality
TR

<ML =—; — 0 as R — oc.
aR” — (|b|R +|c|)

f(z)dz

+
CR

When 4ac > b? the simple poles of f(z) are a complex conjugate pair and the
one in the upper half plane is

—b+ ivViac — b?
2a '
When R is sufficiently large this point is inside I'g and by the residue theorem

29 =

2me 2m
. f(z)dz = 2miRes(f, z2) = P = N
As Tr = [ R, R]U C} we have for sufficiently large R that
f(z)dz:/Rf(x)dx—i- f(z)dzzz—ﬂ.
Tr -R ch Viac — b2

Letting R — oo and using the result about the integral on C}; tending to 0 we

have
7r
/ f dac — b2
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6. The following was part of question 4 in the May 2022 MA361/ exam paper. This
part of the question was worth 10 marks.

Let

1

1) ==

Let C} denote the half circle with centre at 0 and radius R > 1 in the upper half
plane traversed in the anti-clockwise direction and let I'g denote the closed loop
composed of the real interval [—R, R] followed by the half circle C};. The half circle
C} and the closed loop are illustrated in the diagram below.

—R R

The function f(z) has simple poles at the points £2z; and £z, where z; = /3

and z, = €?7/3, Indicate which two points are in the upper half plane, give the
cartesian form of these points and give workings to confirm that 1+ 27 +z{ = 0.

Determine the residue at each of the two simple poles in the upper half plane
and determine
j{ f(z)dz.
I'r
Determine, giving reasons, the value of

lim f(z)dz.

R—o0 CE

By using the loop I'g, determine

/O " f@) da
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Solution

(a) The points z; and 29 = 27 are in the upper half plane.

1 3 1 3
21 = cos(m/3)+isin(m/3) = §+z’\/7_, 2o = cos(2m/3)+isin(27/3) = —§+z’\/7_,
1 V3
4 _ 47r/3:_ — -l
Zi=e 2 5~ 15
Thus 22 + 2} = 20 + 21 = —1 and we have 1+ 22 + z{ = 0.

(b) z; and zy are simple poles of f(z).

) X zZ— Z1 1
Res(f, 1) = lim (= - =1 - |
es(f Zl) zgg(z Z1)f(2’) zgg 14+ 22 + 24 2z1 + 42%
AS Z“l)’ = eiﬂ- = —1 we have
1 1 —3—iV3
R = = = '
GS(f, 21> 221 —14 34+ Z\/g 12
Similarly
1

Res(f, 22) = lim (2 — 22)f(2) = 2 1A

As 23 = 1 we have

1 1 3—iV3

R pr— p— pr—
s = T A 12

By the residue theorem

F(2)ds = 2 3-8 -3\ . VB) _Vir
- z Z = 4Tl 12 12 = 4T 212 = 3 .

(c) For |z| = R being large we have

1
R —R -1
The length of the half circle is 7R. By the M L inequality

/ f(z)dz| < mh
Ch

1T+22+ 2 >R - R*—1 and [f(2)| <

_W%O as R — oo.

(d) As the function f(z) is even we have, using the previous parts,

ngf(Z)dZZQ/ORf(x)der/c;f(Z)dz:@'

Letting R — oo gives
e 3
/ flx)dx = —\/_W.
0 6
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7. The following was part of question 4 in the May 2021 MA3614 exam paper. This
part of the question was worth 10 marks.

Let C} denote the half circle with centre at 0 and radius R > 0 in the upper
half plane traversed in the anti-clockwise direction and let I'p denote the closed
loop composed of the real interval [—R, R] followed by the half circle C};, that is
I'r =[—R,R]UC}. The half circle C} and the closed loop are illustrated in the

diagram below.

—R R

In the following which function you consider depends on the 4th digit of your 7-digit
student id.. If your 4th digit is one of 0, 2, 4, 6, 8 then your function f(z) is on the
left hand side whilst if it is one of the digits 1, 3, 5, 7, 9 then your function f(z) is
on the right hand side.

- 4+ 31z 9 — ediz

=10 (even digit case) or f(z) = T3 (odd digit case).

f(2)

(a) Give all the poles of your version of the function f(z) in the complex plane
and determine the residue at each pole in the upper half plane.

(b) For your version of f(z), determine, giving reasons, the value of

lim f(z)dz.

