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MA2741: Spring Term – Exercise sheet 1 with answers

Exercises involving the Divergence theorem

1. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem
to prove that ∫

S

r · ds = 3V

where r is the position vector of a point on the surface and V is the volume of the
region Ω.

Answer

In the expression for the surface integral we have

r = x i+ y j + z k.

The divergence of this vector is

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3.

Then by the divergence theorem∫
S

r · ds =

∫
Ω

∇ · r dv =

∫
Ω

3 dv = 3× (volume of Ω).

2. Use the Divergence theorem to evaluate∫
S

F · ds,

where
F = (z2 − 1)(xy2i+ xyj + y2k)

and S is the closed surface of the cube centred at the origin and with sides of length 2
units with each side parallel to one of the planes x = 0, y = 0 and z = 0. Check
you answer by doing the surface integrals.

Answer

In components F = F1 i+ F2 j + F3 k with

F1 = (z2 − 1)xy2, F2 = (z2 − 1)xy, F3 = (z2 − 1)y2.

For the partial derivatives in the divergence expression we have

∂F1

∂x
= (z2 − 1)y2,

∂F2

∂y
= (z2 − 1)x,

∂F3

∂z
= 2zy2,
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giving
∇ · F = (z2 − 1)(y2 + x) + 2zy2.

The region Ω is a cube and is described by

Ω = {(x, y, z) : −1 ≤ x, y, z ≤ 1} .

For the volume integral we have

I =

∫
Ω

∇ · F dv =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(z2 − 1)(y2 + x) + 2zy2 dxdydz.

We consider the integral in parts. First note that∫ 1

−1

∫ 1

−1

∫ 1

−1

(z2 − 1)x dxdydz = 0

because x is an odd function and the range on x is (−1, 1). Similarly∫ 1

−1

∫ 1

−1

∫ 1

−1

2zy2 dxdydz = 0

because z is an odd function and the range on z is (−1, 1). Hence

I =

∫
Ω

∇ · F dv =

∫ 1

−1

∫ 1

−1

∫ 1

−1

(z2 − 1)y2 dxdydz

=

∫ 1

−1

(z2 − 1) dz

∫ 1

−1

y2 dy

∫ 1

−1

dx

=

(
2

3
− 2

)(
2

3

)
2 = −16

9
.

For the surface integral note that the cube has 6 faces.

Two of the faces correspond to z2 = 1 and F = 0 on these faces.

On the face y = 1 the outward normal is n = j and

F · j = (z2 − 1)x.

This is an odd function of x and we get 0 when we integrate over −1 < x < 1. We
similarly get 0 when we consider the face y = −1.

On the face x = 1 the outward normal is n = i and

F · i = (z2 − 1)y2.

Similarly on the face x = −1 the outward normal is n = −i and

F · (−i) = (z2 − 1)y2.
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The combined contribution to the surface integral from these two faces is thus

2

∫ 1

−1

∫ 1

−1

(z2 − 1)y2 dydz = 2

(
2

3
− 2

)(
2

3

)
= −16

9
.

This confirms the value as −16/9.

3. Show that ∫
S

q · ds =
π

6

where q = z2k and S is the whole of the surface of the cone x2 + y2 = (1 − z)2,
0 ≤ z ≤ 1, including the base x2 + y2 = 1, z = 0. Use direct evaluation and the
Divergence theorem.

Answer

The cone is most easily described using cylindrical polar coordinates (r, θ, z) with
points on the surface corresponding to r = 1 − z and thus the position vector of a
point on the surface is given by

r(θ, z) = (1− z)er(θ) + z k.

If we partially differentiate with respect to θ and z we get vectors tangential to the
cone and we get a vector normal to the cone if we takes the cross product of such
vectors. In this case

∂r

∂θ
= (1− z)eθ,

∂r

∂z
= −er + k.

and
∂r

∂θ
× ∂r

∂z
= (1− z)(−eθ × r + eθ × k) = (1− z)(k + er).

If we let S1 denote the cone then∫
S1

q · ds =

∫ π

θ=−π

∫ 1

z=0

q ·
(
∂r

∂θ
× ∂r

∂z

)
dzdθ.

=

∫ π

θ=−π

∫ 1

z=0

(1− z)z2 dzdθ

= 2π

(
1

3
− 1

4

)
=
π

6
.

The surface S is the closed surface which consists of S1 and the base of the cone
and on the base of the cone z = 0 and thus q = 0. Thus∫

S

q · ds =
π

6
.

To evaluate using the divergence theorem and a volume integral involves using∫
S

q · ds =

∫
Ω

∇ · q dv
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with

∇ · q =
∂(z2)

∂z
= 2z.

Let Ω denote the region interior to S which is described by

Ω = {(r, θ, z) : 0 ≤ r < 1− z, 0 < z < 1, −π < θ ≤ π} .

