MA2741: Spring Term - Exercise sheet 1 with answers

Exercises involving the Divergence theorem

1. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem to prove that

$$
\int_{S} \underline{r} \cdot \mathrm{~d} \underline{s}=3 V
$$

where \underline{r} is the position vector of a point on the surface and V is the volume of the region Ω.

Answer

In the expression for the surface integral we have

$$
\underline{r}=x \underline{i}+y \underline{j}+z \underline{k} .
$$

The divergence of this vector is

$$
\nabla \cdot \underline{r}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3
$$

Then by the divergence theorem

$$
\int_{S} \underline{r} \cdot \mathrm{~d} \underline{s}=\int_{\Omega} \nabla \cdot \underline{r} \mathrm{~d} v=\int_{\Omega} 3 \mathrm{~d} v=3 \times(\text { volume of } \Omega)
$$

2. Use the Divergence theorem to evaluate

$$
\int_{S} \underline{F} \cdot \mathrm{~d} \underline{s}
$$

where

$$
\underline{F}=\left(z^{2}-1\right)\left(x y^{2} \underline{i}+x y \underline{j}+y^{2} \underline{k}\right)
$$

and S is the closed surface of the cube centred at the origin and with sides of length 2 units with each side parallel to one of the planes $x=0, y=0$ and $z=0$. Check you answer by doing the surface integrals.

Answer

In components $\underline{F}=F_{1} \underline{i}+F_{2} \underline{j}+F_{3} \underline{k}$ with

$$
F_{1}=\left(z^{2}-1\right) x y^{2}, \quad F_{2}=\left(z^{2}-1\right) x y, \quad F_{3}=\left(z^{2}-1\right) y^{2} .
$$

For the partial derivatives in the divergence expression we have

$$
\frac{\partial F_{1}}{\partial x}=\left(z^{2}-1\right) y^{2}, \quad \frac{\partial F_{2}}{\partial y}=\left(z^{2}-1\right) x, \quad \frac{\partial F_{3}}{\partial z}=2 z y^{2},
$$

- Exercise sheet and answers - Term 2 - Sheet 1-page -1 -
giving

$$
\nabla \cdot \underline{F}=\left(z^{2}-1\right)\left(y^{2}+x\right)+2 z y^{2}
$$

The region Ω is a cube and is described by

$$
\Omega=\{(x, y, z):-1 \leq x, y, z \leq 1\}
$$

For the volume integral we have

$$
I=\int_{\Omega} \nabla \cdot \underline{F} \mathrm{~d} v=\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left(z^{2}-1\right)\left(y^{2}+x\right)+2 z y^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z
$$

We consider the integral in parts. First note that

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left(z^{2}-1\right) x \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=0
$$

because x is an odd function and the range on x is $(-1,1)$. Similarly

$$
\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} 2 z y^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=0
$$

because z is an odd function and the range on z is $(-1,1)$. Hence

$$
\begin{aligned}
I & =\int_{\Omega} \nabla \cdot \underline{F} \mathrm{~d} v=\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1}\left(z^{2}-1\right) y^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \\
& =\int_{-1}^{1}\left(z^{2}-1\right) \mathrm{d} z \int_{-1}^{1} y^{2} \mathrm{~d} y \int_{-1}^{1} \mathrm{~d} x \\
& =\left(\frac{2}{3}-2\right)\left(\frac{2}{3}\right) 2=-\frac{16}{9}
\end{aligned}
$$

For the surface integral note that the cube has 6 faces.
Two of the faces correspond to $z^{2}=1$ and $\underline{F}=\underline{0}$ on these faces.
On the face $y=1$ the outward normal is $\underline{n}=\underline{j}$ and

$$
\underline{F} \cdot \underline{j}=\left(z^{2}-1\right) x
$$

This is an odd function of x and we get 0 when we integrate over $-1<x<1$. We similarly get 0 when we consider the face $y=-1$.
On the face $x=1$ the outward normal is $\underline{n}=\underline{i}$ and

$$
\underline{F} \cdot \underline{i}=\left(z^{2}-1\right) y^{2}
$$

Similarly on the face $x=-1$ the outward normal is $\underline{n}=-\underline{i}$ and

$$
\underline{F} \cdot(-\underline{i})=\left(z^{2}-1\right) y^{2}
$$

- Exercise sheet and answers - Term $2-$ Sheet 1 -page $-2-$

The combined contribution to the surface integral from these two faces is thus

$$
2 \int_{-1}^{1} \int_{-1}^{1}\left(z^{2}-1\right) y^{2} \mathrm{~d} y \mathrm{~d} z=2\left(\frac{2}{3}-2\right)\left(\frac{2}{3}\right)=-\frac{16}{9} .
$$

This confirms the value as $-16 / 9$.
3. Show that

$$
\int_{S} \underline{q} \cdot \mathrm{~d} \underline{s}=\frac{\pi}{6}
$$

where $q=z^{2} \underline{k}$ and S is the whole of the surface of the cone $x^{2}+y^{2}=(1-z)^{2}$, $0 \leq z \leq 1$, including the base $x^{2}+y^{2}=1, z=0$. Use direct evaluation and the Divergence theorem.

