The material time derivative

$$
\begin{aligned}
\frac{\mathrm{D}}{\mathrm{D} t} f(r, t) & =\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{\partial f}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} t} \\
& =\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}+v \frac{\partial f}{\partial y}+w \frac{\partial f}{\partial z} \\
& =\frac{\partial f}{\partial t}+\underline{q} \cdot \nabla f
\end{aligned}
$$

The equation of mass conservation

This can be written as

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{q})=0
$$

or equivalently

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \underline{q}=0
$$

The flow is incompressible if

$$
\nabla \cdot \underline{q}=0
$$

2D steady incompressible flow and the stream function ψ

 Assuming that the $x y$-plane is the 2 D region the incompressibility condition$$
\nabla \cdot \underline{q}=0
$$

implies the existence of a stream function ψ such that

$$
\underline{q}=(\nabla \psi) \times \underline{k}
$$

In Cartesian's $\psi=\psi(x, y)$ and

$$
\underline{q}=\frac{\partial \psi}{\partial y} \underline{i}-\frac{\partial \psi}{\partial x} \underline{j}
$$

and in polars $\psi=\psi(r, \theta)$ and

$$
\underline{q}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_{r}-\frac{\partial \psi}{\partial r} \underline{e}_{\theta} .
$$

Curves of the form $\psi=$ const are the streamlines of the flow.

Equation of hydrostatic pressure

Let Ω be an region with surface S. In equilibrium
$($ force on surface $)+($ force due to gravity $)=\underline{0}$

Euler's equations of motion

$($ force due to acc. $)+($ force on surface $)+($ force due to gravity $)=\underline{0}$.

$$
\rho \frac{\mathrm{D} \underline{q}}{\mathrm{D} t}=-\nabla(p+\rho g z)
$$

With steady flow
$\frac{\partial \rho}{\partial t}=0, \quad \frac{\partial \underline{q}}{\partial t}=\underline{0} \quad$ and $\quad \frac{\mathrm{D} \underline{q}}{\mathrm{D} t}=(\underline{q} \cdot \nabla) \underline{q}=\nabla\left(\frac{1}{2}|\underline{q}|^{2}\right)+(\nabla \times \underline{q}) \times \underline{q}$.
The term

$$
\underline{\omega}=\nabla \times \underline{q}
$$

is known as the vorticity. We can connect the velocity \underline{q} with the pressure p along streamlines. With several 2D flows $\underline{\omega}=\underline{0}$

MA2741 Week 20, Page 2 of 8

Vorticity in the 2D incompressible case

$$
\begin{aligned}
\underline{\omega}=\nabla \times \underline{q} & =\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial}{\partial z} \\
u(x, y) & v(x, y) & 0
\end{array}\right|=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \underline{k} \\
& =-\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}\right) \underline{k} .
\end{aligned}
$$

Irrotational flow is when $\underline{\omega}=\nabla \times \underline{q}=\underline{0}$ and this is when ψ satisfies Laplace's equation. In this $\overline{2 D}$ case we then also have a velocity potential ϕ such that

$$
\underline{q}=\nabla \phi=(\nabla \psi) \times \underline{k} .
$$

ϕ also satisfies Laplace's equation.

Streamlines for uniform flow in the \underline{i} direction

Streamlines for a line source at $r=0$

$$
\psi=A \theta \quad \text { and } \quad \underline{q}=\frac{A}{r} \underline{e}_{r} .
$$

Streamlines for a simple shear flow

$$
\psi=\frac{1}{2} \beta y^{2} \quad \text { and } \quad \underline{q}=\beta y \underline{i} .
$$

Streamlines for a line vortex at $r=0$
$\psi(r)=-\frac{\Gamma}{2 \pi} \ln \left(\frac{r}{a}\right) \quad$ and $\quad \underline{q}=\left(\frac{\Gamma}{2 \pi}\right) \frac{1}{r} \underline{e}_{\theta}$.

MA2741 Week 20, Page 8 of 8

