When we describe incompressible flow: $\nabla \cdot(\nabla \times \underline{F})=0$ When we describe irrotational flow: $\quad \nabla \times \nabla \phi=\underline{0}$

Let \underline{q} denote velocity of a fluid flow.

$$
\nabla\left(\frac{1}{2}|\underline{q}|^{2}\right)-\underline{q} \times(\nabla \times \underline{q})=(\underline{q} \cdot \nabla) \underline{q} .
$$

A bit messy to verify and will appear a few times to justify the inclusion of a few things. The right hand side will appear in the material time derivative expression. It is needed in a further study of fluids.

An incompressible flow is when $\nabla \cdot q=0$ and this will lead to the representation of the velocity using a stream function in the 2D case.

An irrotational flow is when $\nabla \times \underline{q}=\underline{0}$ and this will lead to existence of a velocity potential.

∇ in cartesian coordinates

$$
\nabla=\underline{i} \frac{\partial}{\partial x}+\underline{j} \frac{\partial}{\partial y}+\underline{k} \frac{\partial}{\partial z} .
$$

∇ in polar coordinates

Base vectors $\underline{e}_{r}, \underline{e}_{\theta}$ and \underline{k},

$$
\begin{aligned}
& \underline{e}_{r}=\cos \theta \underline{i}+\sin \theta \underline{j} \\
& \underline{e}_{\theta}=-\sin \theta \underline{i}+\cos \theta \underline{j}
\end{aligned}
$$

The base vectors vary with θ with

$$
\begin{gathered}
\frac{\partial}{\partial \theta} \underline{e}_{r}=\underline{e}_{\theta} \quad \text { and } \quad \frac{\partial}{\partial \theta} \underline{e}_{\theta}=-\underline{e}_{r} . \\
\nabla=\underline{e}_{r} \frac{\partial}{\partial r}+\frac{1}{r} \underline{e}_{\theta} \frac{\partial}{\partial \theta}+\underline{k} \frac{\partial}{\partial z} .
\end{gathered}
$$

The following are available on formula sheets

$$
\begin{gathered}
\nabla \phi=\frac{\partial \phi}{\partial r} e_{r}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} e_{\theta}+\frac{\partial \phi}{\partial z} \underline{k} . \\
\nabla \cdot \underline{F}=\frac{1}{r} \frac{\partial}{\partial r}\left(r F_{r}\right)+\frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}+\frac{\partial F_{3}}{\partial z} . \\
\nabla \times \underline{F}=\frac{1}{r}\left|\begin{array}{ccc}
\frac{e_{r}}{\partial} & r e_{\theta} & \frac{k}{\partial} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
F_{r} & r F_{\theta} & F_{3}
\end{array}\right| .
\end{gathered}
$$

Pressure in an inviscid fluid and any fluid in equilibrium

$$
\begin{aligned}
& -p(x, y, z+h / 2) h^{2} \underline{k} \\
& +p(x, y-h / 2, z) h^{2} \underline{j} \text {, } \\
& +p(x, y, z-h / 2) h^{2} \underline{k}
\end{aligned}
$$

The force on a surface due the pressure is always in the direction of the normal to the surface.