Answer

The cone is most easily described using cylindrical polar coordinates (r, θ, z) with points on the surface corresponding to $r=1-z$ and thus the position vector of a point on the surface is given by

$$
\underline{r}(\theta, z)=(1-z) \underline{e}_{r}(\theta)+z \underline{k} .
$$

If we partially differentiate with respect to θ and z we get vectors tangential to the cone and we get a vector normal to the cone if we takes the cross product of such vectors. In this case

$$
\frac{\partial \underline{r}}{\partial \theta}=(1-z) \underline{e}_{\theta}, \quad \frac{\partial \underline{r}}{\partial z}=-\underline{e}_{r}+\underline{k} .
$$

and

$$
\frac{\partial \underline{r}}{\partial \theta} \times \frac{\partial \underline{r}}{\partial z}=(1-z)\left(-\underline{e}_{\theta} \times \underline{r}+\underline{e}_{\theta} \times \underline{k}\right)=(1-z)\left(\underline{k}+\underline{e}_{r}\right) .
$$

If we let S_{1} denote the cone then

$$
\begin{aligned}
\int_{S_{1}} \underline{q} \cdot \mathrm{~d} \underline{s} & =\int_{\theta=-\pi}^{\pi} \int_{z=0}^{1} \underline{q} \cdot\left(\frac{\partial \underline{r}}{\partial \theta} \times \frac{\partial \underline{r}}{\partial z}\right) \mathrm{d} z \mathrm{~d} \theta . \\
& =\int_{\theta=-\pi}^{\pi} \int_{z=0}^{1}(1-z) z^{2} \mathrm{~d} z \mathrm{~d} \theta \\
& =2 \pi\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{\pi}{6} .
\end{aligned}
$$

The surface S is the closed surface which consists of S_{1} and the base of the cone and on the base of the cone $z=0$ and thus $\underline{q}=\underline{0}$. Thus

$$
\int_{S} \underline{q} \cdot \mathrm{~d} \underline{s}=\frac{\pi}{6} .
$$

To evaluate using the divergence theorem and a volume integral involves using

$$
\int_{S} \underline{q} \cdot \mathrm{~d} \underline{s}=\int_{\Omega} \nabla \cdot \underline{q} \mathrm{~d} v
$$

- Exercise sheet and answers - Term 2 - Sheet 1-page -3-
with

$$
\nabla \cdot \underline{q}=\frac{\partial\left(z^{2}\right)}{\partial z}=2 z .
$$

Let Ω denote the region interior to S which is described by

$$
\Omega=\{(r, \theta, z): 0 \leq r<1-z, 0<z<1,-\pi<\theta \leq \pi\} .
$$

With cylindrical polars the volume element is $r \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z$ and the volume integral to consider is

$$
\begin{aligned}
I & =\int_{-\pi}^{\pi} \int_{z=0}^{1} \int_{r=0}^{1-z} 2 z r \mathrm{~d} r \mathrm{~d} z \mathrm{~d} \theta \\
& =\int_{-\pi}^{\pi} \int_{z=0}^{1}\left[r^{2}\right]_{0}^{1-z} z \mathrm{~d} z \mathrm{~d} \theta \\
& =\int_{-\pi}^{\pi} \int_{z=0}^{1}(1-z)^{2} z \mathrm{~d} z \mathrm{~d} \theta \\
& =\int_{-\pi}^{\pi} \int_{z=0}^{1}\left(z-2 z^{2}+z^{3}\right) \mathrm{d} z \mathrm{~d} \theta \\
& =2 \pi\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)=\frac{\pi}{6}
\end{aligned}
$$

4. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem to prove that

$$
\int_{\Omega} \nabla \phi \cdot \nabla \psi \mathrm{d} v=\int_{S} \phi \frac{\partial \psi}{\partial n} \mathrm{~d} s-\int_{\Omega} \phi \nabla^{2} \psi \mathrm{~d} v
$$

where ϕ and ψ are scalar fields. Hence, prove Green's second identity which is

$$
\int_{\Omega}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) \mathrm{d} v=\int_{S}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) \mathrm{d} s
$$

