Exercises involving the use of residue theory

Question 1 is a trig. integral and similar to what was asked in the exercises associated with chapter 5. The past exam questions in questions 5 and 6 just involve rational functions of z and be tackled as a result of what is taught in the first week of the material on chapter 8, i.e. from what is taught in week 23 . Question 12 is a slight variation of something in the lecture notes with the difference here that a quarter of a circle is used instead of a half circle. Question 11 also just involves a rational function but has the additional difficulty in that the residue at a double pole must be obtained.

The past exam questions in questions 7,8 , and 9 all have an integrand which contains an $\exp ($.$) term and the material on this should be taught in week 24$. Questions 2, 3, 4 and 10 all involve indented contours and the material on this should be taught in week 24 . In the case of question 10 there is the additional difficulty of a double pole as well.

Questions 14 and 13 involve loops which are respectively a rectangle and a square. These can be considered at any time although they may be considered as among the more difficult questions.

1. Show the following by first using the substitution $z=\mathrm{e}^{i \theta}$.

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta}=\frac{2 \pi}{3}
$$

Solution

This is a trigonometric integral and the substitution $z=\mathrm{e}^{i \theta}$ gives a closed loop integral involving the unit circle traversed once in the anti-clockwise direction. We have

$$
\begin{gathered}
z=\mathrm{e}^{i \theta}, \quad \frac{\mathrm{~d} z}{\mathrm{~d} \theta}=i z, \quad \frac{\mathrm{~d} \theta}{\mathrm{~d} z}=\frac{1}{i z}, \quad 4 \sin (\theta)=\frac{2}{i}\left(z-\frac{1}{z}\right) . \\
\left(\frac{1}{5+4 \sin \theta}\right) \frac{\mathrm{d} \theta}{\mathrm{~d} z}=\frac{1}{i} F(z),
\end{gathered}
$$

where

$$
F(z)=\frac{1}{z}\left(\frac{1}{5+\frac{2}{i}\left(z-\frac{1}{z}\right)}\right)=\frac{1}{5 z-2 i\left(z^{2}-1\right)}
$$

Now

$$
5 z-2 i\left(z^{2}-1\right)=-i\left(2 z^{2}+5 i z-2\right)=-i(2 z+i)(z+2 i)
$$

$F(z)$ has a simple pole inside the unit circle at $z=-i / 2$ and for the residue the use of L'Hopital's rule gives

$$
\begin{aligned}
\operatorname{Res}(F,-i / 2) & =\lim _{z \rightarrow-i / 2}(z+i / 2) F(z) \\
& =\left.\frac{1}{5-4 i z}\right|_{z=-i / 2}=\frac{1}{5-4 i(-i / 2)}=\frac{1}{5-2}=\frac{1}{3} .
\end{aligned}
$$

By the Residue theorem

$$
\int_{0}^{2 \pi} \frac{\mathrm{~d} \theta}{5+4 \sin \theta}=2 \pi \operatorname{Res}(F,-i / 2)=\frac{2 \pi}{3} .
$$

2. Suppose that $f(z)$ is analytic in an annulus $\left\{z: 0<\left|z-x_{0}\right|<r\right\}$ and has a simple pole at $x_{0} \in \mathbb{R}$. Let $0<\epsilon<r$ and let $C_{\epsilon}^{+}=\left\{x_{0}+\epsilon \mathrm{e}^{i \theta}: 0 \leq \theta \leq \pi\right\}$ denote a half circle with centre at x_{0} and radius ϵ. If the half circle is traversed once in the anti-clockwise direction then show that

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}^{+}} f(z) \mathrm{d} z=\pi i \operatorname{Res}\left(f, x_{0}\right) .
$$

Solution

The function $f(z)$ has a Laurent series

$$
f(z)=\frac{a_{-1}}{z-x_{0}}+\sum_{n=0}^{\infty} a_{n}\left(z-x_{0}\right)^{n}
$$

Let

$$
g(z)=\sum_{n=0}^{\infty} a_{n}\left(z-x_{0}\right)^{n} .
$$

This defines an analytic function.

$$
\int_{C_{\epsilon}} f(z) \mathrm{d} z=a_{-1} \int_{C_{\epsilon}} \frac{\mathrm{d} z}{z-x_{0}}+\int_{C_{\epsilon}} g(z) \mathrm{d} z .
$$

As $g(z)$ is analytic in the vicinity of x_{0} it is bounded in magnitude by a constant M. By the $M L$ inequality

$$
\left|\int_{C_{\epsilon}} g(z) \mathrm{d} z\right| \leq \pi \epsilon M \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

With the parametrization $z(t)=x_{0}+\epsilon \mathrm{e}^{i t}$ we have

$$
\int_{C_{\epsilon}} \frac{\mathrm{d} z}{z-x_{0}}=\int_{0}^{\pi} i \mathrm{~d} t=\pi i .
$$

Hence

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) \mathrm{d} z=\pi i a_{-1} .
$$

3. Show the following.

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{\cos (3 x)}{x-1} \mathrm{~d} x=-\pi \sin (3) \quad \text { and } \quad \text { p.v. } \int_{-\infty}^{\infty} \frac{\sin (3 x)}{x-1} \mathrm{~d} x=\pi \cos (3) .
$$

Solution

Let

$$
f(z)=\frac{\mathrm{e}^{3 i z}}{z-1}
$$

Consider the indented contour shown below with C_{R}^{+}denoting the outer circle of radiius R considered in the anti-clockwise sense and also let C_{ϵ}^{+}denote the half circle centered at 1 of radius ϵ considered in the anti-clockwise sence. The closed contour is

$$
\Gamma_{R}=C_{R}^{+} \cup[-R, 1-\epsilon] \cup\left(-C_{\epsilon}^{+}\right) \cup[1+\epsilon, R]
$$

and hence as $f(z)$ is analytic inside the contour

$$
\left(\int_{-R}^{1-\epsilon}+\int_{1+\epsilon}^{R}\right) f(x) \mathrm{d} x+\int_{C_{R}} f(z) h d z=\int_{C_{\epsilon}} f(z) h d z .
$$

By Jordan's lemma

$$
\int_{C_{R}} f(z) \mathrm{d} z \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

By the result of the previous question

$$
\begin{gathered}
\int_{C_{\epsilon}} f(z) \mathrm{d} z \rightarrow \pi i \operatorname{Res}(f, 1) \quad \text { as } \epsilon \rightarrow 0 . \\
\lim _{R \rightarrow \infty, \epsilon \rightarrow 0}\left(\int_{-R}^{1-\epsilon}+\int_{1+\epsilon}^{R}\right) f(x) \mathrm{d} x=\pi i \operatorname{Res}(f, 1)=\pi i \mathrm{e}^{3 i}=\pi(-\sin (3)+i \cos (3)) .
\end{gathered}
$$

