Recap of the terminology

Steady:	$\underline{q} = \underline{q}(\underline{r})$, i.e. no time dependence
Two-dimensional:	$\underline{q} = u(x,y)\underline{i} + v(x,y)\underline{j}.$
Incompressibility:	$\nabla \cdot \underline{q} = 0.$
Stream function ψ :	$\underline{q} = (\nabla \psi) \times \underline{k}.$
Stagnation points:	$\underline{q}(\underline{r}) = \underline{0}.$
Vorticity:	$\underline{\omega} = \nabla \times \underline{q}.$
Irrotational flow:	$\underline{\omega} = \underline{0}.$

With irrotational flow there exists a velocity potential ϕ such that

$$\underline{q} = \nabla \phi = (\nabla \psi) \times \underline{k}$$

with

$$\nabla^2 \psi = \nabla^2 \phi = \mathbf{0}.$$

MA2741 Week 21, Page 1 of 12

The velocity in Cartesian and polars coordinates In Cartesian's $\psi = \psi(x, y)$ and

$$\underline{q} = \frac{\partial \psi}{\partial y} \underline{i} - \frac{\partial \psi}{\partial x} \underline{j}$$

and in polars $\psi = \psi(\mathbf{r}, \theta)$ and

$$\underline{q} = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \underline{e}_r - \frac{\partial \psi}{\partial r} \underline{e}_{\theta}.$$

Curves of the form $\psi = \text{const}$ are the streamlines of the flow.

MA2741 Week 21, Page 2 of 12

Streamlines for a simple shear flow

Streamlines for a line source at r = 0

Streamlines for a line vortex at r = 0

A source and sink close together

If $Ah = \mu$ is constant and $h \rightarrow 0$ then we can show that

MA2741 Week 21, Page 6 of 12

Streamlines for a dipole in the *i* direction

MA2741 Week 21, Page 7 of 12

Streamlines for a dipole in the $-\underline{i}$ direction

This is the same as before with the arrows reversed.

MA2741 Week 21, Page 8 of 12

Streamlines for uniform flow in the *i* direction

MA2741 Week 21, Page 9 of 12

Streamlines for flow round a cylinder

MA2741 Week 21, Page 10 of 12

Flow around a cylinder – Reynold's number, Re=1

When we have some viscosity we get a similar pattern.

Re_d = 1; t = 20

MA2741 Week 21, Page 11 of 12

Flow around a cylinder – Re=10

When the viscous effects increase flow differs from the no viscosity case close to the cylinder.

MA2741 Week 21, Page 12 of 12