Recap of the terminology

Steady:
$\underline{q}=\underline{q}(\underline{r})$, i.e. no time dependence
Two-dimensional:

$$
\underline{q}=u(x, y) \underline{i}+v(x, y) \underline{j} .
$$

Incompressibility: $\quad \nabla \cdot \underline{q}=0$.
Stream function $\psi: \quad \underline{q}=(\nabla \psi) \times \underline{k}$.
Stagnation points: $\quad \underline{q}(\underline{r})=\underline{0}$.
Vorticity:
$\underline{\omega}=\nabla \times \underline{q}$.
Irrotational flow: $\quad \underline{\omega}=\underline{0}$.

With irrotational flow there exists a velocity potential ϕ such that

$$
\underline{q}=\nabla \phi=(\nabla \psi) \times \underline{k} .
$$

with

$$
\nabla^{2} \psi=\nabla^{2} \phi=0
$$

The velocity in Cartesian and polars coordinates

In Cartesian's $\psi=\psi(x, y)$ and

$$
\underline{q}=\frac{\partial \psi}{\partial y} \underline{i}-\frac{\partial \psi}{\partial x} \underline{j}
$$

and in polars $\psi=\psi(r, \theta)$ and

$$
\underline{q}=\frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_{r}-\frac{\partial \psi}{\partial r} \underline{e}_{\theta} .
$$

Curves of the form $\psi=$ const are the streamlines of the flow.

Streamlines tor a simple shear flow

Streamlines tor a line source at $r=0$

$$
\psi=A \theta \quad \text { and } \quad \underline{q}=\frac{A}{r} \underline{e}_{r} .
$$

Streamlines for a inne vortex at $r=0$

$$
\psi(r)=-\frac{\Gamma}{2 \pi} \ln \left(\frac{r}{a}\right) \quad \text { and } \quad \underline{q}=\left(\frac{\Gamma}{2 \pi}\right) \frac{1}{r} \underline{e}_{\theta} .
$$

MA2741 Week 21 , Page 5 of 12

A source and sink close together

If $A h=\mu$ is constant and $h \rightarrow 0$ then we can show that

$$
\psi(\underline{r})=A h \frac{\left(\theta_{1}-\theta_{2}\right)}{h} \rightarrow \mu \frac{\sin \theta}{r} .
$$

Sink \underline{r}_{2} Source \underline{r}_{1}

Streamlines for a dipole in the \underline{i} direction

Streamlines for a dipole in the $-\underline{i}$ direction

This is the same as before with the arrows reversed.

Streamlines for uniform flow in the \underline{i} direction

MA2741 Week 21, Page 9 of 12

Streamlines for flow round a cylinder

MA2741 Week 21 , Page 10 of 12

Flow around a cylinder - Reynold's number, $\operatorname{Re}=1$

When we have some viscosity we get a similar pattern.

Flow around a cylinder $-\mathrm{Re}=10$

When the viscous effects increase flow differs from the no viscosity case close to the cylinder.

$$
R e_{d}=10 ; t=20
$$

