Terminology: Lagrangean, Eulerian descriptions

When \underline{r}_{0} at time 0 moves to \underline{r} at time t and

$$
f\left(\underline{r}\left(\underline{r}_{0}, t\right), t\right)=f_{L}\left(\underline{r}_{0}, t\right)
$$

the material time derivative is

$$
\frac{\mathrm{D}}{\mathrm{D} t} f(\underline{r}, t)=\frac{\partial}{\partial t} f_{L}\left(\underline{r}_{0}, t\right)=\frac{\partial f}{\partial t}+\underline{q} \cdot \nabla f
$$

where $\underline{q}=\underline{q}(\underline{r}, t)$ is the velocity. Here f_{L} is the Lagrangean description and f is the Eulerian description.

Applying this to u, v and w in $\underline{q}=u \underline{i}+v \underline{j}+w \underline{k}$ gives

$$
\begin{aligned}
(\text { Lagrangean acc }) & =(\text { Local acc })+(\text { Convective acc }) \\
\underline{a}_{L}=\frac{\mathrm{D}}{\mathrm{D} t} \underline{q} & =\frac{\partial \underline{q}}{\partial t}+(\underline{q} \cdot \nabla) \underline{q} .
\end{aligned}
$$

MA2741 Week 19, Page 1 of 12

Example

2D unsteady flow described in Eulerian form by

$$
\underline{q}(\underline{r}, t)=\underline{q}_{E}(\underline{r}, t)=x t \underline{i}-y \underline{j}, \quad t \geq 0 .
$$

Particle paths satisfy

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=u=x t \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=v=-y
\end{aligned}
$$

Streamlines at fixed time t satisfy

$$
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} y}{v} \quad \text { i.e. } \frac{\mathrm{d} x}{x t}=\frac{\mathrm{d} y}{-y}
$$

Terminology describing fluid flows

$$
\underline{r}=x \underline{i}+y \underline{j}+z \underline{k}, \quad \underline{q}=\underline{q}(\underline{r}, t)=u \underline{i}+v \underline{j}+w \underline{k} .
$$

Two-dimensional flow in x, y plane:

$$
w=0 \quad \text { and } \quad \frac{\partial u}{\partial z}=\frac{\partial v}{\partial z}=\frac{\partial \rho}{\partial z}=0
$$

Steady flow:

$$
\frac{\partial \rho}{\partial t}=0 \quad \text { and } \quad \frac{\partial q}{\partial t}=0
$$

Stagnation Point: This is a point at which $\underline{q}=\underline{0}$ for all time.
Particle Paths: From a Eulerian description we have

$$
\frac{\mathrm{d} \underline{r}}{\mathrm{~d} t}=\underline{q}(\underline{r}, t), \quad \text { with } \underline{r}(0)=\underline{r}_{0}
$$

Streamlines:

$$
x(s) \underline{i}+y(s) \underline{j}+z(s) \underline{k} \quad \text { where } \quad \frac{x^{\prime}(s)}{u}=\frac{y^{\prime}(s)}{v}=\frac{z^{\prime}(s)}{w} .
$$

Streamlines are the same as particle paths when the flow is steady. MA2741 Week 19, Page 2 of 12

Example

2D unsteady flow described in Eulerian form by

$$
\underline{q}=U \underline{i}+\frac{x}{(1+t)} \underline{j}, \quad t \geq 0
$$

Particle paths satisfy

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =u=U \\
\frac{\mathrm{~d} y}{\mathrm{~d} t} & =\frac{x}{1+t}
\end{aligned}
$$

Specifying an initial condition $x(0)=x_{0}, y(0)=y_{0}$ gives a particular path.
Streamlines at fixed time t satisfy

$$
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} y}{v} \quad \text { i.e. } \frac{\mathrm{d} x}{U}=\frac{\mathrm{d} y}{\left(\frac{x}{1+t}\right)}
$$

Equation of mass conservation and incompressibility

For a region Ω without sources and sinks the change in the amount of mass in Ω is entirely encountered for by the flow of the material through the surface S of Ω and this leads to

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{q})=0
$$

or equivalently

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \underline{q}=0
$$

A material is incompressible if

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}=0 \quad \text { which is equivalent to } \nabla \cdot \underline{q}=0
$$

Further comments relating to Euler's equations

When the fluid is incompressible the density ρ is constant.
Steady incompressible flow thus involves

$$
\rho \frac{\mathrm{D} \underline{q}}{\mathrm{D} t}=\rho(\underline{q} \cdot \nabla) \underline{q}=-\nabla(p+\rho g z)
$$

Using the identity gives

$$
\rho \nabla\left(\frac{1}{2}|\underline{q}|^{2}\right)+\rho(\nabla \times \underline{q}) \times \underline{q}=-\nabla(p+\rho g z) .
$$

i.e.

$$
\nabla\left(\frac{1}{2}|\underline{q}|^{2}+\frac{p}{\rho}+g z\right)+(\nabla \times \underline{q}) \times \underline{q}=\underline{0} .
$$

On a streamline

$$
H=\frac{1}{2}|\underline{q}|^{2}+\frac{p}{\rho}+g z
$$

is a constant. H is constant everywhere when $\underline{\omega}=\nabla \times \underline{q}=\underline{0}$.

Equation of hydrostatic pressure

Let Ω be an region with surface S. In equilibrium
$($ force on surface $)+($ force due to gravity $)=\underline{0}$

Euler's equations of motion

$($ force due to acc. $)+($ force on surface $)+($ force due to gravity $)=\underline{0}$.

$$
\rho \frac{\mathrm{D} \underline{q}}{\mathrm{D} t}=-\nabla(p+\rho g z)
$$

With steady flow

$$
\frac{\mathrm{D} \underline{q}}{\mathrm{D} t}=(\underline{q} \cdot \nabla) \underline{q}=\nabla\left(\frac{1}{2}|\underline{q}|^{2}\right)+(\nabla \times \underline{q}) \times \underline{q} .
$$

The term

$$
\underline{\omega}=\nabla \times \underline{q}
$$

is known as the vorticity. We can connect the velocity \underline{q} with the pressure p along streamlines. With several 2D flows $\omega=0$

MA2741 Week 19, Page 6 of 12

Equations when we have viscous fluids

When there is no viscosity the stress is of the form

$$
\sigma=-p l
$$

When we have and incompressible Newtonian fluid with viscosity $\mu \neq 0$ we have instead

$$
\sigma=-p l+\mu\left(\begin{array}{ccc}
2 \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} & \frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} & 2 \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} \\
\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x} & \frac{\partial v}{\partial z}+\frac{\partial w}{\partial y} & 2 \frac{\partial w}{\partial z}
\end{array}\right) .
$$

The equations of motion that this leads to are known as the Navier Stokes' equations. The following plots were obtained by approximately solving these equations using a Matlab program available from the URL: http://www.cfmbyexample.com/ resources/Cylinder_060ctober2011.zip

Flow around a cylinder - inviscid case, $\mu=0$
There is frictionless flow around the cylinder. The streamlines for this case are given in the next chapter of the notes.

MA2741 Week 19, Page 9 of 12

Flow around a cylinder $-\mathrm{Re}=10$

Flow around a cylinder - Reynold's number, $\operatorname{Re}=1$
No fluid has no viscosity. The flow depends on something known as the Reynold's number where

$$
\operatorname{Re} \propto \frac{\mid \text { inertia terms in equation of motion } \mid}{\mid \text { viscous terms in equation of motion } \mid}
$$

MA2741 Week 19, Page 10 of 12

Flow around a cylinder - $\mathrm{Re}=100$

An inviscid model is not adequate in this case.