By taking the real an imaginary parts gives the stated results.
4. Verify that

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x=\frac{\pi}{2}
$$

Solution

First note that the integrand is even and that

$$
\sin ^{2} x=\frac{1-\cos (2 x)}{2}
$$

Thus

$$
\begin{aligned}
I & =\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{4} \int_{-\infty}^{\infty} \frac{1-\cos (2 x)}{x^{2}} \mathrm{~d} x \\
& =\frac{1}{4} \operatorname{Re} \text { p.v. } \int_{-\infty}^{\infty} \frac{1-\mathrm{e}^{2 i x}}{x^{2}} \mathrm{~d} x .
\end{aligned}
$$

The principal value is needed here as the imaginary part has a pole at $x=0$. Let

$$
f(z)=\frac{1-\mathrm{e}^{2 i z}}{z^{2}}
$$

Let $0<\epsilon<R$ and let

$$
\Gamma_{R}=[-R,-\epsilon] \cup\left(-C_{\epsilon}^{+}\right) \cup[\epsilon, R] \cup C_{R}^{+}
$$

where C_{ϵ}^{+}and C_{R}^{+}be half circles of radius ϵ and R respectively in the upper half plane as illustrated in the following diagram.

The function $f(z)$ is analytic inside Γ_{R} and hence

$$
\begin{equation*}
\int_{-R}^{-\epsilon} f(x) \mathrm{d} x+\int_{-C_{\epsilon}^{+}} f(z) \mathrm{d} z+\int_{\epsilon}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=0 . \tag{*}
\end{equation*}
$$

On C_{R}^{+}we have

$$
\left|1-\mathrm{e}^{2 i z}\right| \leq 2 \quad \text { and } \quad|f(z)| \leq \frac{2}{R^{2}}
$$

As the length of C_{R}^{+}is πR we have

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{2 \pi R}{R^{2}}=\frac{2 \pi}{R} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

Thus letting $R \rightarrow \infty$ in (*) gives

$$
\int_{-\infty}^{-\epsilon} f(x) \mathrm{d} x+\int_{\epsilon}^{\infty} f(x) \mathrm{d} x=\int_{C_{\epsilon}^{+}} f(z) \mathrm{d} z .
$$

Now $f(z)$ has a simple pole at $z=0$ and we can get the Laurent series as follows.

$$
\begin{aligned}
\mathrm{e}^{2 i z} & =1+(2 i z)+\frac{(2 i z)^{2}}{2}+\cdots \\
1-\mathrm{e}^{2 i z} & =-(2 i z)-\frac{(2 i z)^{2}}{2}+\cdots \\
\frac{1-\mathrm{e}^{2 i z}}{z^{2}} & =-\frac{2 i}{z} \text { - analytic function. }
\end{aligned}
$$

If we let $z=\epsilon \mathrm{e}^{i \theta}$ then

$$
\int_{C_{\epsilon}^{+}} \frac{1}{z} \mathrm{~d} z=i \int_{0}^{\pi} \mathrm{d} \theta=i \pi .
$$

From this it follows that

$$
\int_{C_{\epsilon}^{+}} f(z) \mathrm{d} z \rightarrow(\pi i)(-2 i)=2 \pi \quad \text { as } \epsilon \rightarrow 0
$$

Hence

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{1-\mathrm{e}^{2 i x}}{x^{2}} \mathrm{~d} x=2 \pi
$$

and as this is real we get

$$
I=\left(\frac{1}{4}\right) 2 \pi=\frac{\pi}{2}
$$

5. The following was part of question 4 in the May 2023 MA3614 exam paper. This part of the question was worth 9 marks of the 20 marks in the entire question.
Let a, b and c be real numbers with $a>0$ and let

$$
f(z)=\frac{1}{a z^{2}+b z+c} .
$$

(a) When $b^{2} \neq 4 a c$ indicate all the poles of $f(z)$ and determine the residue at each pole. Similarly, in the case $b^{2}=4 a c$ indicate all the poles of $f(z)$ and determine the residue at each pole.
(b) Let C_{R} denote the circle with centre 0 and radius $R>0$ traversed once in the anti-clockwise sense. By any means explain why

$$
\oint_{C_{R}} f(z) \mathrm{d} z=0
$$

when R is sufficiently large.
(c) Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>0$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

Use the $M L$ inequality to explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z=0
$$

Further, in the case $4 a c>b^{2}$ use the loop Γ_{R} to determine an expression in terms of a, b and c of the value

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x .
$$

You need to explain all your steps.

Solution

(a) By the quadratic formula $f(z)$ has poles at

$$
z_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}, \quad z_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

When $b^{2} \neq 4 a c$ these points are distinct and we have simple poles. By L'Hopital's rule the residues are

$$
\begin{aligned}
& \operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{a z^{2}+b z+c}=\frac{1}{2 a z_{1}+b}=-\frac{1}{\sqrt{b^{2}-4 a c}}, \\
& \operatorname{Res}\left(f, z_{2}\right)=\lim _{z \rightarrow z_{2}} \frac{z-z_{2}}{a z^{2}+b z+c}=\frac{1}{2 a z_{2}+b}=\frac{1}{\sqrt{b^{2}-4 a c}} .
\end{aligned}
$$

When $b^{2}=4 a c$ we have $z_{1}=z_{2}=-b /(2 a)$ and

$$
f(z)=\frac{1}{a\left(z-z_{1}\right)^{2}} .
$$

We just have one double pole and the residue is 0 .
(b) When $b^{2}=4 a c$ there is no residue and when $z_{1} \neq z_{2}$ the sum of the residues is 0 . The poles are inside C_{R} when R is sufficiently large. By the residue theorem the integral is 0 .
(c) Let z be such that $|z|=R$.

$$
\left|a z^{2}\right|=a R^{2}, \quad|b z+c| \leq|b| R+|c|, \quad\left|a z^{2}+b z+c\right| \geq a R^{2}-(|b| R+|c|) .
$$

The right hand side is positive when R is sufficiently large and

$$
|f(z)| \leq \frac{1}{a R^{2}-(|b| R+|c|)}=: M
$$

The length of C_{R}^{+}is $L=\pi R$. By the $M L$ inequality

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq M L=\frac{\pi R}{a R^{2}-(|b| R+|c|)} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