With cylindrical polars the volume element is rdrdθdz and the volume integral to
consider is

I =

∫ π

−π

∫ 1

z=0

∫ 1−z

r=0

2zrdrdzdθ

=

∫ π

−π

∫ 1

z=0

[
r2
]1−z

0
zdzdθ

=

∫ π

−π

∫ 1

z=0

(1− z)2zdzdθ

=

∫ π

−π

∫ 1

z=0

(z − 2z2 + z3) dzdθ

= 2π

(
1

2
− 2

3
+

1

4

)
=
π

6
.

4. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem
to prove that ∫

Ω

∇φ · ∇ψ dv =

∫
S

φ
∂ψ

∂n
ds−

∫
Ω

φ∇2ψ dv

where φ and ψ are scalar fields. Hence, prove Green’s second identity which is∫
Ω

(
φ∇2ψ − ψ∇2φ

)
dv =

∫
S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
ds.

Answer

Note first the vector identity

∇ · (φ∇ψ) = ∇φ · ∇ψ + φ∇2ψ.

Since

(∇ψ) · n =
∂ψ

∂n
the divergence theorem gives∫

Ω

∇ · (φ∇ψ) dv =

∫
S

φ
∂ψ

∂n
ds,

i.e. ∫
Ω

(
∇φ · ∇ψ + φ∇2ψ

)
dv =

∫
S

φ
∂ψ

∂n
ds.
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If we swap φ and ψ then we get∫
Ω

(
∇ψ · ∇φ+ ψ∇2φ

)
dv =

∫
S

ψ
∂φ

∂n
ds.

Green’s second identity follows by subtracting this relation from the previous rela-
tion.
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Exercises involving Stokes’ theorem

1. Given that S is the hemisphere of unit radius described by

r(u, v) = sin v cosui+ sin v sinuj + cos vk, 0 ≤ u ≤ 2π, 0 ≤ v ≤ π/2

and C is the closed curve that bounds the hemisphere in the xy−plane, evaluate∮
C

q · dr and

∫
S

(∇× q) · ds

where
i) q = Uyi, U constant, ii) q = y2i+ xj.

What do you notice about your answers?

Answer

When q is given as in (i) we have

∇× q =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Uy 0 0

∣∣∣∣∣∣∣ = −Uk.

When q is given as in (ii) we have

∇× q =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y2 x 0

∣∣∣∣∣∣∣ = (1− 2y)k.

Points on the unit circle in the x, y plane are described using Cartesian base vectors
as

r = cos u i+ sin u j, −π < u ≤ π,

giving
dr = (− sin ui+ cos uj)du.

In the case of (i) we have y = sin u and we have

q · dr = −U sin2 u du.∮
C

q · dr =

∫ 2π

0

(−U sin2 u) du. = −π U.

In the case of (ii) we have x = cos u and y = sin u and we have

q · dr = (−y2 sin u+ x cos u) du. = (− sin3 u+ cos2 u) du.
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As sin3 u is an odd function we have∮
C

q · dr =

∫ π

−π
cos2 u du = π.

To evaluate the surface integrals we need to first determine

∂r

∂u
= − sin v sin u i+ sin v cos uj,

∂r

∂v
= cos v cos u i+ cos v sin uj − sin vk.

The surface integral is then

∂r

∂u
× ∂r

∂v
=

∣∣∣∣∣∣
i j k

− sin v sin u sin v cos u 0
cos v cos u cos v sin u − sin v

∣∣∣∣∣∣
= (− sin2 v cos u)i− (sin2 v sin u)j − (sin v cos v)k

= (− sin v)r.

This is in the direction of the inward normal and for the outward normal we need

∂r

∂v
× ∂r

∂u
= (sin v)r.

In the case of (i) we have

(∇× q) ·
(
∂r

∂v
× ∂r

∂u

)
= −U(sin v)r · k = −U(sin v) cos v = −U

2
sin 2v.

As ∫ π/2

0

sin 2v dv = 1

it follows that ∫ 2π

u=0

∫ π/2

v=0

(∇× q) ·
(
∂r

∂v
× ∂r

∂u

)
dvdu = −πU

which agrees with what was obtained by using the line integral.

In the case of (ii) we have

(∇× q) ·
(
∂r

∂v
× ∂r

∂u

)
= (1− 2y)(sin v)r · k = (1− 2 sin v sin u)(sin v)(cos v).

The last part involves −2 sin2 v cos v sin u and when we integrate with respect to u
on the range 0 ≤ u < 2π this gives 0. Hence∫ 2π

u=0

∫ π/2

v=0

(∇× q) ·
(
∂r

∂v
× ∂r

∂u

)
dvdu =

2π

2

∫ π/2

v=0

sin(2v) dv = π.

which agrees with that obtained using the line integral.
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2. Verify Stokes’ theorem for the vector field F = x2yi + zj and the hemisphere
x2 + y2 + z2 = a2, z ≥ 0.

