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Exercises involving the use of residue theory

Question 1 is a trig. integral and similar to what was asked in the exercises associated with
chapter 5. The past exam questions in questions 5 and 6 just involve rational functions of z
and be tackled as a result of what is taught in the first week of the material on chapter 8,
i.e. from what is taught in week 23. Question 12 is a slight variation of something in the
lecture notes with the difference here that a quarter of a circle is used instead of a half
circle. Question 11 also just involves a rational function but has the additional difficulty
in that the residue at a double pole must be obtained.

The past exam questions in questions 7, 8, and 9 all have an integrand which contains
an exp(.) term and the material on this should be taught in week 24. Questions 2, 3, 4
and 10 all involve indented contours and the material on this should be taught in week 24.
In the case of question 10 there is the additional difficulty of a double pole as well.

Questions 14 and 13 involve loops which are respectively a rectangle and a square.
These can be considered at any time although they may be considered as among the more
difficult questions.

1. Show the following by first using the substitution z = eiθ.∫ 2π

0

dθ

5 + 4 sin θ
=

2π

3
.

Solution

This is a trigonometric integral and the substitution z = eiθ gives a closed loop
integral involving the unit circle traversed once in the anti-clockwise direction. We
have

z = eiθ,
dz

dθ
= iz,

dθ

dz
=

1

iz
, 4 sin(θ) =

2

i

(
z − 1

z

)
.(

1

5 + 4 sin θ

)
dθ

dz
=

1

i
F (z),

where

F (z) =
1

z

 1

5 +
2

i

(
z − 1

z

)
 =

1

5z − 2i(z2 − 1)
.

Now
5z − 2i(z2 − 1) = −i(2z2 + 5iz − 2) = −i(2z + i)(z + 2i).

F (z) has a simple pole inside the unit circle at z = −i/2 and for the residue the use
of L’Hopital’s rule gives

Res(F, −i/2) = lim
z→−i/2

(z + i/2)F (z)

=
1

5− 4iz

∣∣∣∣
z=−i/2

=
1

5− 4i(−i/2)
=

1

5− 2
=

1

3
.
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By the Residue theorem∫ 2π

0

dθ

5 + 4 sin θ
= 2πRes(F, −i/2) =

2π

3
.

2. Suppose that f(z) is analytic in an annulus {z : 0 < |z − x0| < r} and has a simple
pole at x0 ∈ R. Let 0 < ε < r and let C+

ε =
{
x0 + εeiθ : 0 ≤ θ ≤ π

}
denote a

half circle with centre at x0 and radius ε. If the half circle is traversed once in the
anti-clockwise direction then show that

lim
ε→0

∫
C+
ε

f(z) dz = πiRes(f, x0).

Solution

The function f(z) has a Laurent series

f(z) =
a−1

z − x0

+
∞∑
n=0

an(z − x0)n.

Let

g(z) =
∞∑
n=0

an(z − x0)n.

This defines an analytic function.∫
Cε

f(z) dz = a−1

∫
Cε

dz

z − x0

+

∫
Cε

g(z) dz.

As g(z) is analytic in the vicinity of x0 it is bounded in magnitude by a constant
M . By the ML inequality∣∣∣∣∫

Cε

g(z) dz

∣∣∣∣ ≤ πεM → 0 as ε→ 0.

With the parametrization z(t) = x0 + εeit we have∫
Cε

dz

z − x0

=

∫ π

0

idt = πi.

Hence

lim
ε→0

∫
Cε

f(z) dz = πia−1.

3. Show the following.

p.v.

∫ ∞
−∞

cos(3x)

x− 1
dx = −π sin(3) and p.v.

∫ ∞
−∞

sin(3x)

x− 1
dx = π cos(3).
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Solution

Let

f(z) =
e3iz

z − 1
.

Consider the indented contour shown below with C+
R denoting the outer circle of

radiius R considered in the anti-clockwise sense and also let C+
ε denote the half

circle centered at 1 of radius ε considered in the anti-clockwise sence. The closed
contour is

ΓR = C+
R ∪ [−R, 1− ε] ∪ (−C+

ε ) ∪ [1 + ε, R]

and hence as f(z) is analytic inside the contour(∫ 1−ε

−R
+

∫ R

1+ε

)
f(x) dx+

∫
CR

f(z)hdz =

∫
Cε

f(z)hdz.

x

y

1−R 0 R

C+
R

By Jordan’s lemma ∫
CR

f(z) dz → 0 as R→∞.

By the result of the previous question∫
Cε

f(z) dz → πiRes(f, 1) as ε→ 0.

lim
R→∞,ε→0

(∫ 1−ε

−R
+

∫ R

1+ε

)
f(x) dx = πiRes(f, 1) = πie3i = π(− sin(3) + i cos(3)).

