

Equation of hydrostatic pressure
Let Ω be an region with surface S. In equilibrium

$$
(\text { force on surface })+(\text { force due to gravity })=\underline{0}
$$

and with ρ being density this gives

$$
\nabla p=\rho \underline{g}=-\rho \underline{\underline{k}} \underline{.}
$$

Lagrangean and Eulerian descriptions

Motion of a particle: $\underline{r}\left(\underline{r}_{0}, t\right), t \geq 0$ with $\underline{r}\left(\underline{r}_{0}, 0\right)=\underline{r}_{0}$.
Velocity:

$$
\underline{q}=\underline{q}_{L}\left(\underline{r}_{0}, t\right)=\frac{\partial}{\partial t} \underline{r}\left(\underline{r}_{0}, t\right) .
$$

The spatial dependence is in terms the original position \underline{r}_{0} of the particles in the Lagrangean description.

In the Eulerian description we consider $\underline{q}=\underline{q}_{E}(\underline{r}, t)$ and the spatial dependence is in terms of the position \underline{r} at time t.

$$
\underline{q}=\underline{q}_{E}\left(\underline{r}\left(\underline{r}_{0}, t\right), t\right)=\underline{q}_{L}\left(\underline{r}_{0}, t\right) .
$$

Suppose

$$
f\left(\underline{r}\left(\underline{r}_{0}, t\right), t\right)=f_{L}\left(\underline{r}_{0}, t\right) .
$$

The chain rule gives

$$
\frac{\mathrm{D}}{\mathrm{D} t} f(\underline{r}, t)=\frac{\partial}{\partial t} f_{L}\left(\underline{r}_{0}, t\right)=\frac{\partial f}{\partial t}+\underline{q} \cdot \nabla f .
$$

The Lagrangean acceleration of a particle is

$$
\begin{gathered}
\underline{a}=\underline{a}_{L}=\frac{\partial}{\partial t} \underline{q}_{L}\left(\underline{r}_{0}, t\right)=\frac{\mathrm{D}}{\mathrm{D} t} \underline{q}=\frac{\partial \underline{q}_{E}}{\partial t}+(\underline{q} \cdot \nabla) \underline{q}_{E} \\
\frac{\partial \underline{q}_{E}}{\partial t}=\text { local acceleration, } \\
(\underline{q} \cdot \nabla) \underline{q}_{E}=\text { convective acceleration. }
\end{gathered}
$$

With $\underline{q}=\underline{q}_{E}=u \underline{i}+v \underline{j}+w \underline{k}$ we have

$$
(\underline{q} \cdot \nabla) \underline{q}_{E}=(\underline{q} \cdot \nabla u) \underline{i}+(\underline{q} \cdot \nabla v) \underline{j}+(\underline{q} \cdot \nabla w) \underline{k} .
$$

Terminology in the examples

1.

$$
\begin{aligned}
& \underline{r}=\underline{r}\left(\underline{r}_{0}, t\right)=x_{0} \mathrm{e}^{\alpha t}+y_{0} \mathrm{e}^{-\alpha t} \underline{j}+z_{0} \underline{k} . \\
& \underline{q}_{E}=\underline{q}_{E}(\underline{r}, t)=\alpha(x \underline{i}-y \underline{j})=u \underline{i}+v \underline{j},
\end{aligned}
$$

This is steady 2D flow. Particle paths coincide with streamlines.
2.

$$
\begin{gathered}
\underline{r}=\underline{r}\left(\underline{r}_{0}, t\right)=x_{0}(1+t) \underline{i}+y_{0} \mathrm{e}^{-t} \underline{j}, \quad t \geq 0 . \\
\underline{q}_{E}(\underline{r}, t)=\left(\frac{x}{1+t}\right) \underline{i}-y \underline{j}=u \underline{i}+v \underline{j}, \quad u=\left(\frac{x}{1+t}\right), \quad v=-y .
\end{gathered}
$$

This is unsteady 2D flow. Particle paths and streamlines differ.

