## Gradient, divergence and curl in cartesian coordinates

Gradient of $\phi$.

$$
\nabla \phi=\frac{\partial \phi}{\partial x} \underline{i}+\frac{\partial \phi}{\partial y} \underline{j}+\frac{\partial \phi}{\partial z} \underline{k},
$$

Divergence of $\underline{F}=F_{i} \underline{i}+F_{2 \underline{j}}+F_{3} \underline{k}$.

$$
\nabla \cdot \underline{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

Curl of $\underline{F}=F_{i \underline{i}}+F_{2 \underline{j}}+F_{3} \underline{k}$.

$$
\begin{aligned}
& \nabla \times \underline{F}=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial x}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
&=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \underline{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \underline{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \underline{k} .
\end{aligned}
$$

The divergence and curl defined as a limit


Divergence as a limit: $V$ is the volume inside surface $S$ and point $\underline{P}$ is inside the surface which we shrink to $\underline{P}$.

$$
\nabla \cdot \underline{F}(\underline{P})=\lim _{V \rightarrow 0} \frac{1}{V} \int_{S} \underline{F} \cdot \underline{n} \mathrm{~d} s
$$

Curl as a limit: $A$ is the area inside loop $C$ and point $\underline{P}$ is inside the loop which we shrink to $\underline{P}$.

$$
(\nabla \times \underline{F}(\underline{P})) \cdot \underline{n}=\lim _{A \rightarrow 0} \frac{1}{A} \oint_{C} \underline{F} \cdot \mathrm{~d} \underline{r} .
$$