Answer

We need to verify that ∫
S

(∇× F ) · n ds =

∮
C

F · dr.

To start we need a parametric description for S and C and in the case of the
surface S we can take

r(s, t) = a
(
cos s(cos t i+ sin t j) + sin s k

)
, 0 ≤ s ≤ π

2
, −π < t ≤ π.

The perimeter corresponds to s = 0 and is the circle

r(0, t) = a
(
cos t i+ sin t j

)
, −π < t ≤ π

and as t increases this corresponds to moving round the circle in the anti-clockwise
direction. For the surface integral we need the curl which is

∇× F =

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x2y z 0

∣∣∣∣∣∣∣ = i− j(0) + k(−x2) = i− x2 k.

For the line integral we need

dr(0, t)

dt
= −a sin t i+ a cos t j.

Also, for points on the circle

F (a cos t, a sin t, 0) = a3 cos2 t sin t i

and

F (a cos t, a sin t, 0) · dr(0, t)

dt
= −a4 cos2 t sin2 t =

−a4 sin2(2t)

4
.

Thus ∮
C

F · dr =

∫ π

−π

(
−a4 sin2(2t)

4

)
dt = −a

4π

4
.

If you want to consider a simpler surface integral which also has C as the perimeter
then you could take {(x, y, 0) : x2 + y2 < a2}. In this case the normal is n = k and
with x = r cos t

(∇× F ) · n = −x2 = −r2 cos2 t.

The flat surface in this case is

r(cos t i+ sin t j), 0 ≤ r < a, −π < t ≤ π,
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i.e. with a polar description, and ds = rdrdt. The surface integral in this case is∫
S

(∇× F ) · n ds = −
∫ π

−π

∫ a

0

r3 cos2 t drdt = −a
4π

4
.

To actually do the surface integral for the hemisphere in the question we need to
determine

∂r

∂s
× ∂r

∂t
= a2

∣∣∣∣∣∣
i j k

− sin s cos t − sin s sin t cos s
− cos s sin t cos s cos t 0

∣∣∣∣∣∣
= a2

(
(− cos2 s cos t)i− (cos2 s sin t)j + (− cos s sin s)k

)
= −a cos s r.

As 0 < cos s < 1 for 0 < s < π/2 this vector is pointing towards the centre of the
sphere and thus for the outward normal direction we need instead

∂r

∂t
× ∂r

∂s
= a cos s r.

For the integrand in the surface integral to consider we have

(∇× F ) ·
(
∂r

∂t
× ∂r

∂s

)
= (i− x2 k) · (a cos s r)

= a(a cos s)(i− a2 cos2 s cos2 t k) · (cos s(cos t i+ sin t j) + sin s k)

= a2 cos2 s cos t− a4 cos3 s sin s cos2 t.

Now∫ π

−π
cos t dt = 0,

∫ π

−π
cos2 t dt = π, −

∫ π/2

0

cos3 s sin s ds =

[
cos4 s

4

]π/2
0

= −1

4
.

Thus ∫ π

t=−π

∫ π/2

s=0

(∇× F ) ·
(
∂r

∂t
× ∂r

∂s

)
dsdt = −a

4π

4
.

3. Evaluate ∫
S

(∇× q) · ds

where
q = (x2 + y − 4)i+ 3xyj + (2xz + z2)k

and S is the surface of the paraboloid z = 4− (x2 + y2) above the xy-plane.

Answer
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By Stokes’ theorem we have ∫
S

(∇× q) · ds =

∮
C

q · dr

where C is the perimeter of the surface which is the circle x2 + y2 = 4 in the plane
z = 0. A parametric description of this circle is

C =
{
r(t) = 2(cos t i+ sin t j) : −π < t ≤ π

}
and on this circle

q = (x2 + y − 4)i+ 3xyj = (4 cos2 t+ 2 sin t− 4)i+ 12 cos t sin tj.

Now
dr

dt
= 2(− sin t i+ cos t j)

and

q · dr

dt
= (−8 cos2 t sin t− 4 sin2 t+ 8 sin t) + 12 cos2 t sin t.

Only one of the terms is not an odd function of t and thus∫ π

−π
q · dr

dt
dt = −4

∫ π

−π
sin2 t dt = −4π.
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Exercises involving Green’s theorem in the plane

1. Verify Green’s theorem in the plane for∮
C

(xy + y2) dx+ x2 dy

where C is the closed curve bounded by y = x and y = x2, 0 ≤ x ≤ 1.

Answer

Green’s theorem in the plane is a special case of Stokes’ theorem and the integrand
in the area integral involves

k · (∇× F ) = k ·

∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 0

∣∣∣∣∣∣∣ =
∂F2

∂x
− ∂F1

∂y
.