When $4 a c>b^{2}$ the simple poles of $f(z)$ are a complex conjugate pair and the one in the upper half plane is

$$
z_{2}=\frac{-b+i \sqrt{4 a c-b^{2}}}{2 a}
$$

When R is sufficiently large this point is inside Γ_{R} and by the residue theorem

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f, z_{2}\right)=\frac{2 \pi i}{i \sqrt{4 a c-b^{2}}}=\frac{2 \pi}{\sqrt{4 a c-b^{2}}}
$$

As $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$we have for sufficiently large R that

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=\frac{2 \pi}{\sqrt{4 a c-b^{2}}}
$$

Letting $R \rightarrow \infty$ and using the result about the integral on C_{R}^{+}tending to 0 we have

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\frac{2 \pi}{\sqrt{4 a c-b^{2}}}
$$

6. The following was part of question 4 in the May 2022 MA3614 exam paper. This part of the question was worth 10 marks.
Let

$$
f(z)=\frac{1}{1+z^{2}+z^{4}} .
$$

Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>1$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

(a) The function $f(z)$ has simple poles at the points $\pm z_{1}$ and $\pm z_{2}$ where $z_{1}=\mathrm{e}^{i \pi / 3}$ and $z_{2}=\mathrm{e}^{i 2 \pi / 3}$. Indicate which two points are in the upper half plane, give the cartesian form of these points and give workings to confirm that $1+z_{1}^{2}+z_{1}^{4}=0$.
(b) Determine the residue at each of the two simple poles in the upper half plane and determine

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z .
$$

(c) Determine, giving reasons, the value of

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z
$$

(d) By using the loop Γ_{R}, determine

$$
\int_{0}^{\infty} f(x) \mathrm{d} x .
$$

Solution

(a) The points z_{1} and $z_{2}=z_{1}^{2}$ are in the upper half plane.

$$
\begin{aligned}
z_{1}=\cos (\pi / 3)+i \sin (\pi / 3) & =\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad z_{2}=\cos (2 \pi / 3)+i \sin (2 \pi / 3)=-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \\
z_{1}^{4} & =\mathrm{e}^{4 \pi / 3}=-z_{1}=-\frac{1}{2}-i \frac{\sqrt{3}}{2} .
\end{aligned}
$$

Thus $z_{1}^{2}+z_{1}^{4}=z_{2}+z_{1}^{4}=-1$ and we have $1+z_{1}^{2}+z_{1}^{4}=0$.
(b) z_{1} and z_{2} are simple poles of $f(z)$.

$$
\operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) f(z)=\lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{1+z^{2}+z^{4}}=\frac{1}{2 z_{1}+4 z_{1}^{3}} .
$$

As $z_{1}^{3}=\mathrm{e}^{i \pi}=-1$ we have

$$
\operatorname{Res}\left(f, z_{1}\right)=\frac{1}{2 z_{1}-4}=\frac{1}{-3+i \sqrt{3}}=\frac{-3-i \sqrt{3}}{12} .
$$

Similarly

$$
\operatorname{Res}\left(f, z_{2}\right)=\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) f(z)=\frac{1}{2 z_{2}+4 z_{2}^{3}} .
$$

As $z_{2}^{3}=1$ we have

$$
\operatorname{Res}\left(f, z_{2}\right)=\frac{1}{2 z_{2}+4}=\frac{1}{3+i \sqrt{3}}=\frac{3-i \sqrt{3}}{12} .
$$

By the residue theorem

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=2 \pi i\left(\frac{-3-i \sqrt{3}}{12}+\frac{3-i \sqrt{3}}{12}\right)=2 \pi i\left(-2 i \frac{\sqrt{3}}{12}\right)=\frac{\sqrt{3} \pi}{3} .
$$

(c) For $|z|=R$ being large we have

$$
\left|1+z^{2}+z^{4}\right| \geq R^{4}-R^{2}-1 \quad \text { and } \quad|f(z)| \leq \frac{1}{R^{4}-R^{2}-1}
$$

The length of the half circle is πR. By the $M L$ inequality

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{\pi R}{R^{4}-R^{2}-1} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(d) As the function $f(z)$ is even we have, using the previous parts,

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=2 \int_{0}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=\frac{\sqrt{3} \pi}{3} .
$$

Letting $R \rightarrow \infty$ gives

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{\sqrt{3} \pi}{6}
$$

7. The following was part of question 4 in the May 2021 MA3614 exam paper. This part of the question was worth 10 marks.
Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>0$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}, that is $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

In the following which function you consider depends on the 4th digit of your 7-digit student id.. If your 4th digit is one of $0,2,4,6,8$ then your function $f(z)$ is on the left hand side whilst if it is one of the digits $1,3,5,7,9$ then your function $f(z)$ is on the right hand side.
$f(z)=\frac{4+\mathrm{e}^{3 i z}}{1+2 z^{2}} \quad$ (even digit case) \quad or $\quad f(z)=\frac{2-\mathrm{e}^{5 i z}}{1+3 z^{2}} \quad$ (odd digit case).
(a) Give all the poles of your version of the function $f(z)$ in the complex plane and determine the residue at each pole in the upper half plane.
(b) For your version of $f(z)$, determine, giving reasons, the value of

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z
$$

(c) For your version of $f(z)$, determine, giving reasons, the value of the integrals

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x \quad \text { and } \quad \int_{-\infty}^{\infty} \operatorname{Re}(f(x)) \mathrm{d} x .
$$

Here $\operatorname{Re}(f(x))$ means the real part of $f(x)$.