Answer

Note first the vector identity

$$
\nabla \cdot(\phi \nabla \psi)=\nabla \phi \cdot \nabla \psi+\phi \nabla^{2} \psi
$$

Since

$$
(\nabla \psi) \cdot \underline{n}=\frac{\partial \psi}{\partial n}
$$

the divergence theorem gives

$$
\int_{\Omega} \nabla \cdot(\phi \nabla \psi) \mathrm{d} v=\int_{S} \phi \frac{\partial \psi}{\partial n} \mathrm{~d} s
$$

i.e.

$$
\int_{\Omega}\left(\nabla \phi \cdot \nabla \psi+\phi \nabla^{2} \psi\right) \mathrm{d} v=\int_{S} \phi \frac{\partial \psi}{\partial n} \mathrm{~d} s
$$

- Exercise sheet and answers - Term 2 - Sheet 1-page -4-

If we swap ϕ and ψ then we get

$$
\int_{\Omega}\left(\nabla \psi \cdot \nabla \phi+\psi \nabla^{2} \phi\right) \mathrm{d} v=\int_{S} \psi \frac{\partial \phi}{\partial n} \mathrm{~d} s .
$$

Green's second identity follows by subtracting this relation from the previous relation.

Exercises involving Stokes' theorem

1. Given that S is the hemisphere of unit radius described by

$$
\underline{r}(u, v)=\sin v \cos u \underline{i}+\sin v \sin u \underline{j}+\cos v \underline{k}, \quad 0 \leq u \leq 2 \pi, \quad 0 \leq v \leq \pi / 2
$$

and C is the closed curve that bounds the hemisphere in the $x y$-plane, evaluate

$$
\oint_{C} \underline{q} \cdot \mathrm{~d} \underline{r} \quad \text { and } \quad \int_{S}(\nabla \times \underline{q}) \cdot \mathrm{d} \underline{s}
$$

where
i) $\underline{q}=U y \underline{i}, U$ constant,
ii) $\underline{q}=y^{2} \underline{i}+x \underline{j}$.

What do you notice about your answers?

Answer

When \underline{q} is given as in (i) we have

$$
\nabla \times \underline{q}=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial x}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
U y & 0 & 0
\end{array}\right|=-U \underline{k} .
$$

When \underline{q} is given as in (ii) we have

$$
\nabla \times \underline{q}=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} & x & 0
\end{array}\right|=(1-2 y) \underline{k} .
$$

Points on the unit circle in the x, y plane are described using Cartesian base vectors as

$$
\underline{r}=\cos u \underline{i}+\sin u \underline{j}, \quad-\pi<u \leq \pi,
$$

giving

$$
\mathrm{d} \underline{r}=(-\sin u \underline{i}+\cos u \underline{j}) \mathrm{d} u .
$$

In the case of (i) we have $y=\sin u$ and we have

$$
\begin{gathered}
\underline{q} \cdot \mathrm{~d} \underline{r}=-U \sin ^{2} u \mathrm{~d} u . \\
\oint_{C} \underline{q} \cdot \mathrm{~d} \underline{r}=\int_{0}^{2 \pi}\left(-U \sin ^{2} u\right) \mathrm{d} u \cdot=-\pi U .
\end{gathered}
$$

In the case of (ii) we have $x=\cos u$ and $y=\sin u$ and we have

$$
\underline{q} \cdot \mathrm{~d} \underline{r}=\left(-y^{2} \sin u+x \cos u\right) \mathrm{d} u .=\left(-\sin ^{3} u+\cos ^{2} u\right) \mathrm{d} u .
$$

- Exercise sheet and answers - Term 2 - Sheet 1-page -6 -

As $\sin ^{3} u$ is an odd function we have

$$
\oint_{C} \underline{q} \cdot \mathrm{~d} \underline{r}=\int_{-\pi}^{\pi} \cos ^{2} u \mathrm{~d} u=\pi .
$$

To evaluate the surface integrals we need to first determine

$$
\begin{aligned}
& \frac{\partial \underline{r}}{\partial u}=-\sin v \sin u \underline{i}+\sin v \cos u \underline{j} \\
& \frac{\partial \underline{r}}{\partial v}=\cos v \cos u \underline{i}+\cos v \sin u \underline{j}-\sin v \underline{k} .
\end{aligned}
$$