(¢) For your version of f(z), determine, giving reasons, the value of the integrals

/Zf(x)dx and /Oo Re(f(z)) d.

o

Here Re(f(z)) means the real part of f(z).
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Solution
This is the version for a 4th digit of 0, 2, 4, 6, 8.

a) The only poles of the function are when 1 + 222 = 0 and the points are
Yy

{ l

Only z; is in the upper half plane. z; is a simple pole and then by L’Hopital’s
rule and properties of limits

) - z— 2 4 + ¥
Res(f, z1) = lim (= — — (4+¢) 1 .
es(f, 21) = lim (2 = 2) f(2) = (4 +¢7) Jim =y = —

4 4+ e=3/V2
22 '

3i21 = —

3
. 4z =2V2i, Res(f, z)=—i
V2
(b) When z =z +iy € C}, y >0, 3iz = —3y + 3ixz. Thus
€] <1, and also |1 + 22%| > 2R* — 1.

The length of C% is 7R and on C}; we have for sufficiently large R that

£(2)] < 4+1 B 5
“OoR?-1 2R*-1
By the ML inequality
f(z)dz| < ZJiZRl —0 as R — o0.
ch -

(c) As I'g is the union of two parts the use of the residue theorem gives

/R f(z)dz + f(z)dz = 2miRes(f, z1)
-R ct

4—|—e_3/ﬂ 4+e_3/ﬂ
= 21| ——| =7 —|.
2v/2 V2

Letting R — oo and using the result of part (ii) gives

/ fo <4+3;/f).

As the value is real we also have

0 44 e3/V2
/_OO Re(f(z))de = 7 (T) |
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This is the version for a 4th digit of 1, 3, 5, 7, 9.

(a) The only poles of the function are when 1+ 32% = 0 and the points are

? l

Only z; is in the upper half plane. z; is a simple pole and then by L’Hopital’s
rule and properties of limits

Z— 2 2 — ¥

Res(f, z1) = lim (z — 21) f(2) = (2 — ") lim =

z—21 z—z1 1 + 32 621

5 6 9 e 5/V3
5izy = ———, 62, =—i=2V3i, Res(f, z1)=—i|"——].
1=- M= (f:21) ( 3

(b) When z =z +iy € Cf, y > 0, 5iz = —5y + 5iz. Thus
|e”#] <1, and also |1 + 32| > 3R* — 1.

The length of C}; is 7R and on C}; we have for sufficiently large R that

F(2)] < 2+1 3
T3R*-1 3R*-1
By the ML inequality
3TR
f(z)dz| < ;T —>O as R — oo.
C’+ SR

(c) As I'g is the union of two parts the use of the residue theorem gives

R
/ f(:v)dx—i—/ f(z)dz = 2miRes(f, 1)
-R ch

2 2_6—5/\/§ 2_6—5/\/§
= 21| ——— | =7 ——— | .
2V/3 V3

Letting R — oo and using the result of part (ii) gives

INC d( ﬁf)

As the value is real we also have

*° 2 e 8/V3
/_Oo Re(f(z))dz = 7 (T) |




2024:03:02:22:18:13 © M. K. Warby MA3614 Complex variable methods and applications 13

8. The following was part of question 4 in the May 2020 MA361j exam paper. This
part of the question was worth 9 marks.
Let C} denote the half circle with centre at 0 and radius R > 1 in the upper
half plane traversed in the anti-clockwise direction and let I'p denote the closed

loop composed of the real interval [—R, R] followed by the half circle C};, that is
I'r = [—R,RJUC}. The half circle C}; and the closed loop are illustrated in the

diagram below.

Also let @ > 0 and let

(a) Show that

(2)dz -0 as R — oo.
Ok

(b) When R > 2 determine, giving reasons,

f(2)dz.
g

(c) By giving appropriate reasoning, determine

/ Z (@) da.
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Solution
(a) Now if z + iy € C}; then y > 0 and
007 _ giaza—ay o4 ‘eiaz‘ —e W <1,
When R > 2 the denominator in the expression for f(z) is bounded below by
|4+ 2% > R* — 4.

Hence on C3; we have
1
<

and as the length of C} is 7R the use of the ML inequality gives

R
§§——>0 as R — oo.
R —4

f(z)dz
o

(b) The function f(z) has simple poles at +2i but only z; = 2i is in the upper half
plane. z; is inside ' when R > 2. By the residue theorem the value of the
loop integral is

2miRes(f, z1).