Solution

This is the version for a 4 th digit of $0,2,4,6,8$.
(a) The only poles of the function are when $1+2 z^{2}=0$ and the points are

$$
z_{1}=\frac{i}{\sqrt{2}}, \quad z_{2}=-\frac{i}{\sqrt{2}} .
$$

Only z_{1} is in the upper half plane. z_{1} is a simple pole and then by L'Hopital's rule and properties of limits

$$
\begin{gathered}
\operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) f(z)=\left(4+\mathrm{e}^{3 i z_{1}}\right) \lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{1+2 z^{2}}=\frac{4+\mathrm{e}^{3 i z_{1}}}{4 z_{1}} \\
3 i z_{1}=-\frac{3}{\sqrt{2}}, \quad 4 z_{1}=2 \sqrt{2} i, \quad \operatorname{Res}\left(f, z_{1}\right)=-i\left(\frac{4+\mathrm{e}^{-3 / \sqrt{2}}}{2 \sqrt{2}}\right)
\end{gathered}
$$

(b) When $z=x+i y \in C_{R}^{+}, y \geq 0,3 i z=-3 y+3 i x$. Thus

$$
\left|\mathrm{e}^{3 i z}\right| \leq 1, \quad \text { and also }\left|1+2 z^{2}\right| \geq 2 R^{2}-1
$$

The length of C_{R}^{+}is πR and on C_{R}^{+}we have for sufficiently large R that

$$
|f(z)| \leq \frac{4+1}{2 R^{2}-1}=\frac{5}{2 R^{2}-1}
$$

By the $M L$ inequality

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{5 \pi R}{2 R^{2}-1} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

(c) As Γ_{R} is the union of two parts the use of the residue theorem gives

$$
\begin{aligned}
\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z & =2 \pi i \operatorname{Res}\left(f, z_{1}\right) \\
& =2 \pi\left(\frac{4+\mathrm{e}^{-3 / \sqrt{2}}}{2 \sqrt{2}}\right)=\pi\left(\frac{4+\mathrm{e}^{-3 / \sqrt{2}}}{\sqrt{2}}\right) .
\end{aligned}
$$

Letting $R \rightarrow \infty$ and using the result of part (ii) gives

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\pi\left(\frac{4+\mathrm{e}^{-3 / \sqrt{2}}}{\sqrt{2}}\right) .
$$

As the value is real we also have

$$
\int_{-\infty}^{\infty} \operatorname{Re}(f(x)) \mathrm{d} x=\pi\left(\frac{4+\mathrm{e}^{-3 / \sqrt{2}}}{\sqrt{2}}\right) .
$$

This is the version for a 4 th digit of $1,3,5,7,9$.
(a) The only poles of the function are when $1+3 z^{2}=0$ and the points are

$$
z_{1}=\frac{i}{\sqrt{3}}, \quad z_{2}=-\frac{i}{\sqrt{3}} .
$$

Only z_{1} is in the upper half plane. z_{1} is a simple pole and then by L'Hopital's rule and properties of limits

$$
\begin{aligned}
& \operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) f(z)=\left(2-\mathrm{e}^{5 i z_{1}}\right) \lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{1+3 z^{2}}=\frac{2-\mathrm{e}^{5 i z_{1}}}{6 z_{1}} \\
& 5 i z_{1}=-\frac{5}{\sqrt{3}}, \quad 6 z_{1}=\frac{6}{\sqrt{3}} i=2 \sqrt{3} i, \quad \operatorname{Res}\left(f, z_{1}\right)=-i\left(\frac{2-\mathrm{e}^{-5 / \sqrt{3}}}{2 \sqrt{3}}\right)
\end{aligned}
$$

(b) When $z=x+i y \in C_{R}^{+}, y \geq 0,5 i z=-5 y+5 i x$. Thus

$$
\left|\mathrm{e}^{5 i z}\right| \leq 1, \quad \text { and also }\left|1+3 z^{2}\right| \geq 3 R^{2}-1
$$

The length of C_{R}^{+}is πR and on C_{R}^{+}we have for sufficiently large R that

$$
|f(z)| \leq \frac{2+1}{3 R^{2}-1}=\frac{3}{3 R^{2}-1}
$$

By the $M L$ inequality

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{3 \pi R}{3 R^{2}-1} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(c) As Γ_{R} is the union of two parts the use of the residue theorem gives

$$
\begin{aligned}
\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z & =2 \pi i \operatorname{Res}\left(f, z_{1}\right) \\
& =2 \pi\left(\frac{2-\mathrm{e}^{-5 / \sqrt{3}}}{2 \sqrt{3}}\right)=\pi\left(\frac{2-\mathrm{e}^{-5 / \sqrt{3}}}{\sqrt{3}}\right) .
\end{aligned}
$$

Letting $R \rightarrow \infty$ and using the result of part (ii) gives

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\pi\left(\frac{2-\mathrm{e}^{-5 / \sqrt{3}}}{\sqrt{3}}\right) .
$$

As the value is real we also have

$$
\int_{-\infty}^{\infty} \operatorname{Re}(f(x)) \mathrm{d} x=\pi\left(\frac{2-\mathrm{e}^{-5 / \sqrt{3}}}{\sqrt{3}}\right) .
$$

8. The following was part of question 4 in the May 2020 MA3614 exam paper. This part of the question was worth 9 marks.

Let C_{R}^{+}denote the half circle with centre at 0 and radius $R>1$ in the upper half plane traversed in the anti-clockwise direction and let Γ_{R} denote the closed loop composed of the real interval $[-R, R]$ followed by the half circle C_{R}^{+}, that is $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$. The half circle C_{R}^{+}and the closed loop are illustrated in the diagram below.

Also let $a>0$ and let

$$
f(z)=\frac{\mathrm{e}^{i a z}}{4+z^{2}}
$$

(a) Show that

$$
\int_{C_{R}^{+}} f(z) \mathrm{d} z \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

(b) When $R>2$ determine, giving reasons,

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z .
$$

(c) By giving appropriate reasoning, determine

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x .
$$

Solution

(a) Now if $x+i y \in C_{R}^{+}$then $y \geq 0$ and

$$
\mathrm{e}^{i a z}=\mathrm{e}^{i a x} \mathrm{e}^{-a y} \quad \text { and }\left|\mathrm{e}^{i a z}\right|=\mathrm{e}^{-a y} \leq 1 .
$$

When $R>2$ the denominator in the expression for $f(z)$ is bounded below by

$$
\left|4+z^{2}\right| \geq R^{2}-4
$$

Hence on C_{R}^{+}we have

$$
|f(z)| \leq \frac{1}{R^{2}-4}
$$

and as the length of C_{R}^{+}is πR the use of the $M L$ inequality gives

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{\pi R}{R^{2}-4} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(b) The function $f(z)$ has simple poles at $\pm 2 i$ but only $z_{1}=2 i$ is in the upper half plane. z_{1} is inside Γ_{R} when $R>2$. By the residue theorem the value of the loop integral is

$$
2 \pi i \operatorname{Res}\left(f, z_{1}\right)
$$

$$
\operatorname{Res}\left(f, z_{1}\right)=\lim _{z \rightarrow z_{1}} \frac{\left(z-z_{1}\right) \mathrm{e}^{i a z}}{4+z^{2}}=\lim _{z \rightarrow z_{1}} \mathrm{e}^{i a z} \lim _{z \rightarrow z_{1}} \frac{\left(z-z_{1}\right)}{4+z^{2}}=\frac{\mathrm{e}^{-2 a}}{2 z_{1}}=\frac{\mathrm{e}^{-2 a}}{4 i}
$$

