
Gradient, divergence and curl in cartesian coordinates
Gradient of φ.
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Divergence of F = Fi i + F2j + F3k.
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Curl of F = Fi i + F2j + F3k .
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Directional derivative, divergence and Stokes’ theorems

Directional derivative of φ in the direction of n.

∂φ

∂n
(r) =

∂

∂s
φ(r + sn)

∣∣∣∣
s=0

= n · ∇φ.

Divergence theorem.∫
Ω
∇ · F dv =

∫
S
F · n ds,∫

Ω
∇p dv =

∫
S
pn ds.

Stokes’ theorem. ∫
S
(∇× F ) · n ds =

∮
C
F · dr .

In the above n denotes an appropriate unit vector in each case.
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The divergence and curl defined as a limit

∫ b

a
f (x) dx = (b − a)f (c)

x=a x=b

y=f(c)

x=c

Divergence as a limit: V is the volume inside surface S and point
P is inside the surface which we shrink to P.

∇ · F (P) = lim
V→0

1

V

∫
S
F · n ds.

Curl as a limit: A is the area inside loop C and point P is inside
the loop which we shrink to P.

(∇× F (P)) · n = lim
A→0

1

A

∮
C
F · dr .
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Some vector identities involving × and curl
For the cross product

a× b = −b × a which implies a× a = 0.

a× b is orthogonal to both a and b.

For the base vectors

i × j = k , j × k = i , k × i = j .

∇× F is divergence free as

∇ · (∇× F ) = 0.

∇φ is irrotational in that

∇×∇φ = 0.
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