Some terminology used in describing fluid flow in MA2741
Only inviscid fluids were considered, a Eulerian description was used, $\rho=\rho(\underline{r}, t)$ is density, $p=p(r, t)$ is pressure and $\underline{q}=\underline{q}(\underline{r}, t)$ is velocity.

Steady:	$\underline{q}=\underline{q}(\underline{r})$, i.e. no time dependence
Two-dimensional:	$\underline{q}=u(x, y) \underline{i}+v(x, y) \underline{j}$.
Incompressibility:	$\nabla \cdot \underline{q}=0$.
Stream function $\psi:$	$\underline{q}=\nabla \times(\psi \underline{k})=(\nabla \psi) \times \underline{k}$.
Stagnation points:	$\underline{q}(\underline{r})=\underline{0}$.
Vorticity:	$\underline{\omega}=\nabla \times \underline{q}$.
Irrotational flow:	$\underline{\omega}=\underline{0}$.

With irrotational flow there exists a velocity potential ϕ such that

$$
\underline{q}=\nabla \phi=(\nabla \psi) \times \underline{k} \quad \text { and } \quad \nabla^{2} \psi=\nabla^{2} \phi=0
$$

Lagrangıan, Eulerıan descrıptions of the motion

Lagrangian description: $\underline{r}\left(\underline{r}_{0}, t\right)$ with $\underline{r}\left(\underline{r}_{0}, 0\right)=\underline{r}_{0}$. The spatial description is in terms of a reference configuration.

$$
\underline{q}_{L}=\frac{\partial \underline{r}\left(\underline{r}_{0}, t\right)}{\partial t}=\text { velocity. }
$$

$\underline{r}\left(\underline{r}_{0}, t\right), t \geq 0$ describes a particle path.
Eulerian description: involves dependence on the position at time t.

$$
\text { velocity }=\underline{q}(\underline{r}, t)=\underline{q}_{L}\left(\underline{r}_{0}, t\right) .
$$

Particle paths are obtained from

$$
\frac{\mathrm{d} \underline{r}}{\mathrm{~d} t}=\underline{q}(\underline{r}, t), \quad \text { with } \underline{r}(0)=\underline{r}_{0} .
$$

Streamlines: These depend on $\underline{q}(r, t)$ for some fixed time t. The tangent to a streamline is in the direction of \underline{q}.

$$
x(s) \underline{i}+y(s) \underline{j}+z(s) \underline{k} \quad \text { where } \quad \frac{x^{\prime}(s)}{u}=\frac{y^{\prime}(s)}{v}=\frac{z^{\prime}(s)}{w} .
$$

Streamlines are the same as particle paths when the flow is steady.

Example

2D unsteady flow described in Eulerian form by

$$
\underline{q}(\underline{r}, t)=\underline{q}_{E}(\underline{r}, t)=x t \underline{i}-y \underline{j}, \quad t \geq 0 .
$$

Particle paths satisfy

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=u=x t \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=v=-y
\end{aligned}
$$

Streamlines at fixed time t satisfy

$$
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} y}{v} \quad \text { i.e. } \frac{\mathrm{d} x}{x t}=\frac{\mathrm{d} y}{-y}
$$

Example

2D unsteady flow described in Eulerian form by

$$
\underline{q}=U \underline{i}+\frac{x}{(1+t)} \underline{j}, \quad t \geq 0
$$

Particle paths satisfy

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=u=U \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{x}{1+t}
\end{aligned}
$$

Specifying an initial condition $x(0)=x_{0}, y(0)=y_{0}$ gives a particular path.
Streamlines at fixed time t satisfy

$$
\frac{\mathrm{d} x}{u}=\frac{\mathrm{d} y}{v} \quad \text { i.e. } \frac{\mathrm{d} x}{U}=\frac{\mathrm{d} y}{\left(\frac{x}{1+t}\right)}
$$

Lagrangian, Eulerian descriptions of any function
When \underline{r}_{0} at time 0 moves to \underline{r} at time t and

$$
f\left(\underline{r}\left(\underline{r}_{0}, t\right), t\right)=f_{L}\left(\underline{r}_{0}, t\right)
$$

the material time derivative is

$$
\frac{\mathrm{D}}{\mathrm{D} t} f(\underline{r}, t)=\frac{\partial}{\partial t} f_{L}\left(\underline{r}_{0}, t\right)=\frac{\partial f}{\partial t}+\underline{q} \cdot \nabla f
$$

where $\underline{q}=\underline{q}(\underline{r}, t)$ is the velocity. (The right hand side follows by using the chain rule.) Here f_{L} is the Lagrangian description and f is the Eulerian description.