Thus the value is

$$
\frac{\pi \mathrm{e}^{-2 a}}{2}
$$

(c) As the loop is the union of 2 parts we have, when $R>2$,

$$
\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=\frac{\pi \mathrm{e}^{-2 a}}{2} .
$$

Letting $R \rightarrow \infty$ and using the previous part gives

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\frac{\pi \mathrm{e}^{-2 a}}{2}
$$

9. The following was part of question 4 in the May 2019 MA3614 exam paper. This part of the question was worth 12 marks.
Let

$$
f(z)=\frac{1-\mathrm{e}^{i z}}{z^{2}\left(z^{2}+1\right)},
$$

and for any $\rho>0$ let $C_{\rho}^{+}=\left\{\rho \mathrm{e}^{i \theta}: 0 \leq \theta \leq \pi\right\}$ denote an upper half circle. When contour integrals are considered on such half circles, the direction of integration corresponds to increasing θ. The notation $-C_{\rho}$ means the same path but in the opposite direction. For this function, it can be shown that

$$
\lim _{r \rightarrow 0} \int_{C_{r}^{+}} f(z) \mathrm{d} z=\pi .
$$

(a) State all of the poles of $f(z)$ and determine the residue at each pole.
(b) Explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z=0
$$

(c) For $0<r<R$, let Γ_{R}^{r} denote the closed loop

$$
\Gamma_{R}^{r}=[r, R] \cup C_{R}^{+} \cup[-R,-r] \cup\left(-C_{r}^{+}\right)
$$

illustrated below.

When $r<1<R$ determine

$$
\oint_{\Gamma_{R}^{r}} f(z) \mathrm{d} z .
$$

(d) By using the previous results, or otherwise, determine

$$
\int_{0}^{\infty} \frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)} \mathrm{d} x
$$

Solution

(a) $f(z)$ has simple poles at the points 0 and $\pm i$.

$$
\begin{aligned}
\operatorname{Res}(f, 0) & =\lim _{z \rightarrow 0} z f(z)=\left(\left.\frac{1}{z^{2}+1}\right|_{z=0}\right) \lim _{z \rightarrow 0} \frac{1-\mathrm{e}^{i z}}{z}=-i \\
\operatorname{Res}(f, i) & =\lim _{z \rightarrow i}(z-i) f(z)=\left(\left.\left(\frac{1-\mathrm{e}^{i z}}{z^{2}}\right)\right|_{z=i}\right)\left(\lim _{z \rightarrow i} \frac{z-i}{z^{2}+1}\right) \\
& =\left(\mathrm{e}^{-1}-1\right) \frac{1}{2 i}=\left(\frac{1-\mathrm{e}^{-1}}{2}\right) i, \\
\operatorname{Res}(f,-i) & =\lim _{z \rightarrow-i}(z+i) f(z)=\left(\left.\left(\frac{1-\mathrm{e}^{i z}}{z^{2}}\right)\right|_{z=-i}\right)\left(\lim _{z \rightarrow-i} \frac{z+i}{z^{2}+1}\right) \\
& =(\mathrm{e}-1) \frac{1}{-2 i}=\left(\frac{\mathrm{e}-1}{2}\right) i
\end{aligned}
$$

(b) The length of C_{R}^{+}is πR. When $z=x+i y$ with $y \geq 0, i z=-y+i x$ and $\left|\mathrm{e}^{i z}\right|=\mathrm{e}^{-y} \leq 1$. With $|z|=R>1$

$$
\left|1-\mathrm{e}^{i z}\right| \leq 2 \quad \text { and } \quad\left|z^{2}\left(z^{2}+1\right)\right| \geq R^{2}\left(R^{2}-1\right)
$$

Thus on the half circle

$$
|f(z)| \leq \frac{2}{R^{2}\left(R^{2}-1\right)}=: M
$$

and by the $M L$ inequality

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{2 \pi R}{R^{2}\left(R^{2}-1\right)}=\frac{2 \pi}{R\left(R^{2}-1\right)} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

(c) The only pole inside the loop is at $z=i$ and hence by the residue theorem

$$
\oint_{\Gamma_{R}^{r}} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}(f, i)=-\pi\left(1-\mathrm{e}^{-1}\right) .
$$

(d) When $x \in \mathbb{R}$ the real part of $f(x)$ is

$$
\frac{1-\cos (x)}{x^{2}\left(x^{2}+1\right)}
$$

As the loop is the union of 4 parts we have

$$
-\pi\left(1-\mathrm{e}^{-1}\right)=\left(\int_{-R}^{-r}+\int_{r}^{R}\right) f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z-\int_{C_{r}^{+}} f(z) \mathrm{d} z
$$

Letting $R \rightarrow \infty$ and $r \rightarrow 0$ and using previous results we have

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=\pi \mathrm{e}^{-1} .
$$

As $f(x)$ is even it follows that

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{\pi \mathrm{e}^{-1}}{2}
$$

10. By using the same contour Γ_{R}^{r} as in question 9 show that

$$
\int_{0}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\pi\left(\frac{1}{2}-\frac{1}{\mathrm{e}^{2}}\right)
$$

Solution

If we let

$$
f(z)=\frac{\mathrm{e}^{2 i z}}{z\left(z^{2}+1\right)^{2}}
$$

then our integrand is given by

$$
\frac{\sin (2 x)}{x\left(x^{2}+1\right)^{2}}=\operatorname{Im} \frac{\mathrm{e}^{2 i x}}{x\left(x^{2}+1\right)^{2}}=\operatorname{Im} f(x) .
$$

$\operatorname{Im} f(x)$ is even in x and thus

$$
\int_{0}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin (2 x)}{x\left(x^{2}+1\right)^{2}} \mathrm{~d} x
$$

$f(z)$ has a simple pole at $z=z_{0}=0$ and double poles at $\pm i$ but we only need to consider the pole at $z_{1}=i$ which is in the upper half plane.
Let Γ_{R}^{r} denote the indented loop. When we take $0<r<1<R$ the function $f(z)$ only has one pole inside the this loop and thus by the residue theorem

$$
\oint_{\Gamma_{R}^{r}} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f, z_{1}\right) .
$$