' (Z o Zl)eiaz ' ) ' (Z o zl) e—?a e—2a
Res(f, z1) = lim ———— = lim €' lim = = —.
<f 1) 221 4 + 22 z2—21 z—z1 4+ 22 221 44
Thus the value is
,ﬂ_e—2a
2

(c) As the loop is the union of 2 parts we have, when R > 2,

ﬂ_e—Qa

/_Zf@)d%éﬁ@)@: :

Letting R — oo and using the previous part gives

/_: f(z)dz = ﬂe;Qa

9. The following was part of question 4 in the May 2019 MA361/ exam paper. This
part of the question was worth 12 marks.

Let

1 — iz
f(z):erl)’

and for any p > 0 let Cf = { pel? 1 0<0< 7r} denote an upper half circle. When
contour integrals are considered on such half circles, the direction of integration
corresponds to increasing 6. The notation —C), means the same path but in the
opposite direction. For this function, it can be shown that

lim f(z)dz = .

r—0 Cﬁr
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(a) State all of the poles of f(z) and determine the residue at each pole.
(b) Explain why
lim f(z)dz = 0.

(c) For 0 <r < R, let I'; denote the closed loop

Iy =1[rRIUCLU[-R,—r|U(=C))

T

illustrated below.

)_CT?(\ )

—-R -r 0 r R

When r < 1 < R determine

7{ f(2)d=.

Tk

(d) By using the previous results, or otherwise, determine

o0 1 _
[z,
o x(a”+1)

Solution

(a) f(z) has simple poles at the points 0 and +i.

Res(f, 0) = limzf(z):( 21 ‘ )liml_eizz—i,
z=0

2—0 2+ 1 z—0 z
‘ . ‘ 1—e” . z—1
Res(f. ) = timz =07 = ()| ) (1m555)

Res(f, =1) = Hm(z+0)f(z) = ((1 _;iz)
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(b) The length of Cf is 7R. When 2z = z + iy with y > 0, iz = —y + iz and
e =e¥ < 1.
With [z| =R > 1

1 —e”| <2 and [Z2(2*+1)] > R*(R?-1).

Thus on the half circle

2
1f(2)] < mziM

and by the M L inequality

2T R 2
n = " —0 as R — oo.

JE) e < e = = B -1

Ch

(c¢) The only pole inside the loop is at z = ¢ and hence by the residue theorem
7{ f(z)dz =2miRes(f, 1) = —m (1 —e7').
Iz

(d) When z € R the real part of f(x) is

1 — cos(x)
2 (2* + 1)

As the loop is the union of 4 parts we have

r(l—et) = (/_RT+/TR) fordes | f@d= | i)

Letting R — oo and r — 0 and using previous results we have

/_Z f(x)dz = me .

As f(z) is even it follows that

00 ﬂ_efl
/0 f(x)dx = 5

10. By using the same contour I'; as in question 9 show that

> sin(2z) 1 1
———de=71(-——5).
/0 z(z® +1)? e (2 e2)

Solution
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If we let

then our integrand is given by

sin(2x) e
= Im
z(x? +1)° r(z® 4+ 1)

Imf(z) is even in = and thus

° sin(2 1 [% sin(2
/ sn;( x) Cdo— _/ SII21( x) de.
o x(z®+1) 2 ) o x(z®+1)

f(2) has a simple pole at z = zy = 0 and double poles at +i but we only need to
consider the pole at z; = ¢ which is in the upper half plane.

Let I'}; denote the indented loop. When we take 0 < r < 1 < R the function f(z)
only has one pole inside the this loop and thus by the residue theorem

(z)dz = 2miRes(f, 21).
Ir

As I'; is the union of two half circles and part of the real line we also have
-r R
f(z)dz = (/ —|—/ ) f(z)dx — f(z)dz+ f(z)dz.
Iy -R r ciF ch

From the result in question 2 we have

ll_r)I(l) o (z) dz = miRes(f, 2o).
Hence if we can show that
lim f(z)dz=0

R—o0 C;
then -
2miRes(f, z1) = / f(z)dz — miRes(f, zo)

so that our result is

Im /000 f(z)de = %Im (2miRes(f, z1) + miRes(f, 20)) .

We first explain why the integral on C}, tends to 0 as R — oo. Let z =z +iy € C}
and thus |z| = R and y > 0. This implies that 2iz = —2y+2iz and |e**| = ¢72¥ < 1.

Thus
1

|f(2)] < m
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and as the length of C}} is 7R the ML inequality gives

R
il = i 5 — 0 as R — oo.

T < e =@

Ch

For the residue at zy = 0 we have

2iz
. . (§]
Res(f, 0) = lim 2f(2) = ll_{%m =1

For the double pole at z; = i we first note that 2% + 1 = (2 +14)(z — i) so that

)2 Z:e%z L =cotcq(z—i)+---
(=P 1) = S = e el =)+

and

Res(f, 1) =c1 = ((Z — i)Qf(Z))/

Now for the derivative

(=26 = () () () ()

(62iz ) / 2(2262”) . eQiz

with

z 22

We just need the value at 7 and this is given by

18

= () (38) (257 () -5 v

Both residues are real and thus
Im/ f(x)dz = 3 (2mRes(f, z1) + 7Res(f, 2)) =7 (_ez I 5)
0

as required.