By taking the real an imaginary parts gives the stated results.

4. Verify that ∫ ∞
0

sin2 x

x2 dx =
π

2
.

Solution
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First note that the integrand is even and that

sin2 x =
1− cos(2x)

2
.

Thus

I =

∫ ∞
0

sin2 x

x2 dx

=
1

2

∫ ∞
−∞

sin2 x

x2 dx

=
1

4

∫ ∞
−∞

1− cos(2x)

x2 dx

=
1

4
Re p.v.

∫ ∞
−∞

1− e2ix

x2 dx.

The principal value is needed here as the imaginary part has a pole at x = 0.

Let

f(z) =
1− e2iz

z2 .

Let 0 < ε < R and let

ΓR = [−R,−ε] ∪ (−C+
ε ) ∪ [ε, R] ∪ C+

R

where C+
ε and C+

R be half circles of radius ε and R respectively in the upper half
plane as illustrated in the following diagram.

x

y

−R −ε 0 ε R

−C+
ε

C+
R

The function f(z) is analytic inside ΓR and hence∫ −ε
−R

f(x) dx+

∫
−C+

ε

f(z) dz +

∫ R

ε

f(x) dx+

∫
C+
R

f(z) dz = 0. (∗)

On C+
R we have ∣∣1− e2iz

∣∣ ≤ 2 and |f(z)| ≤ 2

R2 .
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As the length of C+
R is πR we have∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ 2πR

R2 =
2π

R
→ 0 as R→∞.

Thus letting R→∞ in (∗) gives∫ −ε
−∞

f(x) dx+

∫ ∞
ε

f(x) dx =

∫
C+
ε

f(z) dz.

Now f(z) has a simple pole at z = 0 and we can get the Laurent series as follows.

e2iz = 1 + (2iz) +
(2iz)2

2
+ · · ·

1− e2iz = −(2iz)− (2iz)2

2
+ · · ·

1− e2iz

z2 = −2i

z
− analytic function.

If we let z = ε eiθ then ∫
C+
ε

1

z
dz = i

∫ π

0

dθ = iπ.

From this it follows that∫
C+
ε

f(z) dz → (πi)(−2i) = 2π as ε→ 0.

Hence

p.v.

∫ ∞
−∞

1− e2ix

x2 dx = 2π

and as this is real we get

I =

(
1

4

)
2π =

π

2
.
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5. The following was part of question 4 in the May 2023 MA3614 exam paper. This
part of the question was worth 9 marks of the 20 marks in the entire question.

Let a, b and c be real numbers with a > 0 and let

f(z) =
1

az2 + bz + c
.

(a) When b2 6= 4ac indicate all the poles of f(z) and determine the residue at
each pole. Similarly, in the case b2 = 4ac indicate all the poles of f(z) and
determine the residue at each pole.

(b) Let CR denote the circle with centre 0 and radius R > 0 traversed once in the
anti-clockwise sense. By any means explain why∮

CR

f(z) dz = 0

when R is sufficiently large.

(c) Let C+
R denote the half circle with centre at 0 and radius R > 0 in the upper

half plane traversed in the anti-clockwise direction and let ΓR denote the closed
loop composed of the real interval [−R,R] followed by the half circle C+

R . The
half circle C+

R and the closed loop are illustrated in the diagram below.

−R R

C+
R

x

y

Use the ML inequality to explain why

lim
R→∞

∫
C+
R

f(z) dz = 0.

Further, in the case 4ac > b2 use the loop ΓR to determine an expression in
terms of a, b and c of the value ∫ ∞

−∞
f(x) dx.

You need to explain all your steps.

Solution
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(a) By the quadratic formula f(z) has poles at

z1 =
−b−

√
b2 − 4ac

2a
, z2 =

−b+
√
b2 − 4ac

2a
.

When b2 6= 4ac these points are distinct and we have simple poles. By
L’Hopital’s rule the residues are

Res(f, z1) = lim
z→z1

z − z1

az2 + bz + c
=

1

2az1 + b
= − 1√

b2 − 4ac
,

Res(f, z2) = lim
z→z2

z − z2

az2 + bz + c
=

1

2az2 + b
=

1√
b2 − 4ac

.

When b2 = 4ac we have z1 = z2 = −b/(2a) and

f(z) =
1

a(z − z1)2 .

We just have one double pole and the residue is 0.

(b) When b2 = 4ac there is no residue and when z1 6= z2 the sum of the residues
is 0. The poles are inside CR when R is sufficiently large. By the residue
theorem the integral is 0.