The surface integral is then

$$
\begin{aligned}
\frac{\partial \underline{r}}{\partial u} \times \frac{\partial \underline{r}}{\partial v} & =\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
-\sin v \sin u & \sin v \cos u & 0 \\
\cos v \cos u & \cos v \sin u & -\sin v
\end{array}\right| \\
& =\left(-\sin ^{2} v \cos u\right) \underline{i}-\left(\sin ^{2} v \sin u\right) \underline{j}-(\sin v \cos v) \underline{k} \\
& =(-\sin v) \underline{r} .
\end{aligned}
$$

This is in the direction of the inward normal and for the outward normal we need

$$
\frac{\partial \underline{r}}{\partial v} \times \frac{\partial \underline{r}}{\partial u}=(\sin v) \underline{r} .
$$

In the case of (i) we have

$$
(\nabla \times \underline{q}) \cdot\left(\frac{\partial \underline{r}}{\partial v} \times \frac{\partial \underline{r}}{\partial u}\right)=-U(\sin v) \underline{r} \cdot \underline{k}=-U(\sin v) \cos v=-\frac{U}{2} \sin 2 v
$$

As

$$
\int_{0}^{\pi / 2} \sin 2 v \mathrm{~d} v=1
$$

it follows that

$$
\int_{u=0}^{2 \pi} \int_{v=0}^{\pi / 2}(\nabla \times \underline{q}) \cdot\left(\frac{\partial \underline{r}}{\partial v} \times \frac{\partial \underline{r}}{\partial u}\right) \mathrm{d} v \mathrm{~d} u=-\pi U
$$

which agrees with what was obtained by using the line integral.
In the case of (ii) we have

$$
(\nabla \times \underline{q}) \cdot\left(\frac{\partial \underline{r}}{\partial v} \times \frac{\partial \underline{r}}{\partial u}\right)=(1-2 y)(\sin v) \underline{r} \cdot \underline{k}=(1-2 \sin v \sin u)(\sin v)(\cos v) .
$$

The last part involves $-2 \sin ^{2} v \cos v \sin u$ and when we integrate with respect to u on the range $0 \leq u<2 \pi$ this gives 0 . Hence

$$
\int_{u=0}^{2 \pi} \int_{v=0}^{\pi / 2}(\nabla \times \underline{q}) \cdot\left(\frac{\partial \underline{r}}{\partial v} \times \frac{\partial \underline{r}}{\partial u}\right) \mathrm{d} v \mathrm{~d} u=\frac{2 \pi}{2} \int_{v=0}^{\pi / 2} \sin (2 v) \mathrm{d} v=\pi .
$$

which agrees with that obtained using the line integral.

[^0]2. Verify Stokes' theorem for the vector field $\underline{F}=x^{2} y \underline{i}+z \underline{j}$ and the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.

Answer
We need to verify that

$$
\int_{S}(\nabla \times \underline{F}) \cdot \underline{n} \mathrm{~d} s=\oint_{C} \underline{F} \cdot \mathrm{~d} \underline{r} .
$$

To start we need a parametric description for S and C and in the case of the surface S we can take

$$
\underline{r}(s, t)=a(\cos s(\cos t \underline{i}+\sin t \underline{j})+\sin s \underline{k}), \quad 0 \leq s \leq \frac{\pi}{2}, \quad-\pi<t \leq \pi .
$$

The perimeter corresponds to $s=0$ and is the circle

$$
\underline{r}(0, t)=a(\cos t \underline{i}+\sin t \underline{j}), \quad-\pi<t \leq \pi
$$

and as t increases this corresponds to moving round the circle in the anti-clockwise direction. For the surface integral we need the curl which is

$$
\nabla \times \underline{F}=\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} y & z & 0
\end{array}\right|=\underline{i}-\underline{j}(0)+\underline{k}\left(-x^{2}\right)=\underline{i}-x^{2} \underline{k} .
$$

For the line integral we need

$$
\frac{\mathrm{d} \underline{r}(0, t)}{\mathrm{d} t}=-a \sin t \underline{i}+a \cos t \underline{j} .
$$

Also, for points on the circle

$$
\underline{F}(a \cos t, a \sin t, 0)=a^{3} \cos ^{2} t \sin t \underline{i}
$$

and

$$
\underline{F}(a \cos t, a \sin t, 0) \cdot \frac{\mathrm{d} \underline{r}(0, t)}{\mathrm{d} t}=-a^{4} \cos ^{2} t \sin ^{2} t=\frac{-a^{4} \sin ^{2}(2 t)}{4} .
$$

