Recap of the terminology

Steady: $\underline{q} = \underline{q}(\underline{r})$, i.e. no time dependenceTwo-dimensional: $\underline{q} = u(x, y) \underline{i} + v(x, y) \underline{j}$.Incompressibility: $\nabla \cdot \underline{q} = 0$.Stream function ψ : $\underline{q} = (\nabla \psi) \times \underline{k}$.Stagnation points: $\underline{q}(\underline{r}) = \underline{0}$.Vorticity: $\underline{\omega} = \nabla \times \underline{q}$.Irrotational flow: $\underline{\omega} = \underline{0}$.

With irrotational flow there exists a velocity potential ϕ such that

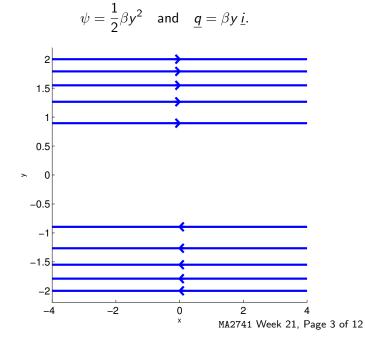
$$\underline{q} = \nabla \phi = (\nabla \psi) \times \underline{k}.$$

with

$$\nabla^2 \psi = \nabla^2 \phi = \mathbf{0}.$$

MA2741 Week 21, Page 1 of 12

Streamlines for a simple shear flow



The velocity in Cartesian and polars coordinates

In Cartesian's $\psi = \psi(x, y)$ and

$$\underline{q} = \frac{\partial \psi}{\partial y} \underline{i} - \frac{\partial \psi}{\partial x} \underline{j}$$

and in polars $\psi=\psi(r, heta)$ and

4

3

2

-2

-3

-4^L -4

-2

$$\underline{q} = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_r - \frac{\partial \psi}{\partial r} \underline{e}_{\theta}.$$

Curves of the form $\psi=\!\!{\rm const}$ are the streamlines of the flow.

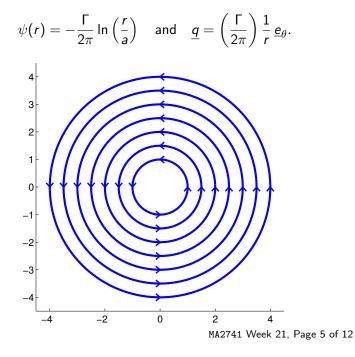
 $\tt MA2741$ Week 21, Page 2 of 12

Streamlines for a line source at r = 0

$$\psi = A\theta$$
 and $\underline{q} = \frac{A}{r} \underline{e}_r$.

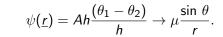
0 2 4 MA2741 Week 21, Page 4 of 12

Streamlines for a line vortex at r = 0



A source and sink close together

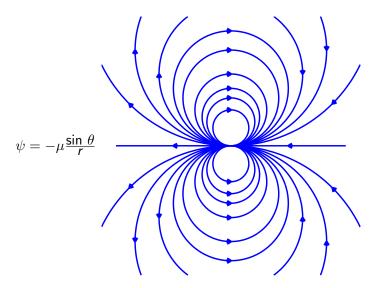
If $Ah = \mu$ is constant and $h \rightarrow 0$ then we can show that





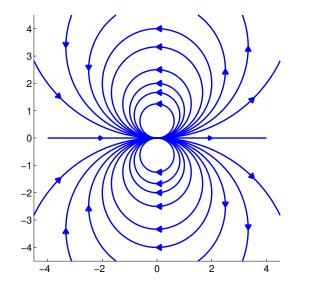
MA2741 Week 21, Page 6 of 12

Streamlines for a dipole in the $-\underline{i}$ direction



This is the same as before with the arrows reversed.

Streamlines for a dipole in the *i* direction



MA2741 Week 21, Page 7 of 12

Re_d = 1; t = 20

4

х

>

-2

0

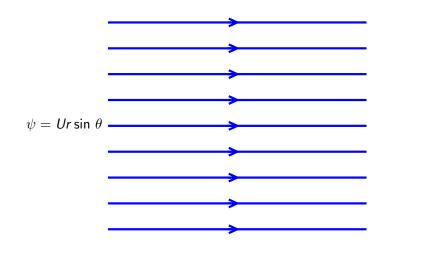
2

6

-

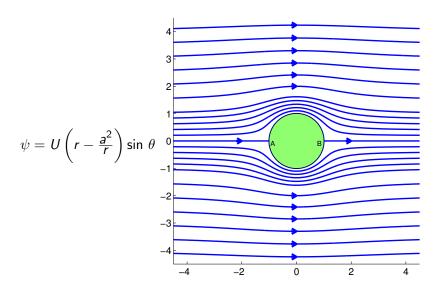
10

Streamlines for uniform flow in the \underline{i} direction



MA2741 Week 21, Page 9 of 12

Streamlines for flow round a cylinder



MA2741 Week 21, Page 10 of 12

Flow around a cylinder – Re=10

When the viscous effects increase flow differs from the no viscosity case close to the cylinder.