(c) Let z be such that |z| = R.

|az2| = aR2, |bz + c| ≤ |b|R + |c|, |az2 + bz + c| ≥ aR2 − (|b|R + |c|).
The right hand side is positive when R is sufficiently large and

|f(z)| ≤ 1

aR2 − (|b|R + |c|)
=: M.

The length of C+
R is L = πR. By the ML inequality∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ML =
πR

aR2 − (|b|R + |c|)
→ 0 as R→∞.

When 4ac > b2 the simple poles of f(z) are a complex conjugate pair and the
one in the upper half plane is

z2 =
−b+ i

√
4ac− b2

2a
.

When R is sufficiently large this point is inside ΓR and by the residue theorem∮
ΓR

f(z) dz = 2πiRes(f, z2) =
2πi

i
√

4ac− b2
=

2π√
4ac− b2

.

As ΓR = [−R,R] ∪ C+
R we have for sufficiently large R that∮

ΓR

f(z) dz =

∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz =
2π√

4ac− b2
.

Letting R→∞ and using the result about the integral on C+
R tending to 0 we

have ∫ ∞
−∞

f(x) dx =
2π√

4ac− b2
.
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6. The following was part of question 4 in the May 2022 MA3614 exam paper. This
part of the question was worth 10 marks.

Let

f(z) =
1

1 + z2 + z4 .

Let C+
R denote the half circle with centre at 0 and radius R > 1 in the upper half

plane traversed in the anti-clockwise direction and let ΓR denote the closed loop
composed of the real interval [−R,R] followed by the half circle C+

R . The half circle
C+
R and the closed loop are illustrated in the diagram below.

−R R

C+
R

x

y

(a) The function f(z) has simple poles at the points ±z1 and ±z2 where z1 = eiπ/3

and z2 = ei2π/3. Indicate which two points are in the upper half plane, give the
cartesian form of these points and give workings to confirm that 1+z2

1 +z4
1 = 0.

(b) Determine the residue at each of the two simple poles in the upper half plane
and determine ∮

ΓR

f(z) dz.

(c) Determine, giving reasons, the value of

lim
R→∞

∫
C+
R

f(z) dz.

(d) By using the loop ΓR, determine∫ ∞
0

f(x) dx.
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Solution

(a) The points z1 and z2 = z2
1 are in the upper half plane.

z1 = cos(π/3)+i sin(π/3) =
1

2
+i

√
3

2
, z2 = cos(2π/3)+i sin(2π/3) = −1

2
+i

√
3

2
,

z4
1 = e4π/3 = −z1 = −1

2
− i
√

3

2
.

Thus z2
1 + z4

1 = z2 + z4
1 = −1 and we have 1 + z2

1 + z4
1 = 0.

(b) z1 and z2 are simple poles of f(z).

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

1 + z2 + z4 =
1

2z1 + 4z3
1

.

As z3
1 = eiπ = −1 we have

Res(f, z1) =
1

2z1 − 4
=

1

−3 + i
√

3
=
−3− i

√
3

12
.

Similarly

Res(f, z2) = lim
z→z2

(z − z2)f(z) =
1

2z2 + 4z3
2

.

As z3
2 = 1 we have

Res(f, z2) =
1

2z2 + 4
=

1

3 + i
√

3
=

3− i
√

3

12
.

By the residue theorem∮
ΓR

f(z) dz = 2πi

(
−3− i

√
3

12
+

3− i
√

3

12

)
= 2πi

(
−2i

√
3

12

)
=

√
3π

3
.

(c) For |z| = R being large we have

|1 + z2 + z4| ≥ R4 −R2 − 1 and |f(z)| ≤ 1

R4 −R2 − 1
.

The length of the half circle is πR. By the ML inequality∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR

R4 −R2 − 1
→ 0 as R→∞.

(d) As the function f(z) is even we have, using the previous parts,∮
ΓR

f(z) dz = 2

∫ R

0

f(x) dx+

∫
C+
R

f(z) dz =

√
3π

3
.

Letting R→∞ gives ∫ ∞
0

f(x) dx =

√
3π

6
.
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7. The following was part of question 4 in the May 2021 MA3614 exam paper. This
part of the question was worth 10 marks.

Let C+
R denote the half circle with centre at 0 and radius R > 0 in the upper

half plane traversed in the anti-clockwise direction and let ΓR denote the closed
loop composed of the real interval [−R,R] followed by the half circle C+

R , that is
ΓR = [−R,R] ∪ C+

R . The half circle C+
R and the closed loop are illustrated in the

diagram below.