As Γ_{R}^{r} is the union of two half circles and part of the real line we also have

$$
\oint_{\Gamma_{R}^{r}} f(z) \mathrm{d} z=\left(\int_{-R}^{-r}+\int_{r}^{R}\right) f(x) \mathrm{d} x-\int_{C_{r}^{+}} f(z) \mathrm{d} z+\int_{C_{R}^{+}} f(z) \mathrm{d} z .
$$

From the result in question 2 we have

$$
\lim _{r \rightarrow 0} \int_{C_{r}^{+}} f(z) \mathrm{d} z=\pi i \operatorname{Res}\left(f, z_{0}\right)
$$

Hence if we can show that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} f(z) \mathrm{d} z=0
$$

then

$$
2 \pi i \operatorname{Res}\left(f, z_{1}\right)=\int_{-\infty}^{\infty} f(x) \mathrm{d} x-\pi i \operatorname{Res}\left(f, z_{0}\right)
$$

so that our result is

$$
\operatorname{Im} \int_{0}^{\infty} f(x) \mathrm{d} x=\frac{1}{2} \operatorname{Im}\left(2 \pi i \operatorname{Res}\left(f, z_{1}\right)+\pi i \operatorname{Res}\left(f, z_{0}\right)\right) .
$$

We first explain why the integral on C_{R}^{+}tends to 0 as $R \rightarrow \infty$. Let $z=x+i y \in C_{R}^{+}$ and thus $|z|=R$ and $y \geq 0$. This implies that $2 i z=-2 y+2 i x$ and $\left|\mathrm{e}^{2 i z}\right|=\mathrm{e}^{-2 y} \leq 1$. Thus

$$
|f(z)| \leq \frac{1}{R\left(R^{2}-1\right)^{2}}
$$

and as the length of C_{R}^{+}is πR the $M L$ inequality gives

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{\pi R}{R\left(R^{2}-1\right)^{2}}=\frac{\pi}{\left(R^{2}-1\right)^{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

For the residue at $z_{0}=0$ we have

$$
\operatorname{Res}(f, 0)=\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} \frac{\mathrm{e}^{2 i z}}{\left(z^{2}+1\right)^{2}}=1 .
$$

For the double pole at $z_{i}=i$ we first note that $z^{2}+1=(z+i)(z-i)$ so that

$$
(z-i)^{2} f(z)=\frac{\mathrm{e}^{2 i z}}{z} \frac{1}{(z+i)^{2}}=c_{-2}+c_{-1}(z-i)+\cdots
$$

and

$$
\operatorname{Res}(f, i)=c_{-1}=\left.\left((z-i)^{2} f(z)\right)^{\prime}\right|_{z=i}
$$

Now for the derivative

$$
\left((z-i)^{2} f(z)\right)^{\prime}=\left(\frac{\mathrm{e}^{2 i z}}{z}\right)\left(\frac{-2}{(z+i)^{3}}\right)+\left(\frac{\mathrm{e}^{2 i z}}{z}\right)^{\prime}\left(\frac{1}{(z+i)^{2}}\right) .
$$

with

$$
\left(\frac{\mathrm{e}^{2 i z}}{z}\right)^{\prime}=\frac{z\left(2 i \mathrm{e}^{2 i z}\right)-\mathrm{e}^{2 i z}}{z^{2}}
$$

We just need the value at i and this is given by

$$
\operatorname{Res}(f, i)=\left(\frac{\mathrm{e}^{-2}}{i}\right)\left(\frac{-2}{(2 i)^{3}}\right)+\left(\frac{-2 \mathrm{e}^{-2}-\mathrm{e}^{-2}}{-1}\right)\left(\frac{1}{(2 i)^{2}}\right)=\frac{\mathrm{e}^{-2}}{4}(-1-3)=-\mathrm{e}^{-2} .
$$

Both residues are real and thus

$$
\operatorname{Im} \int_{0}^{\infty} f(x) \mathrm{d} x=\frac{1}{2}\left(2 \pi \operatorname{Res}\left(f, z_{1}\right)+\pi \operatorname{Res}\left(f, z_{0}\right)\right)=\pi\left(-\mathrm{e}^{-2}+\frac{1}{2}\right)
$$

as required.
11. Evaluate the following integral.

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}, \quad a>0 .
$$

Solution

Let

$$
f(z)=\frac{1}{\left(z^{2}+a^{2}\right)^{2}}
$$

This function is even and

$$
I=\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}} .
$$

Let $\Gamma_{R}=[-R, R] \cup C_{R}^{+}$denote the closed contour with C_{R}^{+}denoting the upper half circle with centre at 0 and radius R. The length of C_{R}^{+}in πR and for $z \in C_{R}^{+}$we have

$$
|f(z)| \leq \frac{1}{\left(R^{2}-a^{2}\right)^{2}}
$$

which gives

$$
\left|\int_{C_{R}^{+}} f(z) \mathrm{d} z\right| \leq \frac{\pi R}{\left(R^{2}-a^{2}\right)^{2}} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

As $z^{2}+a^{2}=(z+a i)(z-a i)$ we have

$$
\frac{1}{\left(z^{2}+a^{2}\right)^{2}}=\frac{1}{(z+a i)^{2}(z-a i)^{2}} .
$$

This has double poles at $\pm a i$ with $z_{1}=a i$ being in the upper half plane.
By considering the closed loop and the residue theorem we have

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z=\int_{-R}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{+}} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f, z_{1}\right) .
$$

To get the residue note that

$$
\left(z-z_{1}\right)^{2} f(z)=\frac{1}{(z+a i)^{2}}=a_{-2}+a_{-1}\left(z-z_{1}\right)+\cdots
$$

which gives

$$
a_{-1}=\left.\left(\frac{1}{(z+a i)^{2}}\right)^{\prime}\right|_{z=a i}=\left.\frac{-2}{(z+a i)^{3}}\right|_{z=a i}=\frac{-2}{(2 a i)^{3}}=\frac{1}{4 a^{3} i} .
$$

Thus

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=2 \pi i\left(\frac{1}{4 a^{3} i}\right)=\frac{\pi}{2 a^{3}}
$$

and

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{\pi}{4 a^{3}} .
$$

12. Let a function $f(z)$ and a quarter circle C_{R}^{q} of radius $R>2$ be given by

$$
f(z)=\frac{1}{z^{4}+16}, \quad \text { and } \quad C_{R}^{q}=\left\{R \mathrm{e}^{i t}: 0 \leq t \leq \pi / 2\right\} .
$$

Also let Γ_{R} denote the closed loop composed of the real interval $[0, R]$ followed by the quarter circle C_{R}^{q} and followed by the segment γ_{R} of the imaginary axis from $R i$ to 0 as illustrated illustrated in the diagram.