11.

Evaluate the following integral.

[t
o (¥ +a*)?* .

Solution

Let
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This function is even and

I / °° dx 1 / *° dx
o (P +d®)? 2 ) o (P +d®)Y
Let I'p = [-R, R] U C}; denote the closed contour with C}; denoting the upper half

circle with centre at 0 and radius R. The length of C} in 7R and for z € C} we
have

1
|f(2)] < =)
which gives
R
/C+f(2)d2 S(RQ,/T_—GQ)Q—)O as R — oo.
R

As 22+ a® = (2 + ai)(z — ai) we have
I 1
(2> +a*)? (24 ai)(z — ai)*

This has double poles at +a: with z; = a7 being in the upper half plane.

By considering the closed loop and the residue theorem we have

R
]{ f(z)dz = / f(z)dx + f(2)dz = 2miRes(f, z1).
I'r -R ch
To get the residue note that
1
(z — 21)%f(2) = —(z n ai)2 =aqo+taq(z—2z)+ -

which gives

1 ' —2 —2 1
a_ pr— _— = - ey [ —
! (z+ai)*) |,_,;, (2+ai)’| _, (2a)* 4da’i
Thus - .
. s
and

o T
/0 f(z)dz = R

12.

Let a function f(z) and a quarter circle C}, of radius R > 2 be given by

1
2416
Also let T'g denote the closed loop composed of the real interval [0, R] followed by

the quarter circle C% and followed by the segment 7 of the imaginary axis from Ri
to 0 as illustrated illustrated in the diagram.

f(z) = and Cf={Re": 0<t<m/2}.
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Yy
Ri
Ck
YrY
x
0 R

(a) Explain why
lim f(z)dz =0.

R—o0 Cz‘i
(b) Determine
f(z)dz.

I'r

/m f(2)dz = —i/ORf(x) da.

(d) Using your previous results, or otherwise, to evaluate the real integral

o 1
/ 7 dz.
o T + 16

(c¢) Explain why

Solution

(a)

1
e =
When |z] = R and R is large the magnitude of the denominator is bounded
below by
R'—16
and hence )
< —.

The length of the quarter circle is mR/2. By the ML inequality we have

2
< ZR/ —+0 as R — oo.
R —16

f(z)dz

Ck
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(b) f(z) has simple poles when z* = —16 = —2* and thus f(z) has 4 simple poles
on the circle |z| = 2. There is one simple pole inside the quarter circle at

2 =264 = V/2(1 +19).
Let I denote the loop integral. By the residue theorem

I =2miRes(f, z1).

Z—Zl

Res(f, z1) = lim(z —2)f(z) = lim

zZ—21 z—z1 Z + 4
1 Z1 Z1

428 4zt 64
Hence /3
21 2m 2m
[ = —omist = 1 1—
Tiea = Ter D = ),
(c) We consider first the integral on —ygr = {z(t) =it : 0 <t < R}.

|
14 (@it)r 14+

2(t) =at, () =i, f(z() =

Thus by the definition of the integral on —yr we have

/va(Z)dZ:_/—va(Z)dz:_/_WRf(Z(t))z/(t)dt:_/ORlit4dt'

(d) As I'g is the union of 3 parts we have

4 f(z)dz = /0 f(z)dz + » f(z)dz—i—/ f(z)dz

— -9 / f@)+ [ 1)

Letting R — oo and using the result of part (i) we have

I%EI;O]{f dz—l—z/f
/Ooof(x)dx:@

Thus
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13. Let f(z) be a function which is analytic except for a finite number of isolated
singularities and let

g(z) = 7 cot(mz) f(2).

(a) Show that if f(z) does not have an isolated singularity at the integer n then
Res(g, n) = f(n).

(b) In the case f(z) = 1/z* show that
2

Res(g, 0) = —%.

(c) Let I'y be the square with vertices at (N +0.5)(£1 £4). It can be shown that
there is a constant A > 0 independent of N such that |7 cot(rz)| < A for all
z € I'y. In the case that f(z) = 1/2% show that

/ g(z)dz -0 as N — 0.
I'n

By using this result show that
n? 6

n=1

Solution

(a) cot(mz) has simple zeros at the integers and if f(z) is analytic and non-zero at
an an integer n then g(z) = m cot(wz) f(z) has a simple pole at z = n.