−R R

C+
R

x

y

In the following which function you consider depends on the 4th digit of your 7-digit
student id.. If your 4th digit is one of 0, 2, 4, 6, 8 then your function f(z) is on the
left hand side whilst if it is one of the digits 1, 3, 5, 7, 9 then your function f(z) is
on the right hand side.

f(z) =
4 + e3iz

1 + 2z2 (even digit case) or f(z) =
2− e5iz

1 + 3z2 (odd digit case).

(a) Give all the poles of your version of the function f(z) in the complex plane
and determine the residue at each pole in the upper half plane.

(b) For your version of f(z), determine, giving reasons, the value of

lim
R→∞

∫
C+
R

f(z) dz.

(c) For your version of f(z), determine, giving reasons, the value of the integrals∫ ∞
−∞

f(x) dx and

∫ ∞
−∞

Re(f(x)) dx.

Here Re(f(x)) means the real part of f(x).
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Solution

This is the version for a 4th digit of 0, 2, 4, 6, 8.

(a) The only poles of the function are when 1 + 2z2 = 0 and the points are

z1 =
i√
2
, z2 = − i√

2
.

Only z1 is in the upper half plane. z1 is a simple pole and then by L’Hopital’s
rule and properties of limits

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
(
4 + e3iz1

)
lim
z→z1

z − z1

1 + 2z2 =
4 + e3iz1

4z1

.

3iz1 = − 3√
2
, 4z1 = 2

√
2i, Res(f, z1) = −i

(
4 + e−3/

√
2

2
√

2

)
.

(b) When z = x+ iy ∈ C+
R , y ≥ 0, 3iz = −3y + 3ix. Thus

|e3iz| ≤ 1, and also |1 + 2z2| ≥ 2R2 − 1.

The length of C+
R is πR and on C+

R we have for sufficiently large R that

|f(z)| ≤ 4 + 1

2R2 − 1
=

5

2R2 − 1
.

By the ML inequality∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ 5πR

2R2 − 1
→ 0 as R→∞.

(c) As ΓR is the union of two parts the use of the residue theorem gives∫ R

−R
f(x) dx+

∫
C+
R

f(z)dz = 2πiRes(f, z1)

= 2π

(
4 + e−3/

√
2

2
√

2

)
= π

(
4 + e−3/

√
2

√
2

)
.

Letting R→∞ and using the result of part (ii) gives∫ ∞
−∞

f(x) dx = π

(
4 + e−3/

√
2

√
2

)
.

As the value is real we also have∫ ∞
−∞

Re(f(x)) dx = π

(
4 + e−3/

√
2

√
2

)
.
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This is the version for a 4th digit of 1, 3, 5, 7, 9.

(a) The only poles of the function are when 1 + 3z2 = 0 and the points are

z1 =
i√
3
, z2 = − i√

3
.

Only z1 is in the upper half plane. z1 is a simple pole and then by L’Hopital’s
rule and properties of limits

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
(
2− e5iz1

)
lim
z→z1

z − z1

1 + 3z2 =
2− e5iz1

6z1

.

5iz1 = − 5√
3
, 6z1 =

6√
3
i = 2

√
3i, Res(f, z1) = −i

(
2− e−5/

√
3

2
√

3

)
.

(b) When z = x+ iy ∈ C+
R , y ≥ 0, 5iz = −5y + 5ix. Thus

|e5iz| ≤ 1, and also |1 + 3z2| ≥ 3R2 − 1.

The length of C+
R is πR and on C+

R we have for sufficiently large R that

|f(z)| ≤ 2 + 1

3R2 − 1
=

3

3R2 − 1
.

By the ML inequality∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ 3πR

3R2 − 1
→ 0 as R→∞.

(c) As ΓR is the union of two parts the use of the residue theorem gives∫ R

−R
f(x) dx+

∫
C+
R

f(z)dz = 2πiRes(f, z1)

= 2π

(
2− e−5/

√
3

2
√

3

)
= π

(
2− e−5/

√
3

√
3

)
.

Letting R→∞ and using the result of part (ii) gives∫ ∞
−∞

f(x) dx = π

(
2− e−5/

√
3

√
3

)
.

As the value is real we also have∫ ∞
−∞

Re(f(x)) dx = π

(
2− e−5/

√
3

√
3

)
.
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8. The following was part of question 4 in the May 2020 MA3614 exam paper. This
part of the question was worth 9 marks.

Let C+
R denote the half circle with centre at 0 and radius R > 1 in the upper

half plane traversed in the anti-clockwise direction and let ΓR denote the closed
loop composed of the real interval [−R,R] followed by the half circle C+

R , that is
ΓR = [−R,R] ∪ C+

R . The half circle C+
R and the closed loop are illustrated in the

diagram below.

−R R

C+
R

x

y

Also let a > 0 and let

f(z) =
eiaz

4 + z2 .