(a) Explain why

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{q}} f(z) \mathrm{d} z=0
$$

(b) Determine

$$
\oint_{\Gamma_{R}} f(z) \mathrm{d} z .
$$

(c) Explain why

$$
\int_{\gamma_{R}} f(z) \mathrm{d} z=-i \int_{0}^{R} f(x) \mathrm{d} x .
$$

(d) Using your previous results, or otherwise, to evaluate the real integral

$$
\int_{0}^{\infty} \frac{1}{x^{4}+16} \mathrm{~d} x
$$

Solution

(a)

$$
f(z)=\frac{1}{z^{4}+16} .
$$

When $|z|=R$ and R is large the magnitude of the denominator is bounded below by

$$
R^{4}-16
$$

and hence

$$
|f(z)| \leq \frac{1}{R^{4}-16}
$$

The length of the quarter circle is $\pi R / 2$. By the ML inequality we have

$$
\left|\int_{C_{R}^{q}} f(z) \mathrm{d} z\right| \leq \frac{\pi R / 2}{R^{4}-16} \rightarrow 0 \quad \text { as } R \rightarrow \infty .
$$

(b) $f(z)$ has simple poles when $z^{4}=-16=-2^{4}$ and thus $f(z)$ has 4 simple poles on the circle $|z|=2$. There is one simple pole inside the quarter circle at

$$
z_{1}=2 \mathrm{e}^{i \pi / 4}=\sqrt{2}(1+i) .
$$

Let I denote the loop integral. By the residue theorem

$$
I=2 \pi i \operatorname{Res}\left(f, z_{1}\right) .
$$

$$
\begin{aligned}
\operatorname{Res}\left(f, z_{1}\right) & =\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) f(z)=\lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{z^{4}+4} \\
& =\frac{1}{4 z_{1}^{3}}=\frac{z_{1}}{4 z_{1}^{4}}=-\frac{z_{1}}{64} .
\end{aligned}
$$

Hence

$$
I=-2 \pi i \frac{z_{1}}{64}=\frac{\sqrt{2} \pi}{64}(-i)(1+i)=\frac{\sqrt{2} \pi}{32}(1-i) .
$$

(c) We consider first the integral on $-\gamma_{R}=\{z(t)=i t: 0 \leq t \leq R\}$.

$$
z(t)=i t, \quad z^{\prime}(t)=i, \quad f(z(t))=\frac{1}{1+(i t)^{4}}=\frac{1}{1+t^{4}} .
$$

Thus by the definition of the integral on $-\gamma_{R}$ we have

$$
\int_{\gamma_{R}} f(z) \mathrm{d} z=-\int_{-\gamma_{R}} f(z) \mathrm{d} z=-\int_{-\gamma_{R}} f(z(t)) z^{\prime}(t) \mathrm{d} t=-\int_{0}^{R} \frac{1}{1+t^{4}} \mathrm{~d} t .
$$

(d) As Γ_{R} is the union of 3 parts we have

$$
\begin{aligned}
I=\oint_{\Gamma_{R}} f(z) \mathrm{d} z & =\int_{0}^{R} f(x) \mathrm{d} x+\int_{C_{R}^{q}} f(z) \mathrm{d} z+\int_{\gamma_{R}} f(z) \mathrm{d} z \\
& =(1-i) \int_{0}^{R} f(x)+\int_{C_{R}^{q}} f(z) \mathrm{d} z .
\end{aligned}
$$

Letting $R \rightarrow \infty$ and using the result of part (i) we have

$$
\lim _{R \rightarrow \infty} \oint_{\Gamma_{R}} f(z) \mathrm{d} z=(1-i) \int_{0}^{\infty} f(x) \mathrm{d} x .
$$

Thus

$$
\int_{0}^{\infty} f(x) \mathrm{d} x=\frac{\sqrt{2} \pi}{32}
$$

13. Let $f(z)$ be a function which is analytic except for a finite number of isolated singularities and let

$$
g(z)=\pi \cot (\pi z) f(z)
$$

(a) Show that if $f(z)$ does not have an isolated singularity at the integer n then

$$
\operatorname{Res}(g, n)=f(n)
$$

(b) In the case $f(z)=1 / z^{2}$ show that

$$
\operatorname{Res}(g, 0)=-\frac{\pi^{2}}{3}
$$

(c) Let Γ_{N} be the square with vertices at $(N+0.5)(\pm 1 \pm i)$. It can be shown that there is a constant $A>0$ independent of N such that $|\pi \cot (\pi z)| \leq A$ for all $z \in \Gamma_{N}$. In the case that $f(z)=1 / z^{2}$ show that

$$
\int_{\Gamma_{N}} g(z) \mathrm{d} z \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

By using this result show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Solution

(a) $\cot (\pi z)$ has simple zeros at the integers and if $f(z)$ is analytic and non-zero at an an integer n then $g(z)=\pi \cot (\pi z) f(z)$ has a simple pole at $z=n$.

$$
\begin{aligned}
\operatorname{Res}(g, n) & =\lim _{z \rightarrow n}(z-n) g(z)=\lim _{z \rightarrow n}(z-n) \pi \frac{\cos (\pi z)}{\sin (\pi z)} f(z) \\
& =\pi \cos (n \pi) f(n) \lim _{z \rightarrow n} \frac{z-n}{\sin (\pi z)}=\pi \cos (n \pi) f(n) \frac{1}{\cos (n \pi)}=f(n) .
\end{aligned}
$$

(b) As $f(z)=1 / z^{2}$ has a double pole at $z=0$ and $\cos (\pi z)$ has a simple pole at $z=0$ the $g(z)$ has a pole of order 3 at $z=0$, We can get the residue at $z=0$ by considering the series. Now as $\sin w$ only involves odd powers and $\cos w$ only involves even powers the Laurent series for cot w only involves odd powers and with

$$
\cot w=\frac{a_{-1}}{w}+a_{1} w+\cdots
$$

the relation $\cot w \sin w=\cos w$ gives

$$
\left(\frac{a_{-1}}{w}+a_{1} w+\cdots\right)\left(w-\frac{w^{3}}{6}+\cdots\right)=1-\frac{w^{2}}{2}+\cdots
$$

Equating the constant terms gives

$$
a_{-1}=1
$$

Equating the w^{2} terms gives

$$
a_{1}-\frac{a_{-1}}{6}=-\frac{1}{2}, \quad a_{1}=-\frac{1}{2}+\frac{a_{-1}}{6}=-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3} .
$$

Thus

$$
\cot (\pi z)=\frac{1}{\pi z}-\frac{\pi z}{3}+\cdots
$$

and

$$
g(z)=\pi\left(\frac{1}{\pi z^{3}}-\frac{\pi}{3 z}+\cdots\right)
$$

and hence

$$
\operatorname{Res}(g, 0)=-\frac{\pi^{2}}{3}
$$

(c) The closed contour Γ_{N} is shown below and is such that it crosses the real line at points where $g(z)$ is zero.