Res(g, n) = lim(z ~ n)g(z) = (s — n)r o) ()
i = n = mcos(nm)f(n L = f(n
= weos(nm) () lim S = wcos(um)f (n) s = f(n).

(b) As f(z) = 1/2? has a double pole at z = 0 and cos(rz) has a simple pole at
z = 0 the g(z) has a pole of order 3 at z = 0, We can get the residue at z =0
by considering the series. Now as sin w only involves odd powers and cos w
only involves even powers the Laurent series for cot w only involves odd powers
and with
a_q
cot w=—+aw+---
w

the relation cot w sin w = cos w gives
3

(a‘1+ + ) S 11— 4
w 6 2
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Equating the constant terms gives

a_1 = 1.
Equating the w? terms gives
a_q 1 1 . a_q i 1 1
a1 — — = —— a1 = —— —_— = _— = ——,
6 2 ! 2 6 26 3
Thus
() 1 T2
co = — — —
TZ 3
and
( ) 1 s n
2)=m|— — —
g 7z 3z
and hence
2
Res(g, 0) = —3

The closed contour I'y is shown below and is such that it crosses the real line
at points where g(z) is zero.

(N =3 N+3) i~ (N+3,N+%)
3 a
snnnnnn@ l‘ll.ll‘ll.ll?ll.l‘ll‘ll.:.lllllll
(-N-%,-N-1) - (N+ &, -N-1

We are given that 7 cot(mz) is bounded on I'y and thus

92)] < Al < 5
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Each of the 4 sides on I'y has length 2N + 1 and thus

]{N g(z)dz

Inside the closed loop I'y there are singularities at z = 0 and +1,+2,..., +N.
By the residue theorem

A
§4(2N+1)W—>0 as N — o0.

]g g(z)dz = 2mi <Res(g, 0) + Z(Res(g, —k) + Res(g, k))) :

1
As f(z) is even

Res(g, —k) = Res(g, k) = f(k) = %, k>1.

Letting N — oo and using the result that the integral around I'y tends to 0

gives
=1 1 7
25 — —R 0 :22 ———=—=0
k=1 K (o 0 k=1 K 3

and the result follows

14. (a) Let z and y be real. Determine the following limits.

lim tan(z +dy) and lim tan(x — iy).

Yy—r00 Yy—00

(b) Let I'y, denotes the straight line segment from 7 + iL to iL where L > 0.
Determine

lim tan zdz.
L—oo r
L

(c) By considering a closed loop in the anti-clockwise direction which is the rect-
angle with vertices 0, w, m + ¢L and ¢L show that when a € R and a # 0 we

have
T ' h >0
/ tan(0 + ia) df = i . waena =%
0 —mi, when a < 0.
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Solution

(a)

tan(z) = Sn(2) _1 (i)

11\ 1 (1-e?
o 7 eQiZ +1 - i 1 +e—2iz :
With z =z + iy, iz = —y + iz and || = e 7Y, |e | = V.

As y — oo we have [¢”*| = 0 and hence tan(z + iy) — i.
As y — —oo we have [e”**| — 0. and hence tan(z + iy) — —i.

Let
0 T
Jp = / tan zdz = / tan(z +iL) dx = —/ tan(x + L) dx.
Iy ™ 0

JL+i7T:/(i—tan(x+iL))dx—>O as L — oo.
0

Thus J;, — —im as L — oo.

The function f(z) = tan(z + ia) has simple poles at points such that
_ T
z+ia = §—|—m7r, m € 7.

Let Ry denote the rectangular loop. When a > 0 these points are in the lower
half plane and hence are not inside the loop R, and in this case

/ tan(z + ia) dz = 0.
Rp

When a < 0 there is one simple pole at z; = 7/2 — ia inside the loop and
/ tan(z + ia) dz = 2mi Res(f, 21).
Ry,

For the residue

sin(z + ia) z—2

. __\sin(ztia) T Ak B
zl—>nz11(z ) cos(z + ia) sin(z + ia) s cos(z +ia)

Thus when a < 0
/ tan(z + ia) dz = —2mi.
Ry,

The rectangle has 4 sides and the sides parallel to the imaginary axis the
periodic property of tan(z) implies that

fliy) = f(m +1y).
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The integral on the part from 7 to m + ¢L is in the opposite direction to the
integral from L to 0 and thus the contribution to the loop integral from these
two sides is 0. Thus by considering the other two sides gives

0 if a >0,
—2mi ifa <.

/ tan(f + ia) d0 + Jp, = {
0

By letting L — oo and using the result of part (b) that J;, — —mi gives the
result.