(a) Show that ∫
C+
R

f(z) dz → 0 as R→∞.

(b) When R > 2 determine, giving reasons,∮
ΓR

f(z) dz.

(c) By giving appropriate reasoning, determine∫ ∞
−∞

f(x) dx.
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Solution

(a) Now if x+ iy ∈ C+
R then y ≥ 0 and

eiaz = eiaxe−ay and
∣∣eiaz∣∣ = e−ay ≤ 1.

When R > 2 the denominator in the expression for f(z) is bounded below by

|4 + z2| ≥ R2 − 4.

Hence on C+
R we have

|f(z)| ≤ 1

R2 − 4

and as the length of C+
R is πR the use of the ML inequality gives∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR

R2 − 4
→ 0 as R→∞.

(b) The function f(z) has simple poles at ±2i but only z1 = 2i is in the upper half
plane. z1 is inside ΓR when R > 2. By the residue theorem the value of the
loop integral is

2πiRes(f, z1).

Res(f, z1) = lim
z→z1

(z − z1)eiaz

4 + z2 = lim
z→z1

eiaz lim
z→z1

(z − z1)

4 + z2 =
e−2a

2z1

=
e−2a

4i
.

Thus the value is
πe−2a

2
.

(c) As the loop is the union of 2 parts we have, when R > 2,∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz =
πe−2a

2
.

Letting R→∞ and using the previous part gives∫ ∞
−∞

f(x) dx =
πe−2a

2
.

9. The following was part of question 4 in the May 2019 MA3614 exam paper. This
part of the question was worth 12 marks.

Let

f(z) =
1− eiz

z2(z2 + 1)
,

and for any ρ > 0 let C+
ρ =

{
ρeiθ : 0 ≤ θ ≤ π

}
denote an upper half circle. When

contour integrals are considered on such half circles, the direction of integration
corresponds to increasing θ. The notation −Cρ means the same path but in the
opposite direction. For this function, it can be shown that

lim
r→0

∫
C+
r

f(z) dz = π.
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(a) State all of the poles of f(z) and determine the residue at each pole.

(b) Explain why

lim
R→∞

∫
C+
R

f(z) dz = 0.

(c) For 0 < r < R, let ΓrR denote the closed loop

ΓrR = [r, R] ∪ C+
R ∪ [−R,−r] ∪ (−C+

r )

illustrated below.

x

y

−R −r 0 r R

−C+
r

C+
R

When r < 1 < R determine ∮
ΓrR

f(z) dz.

(d) By using the previous results, or otherwise, determine∫ ∞
0

1− cos(x)

x2(x2 + 1)
dx.

Solution

(a) f(z) has simple poles at the points 0 and ±i.

Res(f, 0) = lim
z→0

zf(z) =

(
1

z2 + 1

∣∣∣∣
z=0

)
lim
z→0

1− eiz

z
= −i,

Res(f, i) = lim
z→i

(z − i)f(z) =

((
1− eiz

z2

)∣∣∣∣
z=i

)(
lim
z→i

z − i
z2 + 1

)
= (e−1 − 1)

1

2i
=

(
1− e−1

2

)
i,

Res(f, −i) = lim
z→−i

(z + i)f(z) =

((
1− eiz

z2

)∣∣∣∣
z=−i

)(
lim
z→−i

z + i

z2 + 1

)
= (e− 1)

1

−2i
=

(
e− 1

2

)
i
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(b) The length of C+
R is πR. When z = x + iy with y ≥ 0, iz = −y + ix and

|eiz| = e−y ≤ 1.

With |z| = R > 1

|1− eiz| ≤ 2 and |z2(z2 + 1)| ≥ R2(R2 − 1).

Thus on the half circle

|f(z)| ≤ 2

R2(R2 − 1)
=: M

and by the ML inequality∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ 2πR

R2(R2 − 1)
=

2π

R(R2 − 1)
→ 0 as R→∞.

(c) The only pole inside the loop is at z = i and hence by the residue theorem∮
ΓrR

f(z) dz = 2πiRes(f, i) = −π
(
1− e−1

)
.

(d) When x ∈ R the real part of f(x) is

1− cos(x)

x2(x2 + 1)
.

As the loop is the union of 4 parts we have

−π
(
1− e−1

)
=

(∫ −r
−R

+

∫ R

r

)
f(x) dx+

∫
C+
R

f(z) dz −
∫
C+
r

f(z) dz.

Letting R→∞ and r → 0 and using previous results we have∫ ∞
−∞

f(x) dx = πe−1.

As f(x) is even it follows that∫ ∞
0

f(x) dx =
πe−1

2
.