We are given that $\pi \cot (\pi z)$ is bounded on Γ_{N} and thus

$$
|g(z)| \leq A|f(z)| \leq \frac{A}{N^{2}}
$$

Each of the 4 sides on Γ_{N} has length $2 N+1$ and thus

$$
\left|\oint_{\Gamma_{N}} g(z) \mathrm{d} z\right| \leq 4(2 N+1) \frac{A}{N^{2}} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Inside the closed loop Γ_{N} there are singularities at $z=0$ and $\pm 1, \pm 2, \ldots, \pm N$. By the residue theorem

$$
\oint_{\Gamma_{N}} g(z) \mathrm{d} z=2 \pi i\left(\operatorname{Res}(g, 0)+\sum_{k=1}^{N}(\operatorname{Res}(g,-k)+\operatorname{Res}(g, k))\right) .
$$

As $f(z)$ is even

$$
\operatorname{Res}(g,-k)=\operatorname{Res}(g, k)=f(k)=\frac{1}{k^{2}}, \quad k \geq 1
$$

Letting $N \rightarrow \infty$ and using the result that the integral around Γ_{N} tends to 0 gives

$$
2 \sum_{k=1}^{\infty} \frac{1}{k^{2}}-\operatorname{Res}(g, 0)=2 \sum_{k=1}^{\infty} \frac{1}{k^{2}}-\frac{\pi^{2}}{3}=0
$$

and the result follows.
14. (a) Let x and y be real. Determine the following limits.

$$
\lim _{y \rightarrow \infty} \tan (x+i y) \text { and } \lim _{y \rightarrow \infty} \tan (x-i y) .
$$

(b) Let Γ_{L} denotes the straight line segment from $\pi+i L$ to $i L$ where $L>0$. Determine

$$
\lim _{L \rightarrow \infty} \int_{\Gamma_{L}} \tan z \mathrm{~d} z
$$

(c) By considering a closed loop in the anti-clockwise direction which is the rectangle with vertices $0, \pi, \pi+i L$ and $i L$ show that when $a \in \mathbb{R}$ and $a \neq 0$ we have

$$
\int_{0}^{\pi} \tan (\theta+i a) \mathrm{d} \theta= \begin{cases}\pi i, & \text { when } a>0 \\ -\pi i, & \text { when } a<0\end{cases}
$$

Solution

(a)

$$
\begin{aligned}
\tan (z) & =\frac{\sin (z)}{\cos (z)}=\frac{1}{i}\left(\frac{\mathrm{e}^{i z}-\mathrm{e}^{-i z}}{\mathrm{e}^{i z}+\mathrm{e}^{-i z}}\right) \\
& =\frac{1}{i}\left(\frac{\mathrm{e}^{2 i z}-1}{\mathrm{e}^{2 i z}+1}\right)=\frac{1}{i}\left(\frac{1-\mathrm{e}^{-2 i z}}{1+\mathrm{e}^{-2 i z}}\right) .
\end{aligned}
$$

With $z=x+i y, i z=-y+i x$ and $\left|\mathrm{e}^{i z}\right|=\mathrm{e}^{-y},\left|\mathrm{e}^{-i z}\right|=\mathrm{e}^{y}$.
As $y \rightarrow \infty$ we have $\left|\mathrm{e}^{i z}\right| \rightarrow 0$ and hence $\tan (x+i y) \rightarrow i$.
As $y \rightarrow-\infty$ we have $\left|\mathrm{e}^{-i z}\right| \rightarrow 0$. and hence $\tan (x+i y) \rightarrow-i$.
(b) Let

$$
\begin{gathered}
J_{L}=\int_{\Gamma_{L}} \tan z \mathrm{~d} z=\int_{\pi}^{0} \tan (x+i L) \mathrm{d} x=-\int_{0}^{\pi} \tan (x+i L) \mathrm{d} x . \\
J_{L}+i \pi=\int_{0}^{\pi}(i-\tan (x+i L)) \mathrm{d} x \rightarrow 0 \quad \text { as } L \rightarrow \infty .
\end{gathered}
$$

Thus $J_{L} \rightarrow-i \pi$ as $L \rightarrow \infty$.
(c) The function $f(z)=\tan (z+i a)$ has simple poles at points such that

$$
z+i a=\frac{\pi}{2}+m \pi, \quad m \in \mathbb{Z} .
$$

Let R_{L} denote the rectangular loop. When $a>0$ these points are in the lower half plane and hence are not inside the loop R_{L} and in this case

$$
\int_{R_{L}} \tan (z+i a) \mathrm{d} z=0 .
$$

When $a<0$ there is one simple pole at $z_{1}=\pi / 2-i a$ inside the loop and

$$
\int_{R_{L}} \tan (z+i a) \mathrm{d} z=2 \pi i \operatorname{Res}\left(f, z_{1}\right) .
$$

For the residue

$$
\lim _{z \rightarrow z_{1}}\left(z-z_{1}\right) \frac{\sin (z+i a)}{\cos (z+i a)}=\sin (z+i a) \lim _{z \rightarrow z_{1}} \frac{z-z_{1}}{\cos (z+i a)}=-1 .
$$

Thus when $a<0$

$$
\int_{R_{L}} \tan (z+i a) \mathrm{d} z=-2 \pi i .
$$

The rectangle has 4 sides and the sides parallel to the imaginary axis the periodic property of $\tan (z)$ implies that

$$
f(i y)=f(\pi+i y)
$$

The integral on the part from π to $\pi+i L$ is in the opposite direction to the integral from $i L$ to 0 and thus the contribution to the loop integral from these two sides is 0 . Thus by considering the other two sides gives

$$
\int_{0}^{\pi} \tan (\theta+i a) \mathrm{d} \theta+J_{L}= \begin{cases}0 & \text { if } a>0 \\ -2 \pi i & \text { if } a<0\end{cases}
$$

By letting $L \rightarrow \infty$ and using the result of part (b) that $J_{L} \rightarrow-\pi i$ gives the result.