Applying this to u, v and w in $\underline{q}=u \underline{i}+v \underline{j}+w \underline{k}$ gives

$$
\begin{gathered}
(\text { Lagrangian acc })=(\text { Local acc })+(\text { Convective acc }) \\
\underline{a}_{L}=\frac{\mathrm{D}}{\mathrm{D} t} \underline{q}=\frac{\partial \underline{q}}{\partial t}+(\underline{q} \cdot \nabla) \underline{q} . \\
(\underline{q} \cdot \nabla) \underline{q}=(\underline{q} \cdot \nabla u) \underline{i}+(\underline{q} \cdot \nabla v) \underline{j}+(\underline{q} \cdot \nabla w) \underline{k}
\end{gathered}
$$

For a region Ω without sources and sinks the change in the amount of mass in Ω is entirely encountered for by the flow of the material through the surface S of Ω.

$$
-\int_{\Omega} \frac{\partial \rho}{\partial t} \mathrm{~d} v=\int_{S} \rho(\underline{q} \cdot \underline{n}) \mathrm{d} S .
$$

By using divergence theorem we get

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \underline{q})=0
$$

or equivalently

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \underline{q}=0
$$

A material is incompressible if

$$
\frac{\mathrm{D} \rho}{\mathrm{D} t}=0 \quad \text { which is equivalent to } \nabla \cdot \underline{q}=0
$$

Two-dimensional incompressible flows: $\underline{q}=u \underline{i}+v \underline{j}$

$$
\underline{q}=\nabla \times(\psi \underline{k})=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
0 & 0 & \psi
\end{array}\right|=\frac{\partial \psi}{\partial y} \underline{i}-\frac{\partial \psi}{\partial x} \underline{j}=(\nabla \psi) \times \underline{k} .
$$

The velocity in Cartesian and polars coordinates In Cartesian's $\psi=\psi(x, y)$ and

$$
\underline{q}=\left(\frac{\partial \psi}{\partial x} \underline{i}+\frac{\partial \psi}{\partial y} \underline{j}\right) \times \underline{k}=\frac{\partial \psi}{\partial y} \underline{i}-\frac{\partial \psi}{\partial x} \underline{j}
$$

and in polars $\psi=\psi(r, \theta)$ and

$$
\underline{q}=\left(\frac{\partial \psi}{\partial r} \underline{e}_{r}+\frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_{\theta}\right) \times \underline{k}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_{r}-\frac{\partial \psi}{\partial r} \underline{e}_{\theta} .
$$

Curves of the form $\psi=$ const are the streamlines of the flow.

Streamlines tor a line source at $r=0$

$$
\psi=A \theta \quad \text { and } \quad \underline{q}=\frac{A}{r} \underline{e}_{r} .
$$

Streamlines for a dipole in the - \underline{i} direction

MA2741 Week 29, Page 9 of 12

Streamlines for uniform flow in the \underline{i} direction

MA2741 Week 29, Page 10 of 12

Streamlines for flow round a cylinder

MA2741 Week 29, Page 11 of 12

The velocity on a streamline and stagnation points

$$
\begin{aligned}
\psi & =U\left(r-\frac{a^{2}}{r}\right) \sin \theta \\
\frac{\partial \psi}{\partial r} & =U\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta \\
\frac{\partial \psi}{\partial \theta} & =U\left(r-\frac{a^{2}}{r}\right) \cos \theta
\end{aligned}
$$

Both are zero when $r=a$ and $\sin \theta=0$ (i.e. $\theta=0$ and $\theta=\pi$). $r=a$ is the streamline $\psi=0$. On this streamline

$$
\underline{q}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_{r}-\frac{\partial \psi}{\partial r} \underline{e}_{\theta}=-\frac{\partial \psi}{\partial r} \underline{e}_{\theta}=-2 U \sin \theta .
$$