10. By using the same contour ΓrR as in question 9 show that∫ ∞
0

sin(2x)

x(x2 + 1)2 dx = π

(
1

2
− 1

e2

)
.

Solution
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If we let

f(z) =
e2iz

z(z2 + 1)2

then our integrand is given by

sin(2x)

x(x2 + 1)2 = Im
e2ix

x(x2 + 1)2 = Imf(x).

Imf(x) is even in x and thus∫ ∞
0

sin(2x)

x(x2 + 1)2 dx =
1

2

∫ ∞
−∞

sin(2x)

x(x2 + 1)2 dx.

f(z) has a simple pole at z = z0 = 0 and double poles at ±i but we only need to
consider the pole at z1 = i which is in the upper half plane.

Let ΓrR denote the indented loop. When we take 0 < r < 1 < R the function f(z)
only has one pole inside the this loop and thus by the residue theorem∮

ΓrR

f(z) dz = 2πiRes(f, z1).

As ΓrR is the union of two half circles and part of the real line we also have∮
ΓrR

f(z) dz =

(∫ −r
−R

+

∫ R

r

)
f(x) dx−

∫
C+
r

f(z) dz +

∫
C+
R

f(z) dz.

From the result in question 2 we have

lim
r→0

∫
C+
r

f(z) dz = πiRes(f, z0).

Hence if we can show that

lim
R→∞

∫
C+
R

f(z) dz = 0

then

2πiRes(f, z1) =

∫ ∞
−∞

f(x) dx− πiRes(f, z0)

so that our result is

Im

∫ ∞
0

f(x) dx =
1

2
Im (2πiRes(f, z1) + πiRes(f, z0)) .

We first explain why the integral on C+
R tends to 0 as R→∞. Let z = x+ iy ∈ C+

R

and thus |z| = R and y ≥ 0. This implies that 2iz = −2y+2ix and |e2iz| = e−2y ≤ 1.
Thus

|f(z)| ≤ 1

R(R2 − 1)2
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and as the length of C+
R is πR the ML inequality gives∣∣∣∣∣

∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR

R(R2 − 1)2 =
π

(R2 − 1)2 → 0 as R→∞.

For the residue at z0 = 0 we have

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

e2iz

(z2 + 1)2 = 1.

For the double pole at zi = i we first note that z2 + 1 = (z + i)(z − i) so that

(z − i)2f(z) =
e2iz

z

1

(z + i)2 = c−2 + c−1(z − i) + · · ·

and
Res(f, i) = c−1 =

(
(z − i)2f(z)

)′∣∣∣
z=i

.

Now for the derivative

(
(z − i)2f(z)

)′
=

(
e2iz

z

)(
−2

(z + i)3

)
+

(
e2iz

z

)′(
1

(z + i)2

)
.

with (
e2iz

z

)′
=
z(2ie2iz)− e2iz

z2 .

We just need the value at i and this is given by

Res(f, i) =

(
e−2

i

)(
−2

(2i)3

)
+

(
−2e−2 − e−2

−1

)(
1

(2i)2

)
=

e−2

4
(−1− 3) = −e−2.

Both residues are real and thus

Im

∫ ∞
0

f(x) dx =
1

2
(2πRes(f, z1) + πRes(f, z0)) = π

(
−e−2 +

1

2

)
as required.

11. Evaluate the following integral.∫ ∞
0

dx

(x2 + a2)2 , a > 0.

Solution

Let

f(z) =
1

(z2 + a2)2 .
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This function is even and

I =

∫ ∞
0

dx

(x2 + a2)2 =
1

2

∫ ∞
−∞

dx

(x2 + a2)2 .

Let ΓR = [−R,R]∪C+
R denote the closed contour with C+

R denoting the upper half
circle with centre at 0 and radius R. The length of C+

R in πR and for z ∈ C+
R we

have

|f(z)| ≤ 1

(R2 − a2)2

which gives ∣∣∣∣∣
∫
C+
R

f(z) dz

∣∣∣∣∣ ≤ πR

(R2 − a2)2 → 0 as R→∞.

As z2 + a2 = (z + ai)(z − ai) we have

1

(z2 + a2)2 =
1

(z + ai)2(z − ai)2 .

This has double poles at ±ai with z1 = ai being in the upper half plane.

By considering the closed loop and the residue theorem we have∮
ΓR

f(z) dz =

∫ R

−R
f(x) dx+

∫
C+
R

f(z) dz = 2πiRes(f, z1).

To get the residue note that

(z − z1)2f(z) =
1

(z + ai)2 = a−2 + a−1(z − z1) + · · ·

which gives

a−1 =

(
1

(z + ai)2

)′∣∣∣∣
z=ai

=
−2

(z + ai)3

∣∣∣∣
z=ai

=
−2

(2ai)3 =
1

4a3i
.