Green’s theorem is∫∫
S

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∮
C

F1 dx+ F2 dy.

For this question
F1 = xy + y2, F2 = x2,

for the partial derivatives

∂F1

∂y
= x+ 2y,

∂F2

∂x
= 2x giving

∂F2

∂x
− ∂F1

∂y
= x− 2y.

and
F · dr = F1dx+ F2dy = (xy + y2)dx+ x2dy.

The curve C has 2 parts corresponding to y = x and to y = x2 and as 0 ≤ x ≤ 1
the part corresponding to y = x2 is the lower of the two curves in 0 < x < 1 with
the 2 curves meeting at x = 0 and x = 1. Let C1 denote the straight line segment
and let C2 denote the quadratic and note the direction of the integration along each
part of C as shown in the diagram below.
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x-axis

y-axis

(0, 0)

(1, 1)

C1 : y = x C2 : y = x2

On C1 we have y = x and hence∫
C1

F · dr =

∫ 0

x=1

(x2 + x2) dx+ x2 dx = −
∫ 1

0

3x2 dx = −1.

On C2 we have y = x2, dy = 2xdx and hence∫
C2

F · dr =

∫ 1

x=0

(x3 + x4) dx+ 2x3 dx =

∫ 1

0

(3x3 + x4) dx =
3

4
+

1

5
=

19

20
.

Combining these two results gives∫
C

F · dr = − 1

20
.

To compute instead the area integral we have∫
S

(
∂F2

∂x
− ∂F1

∂y

)
ds =

∫ 1

x=0

∫ x

y=x2
(x− 2y) dydx

=

∫ 1

x=0

[
xy − y2

]x
x2

dx

=

∫ 1

x=0

(x2 − x2)− (x3 − x4) dx

=

∫ 1

x=0

(−x3 + x4) dx

= −1

4
+

1

5
= − 1

20
.
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2. Use Green’s theorem in the plane to evaluate∮
C

(x2 − 2xy) dx+ (x2y + 3) dy

where C is the boundary of the region enclosed by y = 8x2, x = 2 and y = 0. Check
your answer by direct integration.

Answer

In this question
F1 = x2 − 2xy, F2 = x2y + 3

giving

∂F1

∂y
= −2x,

∂F2

∂x
= 2xy so that

∂F2

∂x
− ∂F1

∂y
= 2x(y + 1).

and we need to verify that∫∫
S

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∮
C

F1 dx+ F2 dy

for the curve C specified. The curve C has 3 parts as shown in the following diagram
corresponding to the x-axis from 0 to 2 (the part C1), the line x = 2 from y = 0 to
y = 32 (the part C2) and the curve y = 8x2 from x = 2 to x = 0 (the part C3).
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x-axis

y-axis

(0, 0) (2, 0)

(2, 32)

C1

C2

C3
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For the area integral we have∫ 2

x=0

∫ 8x2

y=0

2x(1 + y) dydx =

∫ 2

x=0

2x

[
y +

y2

2

]8x2

0

dx

=

∫ 2

0

16x3 + 64x5 dx

= 16

(
24

4

)
+ 64

(
26

6

)
= 64

(
1 +

32

3

)
= 64

(
35

3

)
.

To calculate the line integral we consider each part separately as follows.

On C1, y = 0, dy = 0 and F1 = x2. Thus∫
C1

F · dr =

∫ 2

0

F1 dx =

∫ 2

0

x2 dx =
8

3
.

On C2, x = 2, dx = 0 and F2 = 4y + 3. Thus∫
C2

F · dr =

∫ 32

0

F2 dy =

∫ 32

0

(4y + 3) dy = 2(32)2 + 3(32).

On C3, y = 8x2, dy = 16x and to express F1 and F2 in terms of x we have

F1 = x2 − 2xy = x2 − 16x3, F2 = x2y + 3 = 8x4 + 3.

For the direction of the integration it is from x = 2 to x = 0 and thus∫
C2

F · dr =

∫ 0

2

F1 dx+ F2 dy

= −
∫ 2

0

x2 − 16x3 + (8x3 + 3)(16x) dx

=

∫ 2

0

(−48x− x2 + 16x3 − 128x5) dx

= −48

(
4

2

)
−
(

8

3

)
+ 16

(
16

4

)
− 128

(
64

6

)
= −32−

(
8

3

)
− 128

(
32

3

)
.

Combining the contributions from C1, C2 and C3 gives

8

3
+ (2(32)2 + 3(32)) +

(
−32−

(
8

3

)
− 128

(
32

3

))
= 64 + 64(32)− 64

(
64

3

)
= 64

(
1 + 32−

(
64

3

))
= 64

(
35

3

)
.
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