Thus ∫ ∞
−∞

f(x) dx = 2πi

(
1

4a3i

)
=

π

2a3

and ∫ ∞
0

f(x) dx =
π

4a3 .

12. Let a function f(z) and a quarter circle Cq
R of radius R > 2 be given by

f(z) =
1

z4 + 16
, and Cq

R =
{
Reit : 0 ≤ t ≤ π/2

}
.

Also let ΓR denote the closed loop composed of the real interval [0, R] followed by
the quarter circle Cq

R and followed by the segment γR of the imaginary axis from Ri
to 0 as illustrated illustrated in the diagram.
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R

Ri

γR

0

Cq
R

x

y

(a) Explain why

lim
R→∞

∫
CqR

f(z) dz = 0.

(b) Determine ∮
ΓR

f(z) dz.

(c) Explain why ∫
γR

f(z) dz = −i
∫ R

0

f(x) dx.

(d) Using your previous results, or otherwise, to evaluate the real integral∫ ∞
0

1

x4 + 16
dx.

Solution

(a)

f(z) =
1

z4 + 16
.

When |z| = R and R is large the magnitude of the denominator is bounded
below by

R4 − 16

and hence

|f(z)| ≤ 1

R4 − 16
.

The length of the quarter circle is πR/2. By the ML inequality we have∣∣∣∣∣
∫
CqR

f(z) dz

∣∣∣∣∣ ≤ πR/2

R4 − 16
→ 0 as R→∞.
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(b) f(z) has simple poles when z4 = −16 = −24 and thus f(z) has 4 simple poles
on the circle |z| = 2. There is one simple pole inside the quarter circle at

z1 = 2eiπ/4 =
√

2(1 + i).

Let I denote the loop integral. By the residue theorem

I = 2πiRes(f, z1).

Res(f, z1) = lim
z→z1

(z − z1)f(z) = lim
z→z1

z − z1

z4 + 4

=
1

4z3
1

=
z1

4z4
1

= − z1

64
.

Hence

I = −2πi
z1

64
=

√
2π

64
(−i)(1 + i) =

√
2π

32
(1− i).

(c) We consider first the integral on −γR = {z(t) = it : 0 ≤ t ≤ R}.

z(t) = it, z′(t) = i, f(z(t)) =
1

1 + (it)4 =
1

1 + t4
.

Thus by the definition of the integral on −γR we have∫
γR

f(z) dz = −
∫
−γR

f(z) dz = −
∫
−γR

f(z(t))z′(t) dt = −
∫ R

0

1

1 + t4
dt.

(d) As ΓR is the union of 3 parts we have

I =

∮
ΓR

f(z) dz =

∫ R

0

f(x) dx+

∫
CqR

f(z) dz +

∫
γR

f(z) dz

= (1− i)
∫ R

0

f(x) +

∫
CqR

f(z) dz.

Letting R→∞ and using the result of part (i) we have

lim
R→∞

∮
ΓR

f(z) dz = (1− i)
∫ ∞

0

f(x) dx.

Thus ∫ ∞
0

f(x) dx =

√
2π

32
.
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13. Let f(z) be a function which is analytic except for a finite number of isolated
singularities and let

g(z) = π cot(πz) f(z).

(a) Show that if f(z) does not have an isolated singularity at the integer n then

Res(g, n) = f(n).

(b) In the case f(z) = 1/z2 show that

Res(g, 0) = −π
2

3
.

(c) Let ΓN be the square with vertices at (N + 0.5)(±1± i). It can be shown that
there is a constant A > 0 independent of N such that |π cot(πz)| ≤ A for all
z ∈ ΓN . In the case that f(z) = 1/z2 show that∫

ΓN

g(z) dz → 0 as N →∞.

By using this result show that

∞∑
n=1

1

n2 =
π2

6
.

Solution

(a) cot(πz) has simple zeros at the integers and if f(z) is analytic and non-zero at
an an integer n then g(z) = π cot(πz) f(z) has a simple pole at z = n.

Res(g, n) = lim
z→n

(z − n)g(z) = lim
z→n

(z − n)π
cos(πz)

sin(πz)
f(z)

= π cos(nπ)f(n) lim
z→n

z − n
sin(πz)

= π cos(nπ)f(n)
1

cos(nπ)
= f(n).

(b) As f(z) = 1/z2 has a double pole at z = 0 and cos(πz) has a simple pole at
z = 0 the g(z) has a pole of order 3 at z = 0, We can get the residue at z = 0
by considering the series. Now as sin w only involves odd powers and cos w
only involves even powers the Laurent series for cot w only involves odd powers
and with

cot w =
a−1

w
+ a1w + · · ·

the relation cot w sin w = cos w gives(a−1

w
+ a1w + · · ·

)(
w − w3

6
+ · · ·

)
= 1− w2

2
+ · · ·
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Equating the constant terms gives

a−1 = 1.

Equating the w2 terms gives

a1 −
a−1

6
= −1

2
, a1 = −1

2
+
a−1

6
= −1

2
+

1

6
= −1

3
.

Thus

cot(πz) =
1

πz
− πz

3
+ · · ·

and

g(z) = π

(
1

πz3 −
π

3z
+ · · ·

)
and hence

Res(g, 0) = −π
2

3
.

(c) The closed contour ΓN is shown below and is such that it crosses the real line
at points where g(z) is zero.

(−N − 1
2 ,−N −

1
2) (N + 1

2 ,−N −
1
2)

(−N − 1
2 , N + 1

2) (N + 1
2 , N + 1

2)

We are given that π cot(πz) is bounded on ΓN and thus

|g(z)| ≤ A|f(z)| ≤ A

N2 .
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Each of the 4 sides on ΓN has length 2N + 1 and thus∣∣∣∣∮
ΓN

g(z) dz

∣∣∣∣ ≤ 4(2N + 1)
A

N2 → 0 as N →∞.

Inside the closed loop ΓN there are singularities at z = 0 and ±1,±2, . . . ,±N .
By the residue theorem∮

ΓN

g(z) dz = 2πi

(
Res(g, 0) +

N∑
k=1

(Res(g, −k) + Res(g, k))

)
.

As f(z) is even

Res(g, −k) = Res(g, k) = f(k) =
1

k2 , k ≥ 1.

Letting N → ∞ and using the result that the integral around ΓN tends to 0
gives

2
∞∑
k=1

1

k2 − Res(g, 0) = 2
∞∑
k=1

1

k2 −
π2

3
= 0

and the result follows.

14. (a) Let x and y be real. Determine the following limits.

lim
y→∞

tan(x+ iy) and lim
y→∞

tan(x− iy).

(b) Let ΓL denotes the straight line segment from π + iL to iL where L > 0.
Determine

lim
L→∞

∫
ΓL

tan z dz.

(c) By considering a closed loop in the anti-clockwise direction which is the rect-
angle with vertices 0, π, π + iL and iL show that when a ∈ R and a 6= 0 we
have ∫ π

0

tan(θ + ia) dθ =

{
πi, when a > 0,

−πi, when a < 0.



2024:03:02:22:18:13 c© M. K. Warby MA3614 Complex variable methods and applications 25

Solution

(a)

tan(z) =
sin(z)

cos(z)
=

1

i

(
eiz − e−iz

eiz + e−iz

)
=

1

i

(
e2iz − 1

e2iz + 1

)
=

1

i

(
1− e−2iz

1 + e−2iz

)
.

With z = x+ iy, iz = −y + ix and |eiz| = e−y, |e−iz| = ey.

As y →∞ we have |eiz| → 0 and hence tan(x+ iy)→ i.

As y → −∞ we have |e−iz| → 0. and hence tan(x+ iy)→ −i.
(b) Let

JL =

∫
ΓL

tan zdz =

∫ 0

π

tan(x+ iL) dx = −
∫ π

0

tan(x+ iL) dx.

JL + iπ =

∫ π

0

(i− tan(x+ iL)) dx→ 0 as L→∞.

Thus JL → −iπ as L→∞.

(c) The function f(z) = tan(z + ia) has simple poles at points such that

z + ia =
π

2
+mπ, m ∈ Z.

Let RL denote the rectangular loop. When a > 0 these points are in the lower
half plane and hence are not inside the loop RL and in this case∫

RL

tan(z + ia) dz = 0.

When a < 0 there is one simple pole at z1 = π/2− ia inside the loop and∫
RL

tan(z + ia) dz = 2πiRes(f, z1).

For the residue

lim
z→z1

(z − z1)
sin(z + ia)

cos(z + ia)
= sin(z + ia) lim

z→z1

z − z1

cos(z + ia)
= −1.

Thus when a < 0 ∫
RL

tan(z + ia) dz = −2πi.

The rectangle has 4 sides and the sides parallel to the imaginary axis the
periodic property of tan(z) implies that

f(iy) = f(π + iy).
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The integral on the part from π to π + iL is in the opposite direction to the
integral from iL to 0 and thus the contribution to the loop integral from these
two sides is 0. Thus by considering the other two sides gives∫ π

0

tan(θ + ia) dθ + JL =

{
0 if a > 0,

−2πi if a < 0.

By letting L → ∞ and using the result of part (b) that JL → −πi gives the
result.