Thus

$$
\oint_{C} \underline{F} \cdot \mathrm{~d} \underline{r}=\int_{-\pi}^{\pi}\left(\frac{-a^{4} \sin ^{2}(2 t)}{4}\right) \mathrm{d} t=-\frac{a^{4} \pi}{4} .
$$

If you want to consider a simpler surface integral which also has C as the perimeter then you could take $\left\{(x, y, 0): x^{2}+y^{2}<a^{2}\right\}$. In this case the normal is $\underline{n}=\underline{k}$ and with $x=r \cos t$

$$
(\nabla \times \underline{F}) \cdot \underline{n}=-x^{2}=-r^{2} \cos ^{2} t .
$$

The flat surface in this case is

$$
r(\cos t \underline{i}+\sin t \underline{j}), \quad 0 \leq r<a, \quad-\pi<t \leq \pi
$$

- Exercise sheet and answers - Term 2 - Sheet 1-page -8-
i.e. with a polar description, and $\mathrm{d} s=r \mathrm{~d} r \mathrm{~d} t$. The surface integral in this case is

$$
\int_{S}(\nabla \times \underline{F}) \cdot \underline{n} \mathrm{~d} s=-\int_{-\pi}^{\pi} \int_{0}^{a} r^{3} \cos ^{2} t \mathrm{~d} r \mathrm{~d} t=-\frac{a^{4} \pi}{4} .
$$

To actually do the surface integral for the hemisphere in the question we need to determine

$$
\begin{aligned}
\frac{\partial \underline{r}}{\partial s} \times \frac{\partial \underline{r}}{\partial t} & =a^{2}\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \underline{k} \\
-\sin s \cos t & -\sin s \sin t & \cos s \\
-\cos s \sin t & \cos s \cos t & 0
\end{array}\right| \\
& =a^{2}\left(\left(-\cos ^{2} s \cos t\right) \underline{i}-\left(\cos ^{2} s \sin t\right) \underline{j}+(-\cos s \sin s) \underline{k}\right) \\
& =-a \cos s \underline{r} .
\end{aligned}
$$

As $0<\cos s<1$ for $0<s<\pi / 2$ this vector is pointing towards the centre of the sphere and thus for the outward normal direction we need instead

$$
\frac{\partial \underline{r}}{\partial t} \times \frac{\partial \underline{r}}{\partial s}=a \cos s \underline{r}
$$

For the integrand in the surface integral to consider we have

$$
\begin{aligned}
& \quad(\nabla \times \underline{F}) \cdot\left(\frac{\partial \underline{r}}{\partial t} \times \frac{\partial \underline{r}}{\partial s}\right)=\left(\underline{i}-x^{2} \underline{k}\right) \cdot(a \cos s \underline{r}) \\
& =\quad a(a \cos s)\left(\underline{i}-a^{2} \cos ^{2} s \cos ^{2} t \underline{k}\right) \cdot(\cos s(\cos t \underline{i}+\sin t \underline{j})+\sin s \underline{k}) \\
& =a^{2} \cos ^{2} s \cos t-a^{4} \cos ^{3} s \sin s \cos ^{2} t .
\end{aligned}
$$

Now

$$
\int_{-\pi}^{\pi} \cos t \mathrm{~d} t=0, \quad \int_{-\pi}^{\pi} \cos ^{2} t \mathrm{~d} t=\pi, \quad-\int_{0}^{\pi / 2} \cos ^{3} s \sin s \mathrm{~d} s=\left[\frac{\cos ^{4} s}{4}\right]_{0}^{\pi / 2}=-\frac{1}{4}
$$

Thus

$$
\int_{t=-\pi}^{\pi} \int_{s=0}^{\pi / 2}(\nabla \times \underline{F}) \cdot\left(\frac{\partial \underline{r}}{\partial t} \times \frac{\partial \underline{r}}{\partial s}\right) \mathrm{d} s \mathrm{~d} t=-\frac{a^{4} \pi}{4} .
$$

3. Evaluate

$$
\int_{S}(\nabla \times \underline{q}) \cdot \mathrm{d} \underline{s}
$$

where

$$
\underline{q}=\left(x^{2}+y-4\right) \underline{i}+3 x y \underline{j}+\left(2 x z+z^{2}\right) \underline{k}
$$

and S is the surface of the paraboloid $z=4-\left(x^{2}+y^{2}\right)$ above the $x y$-plane.

Answer

- Exercise sheet and answers - Term 2 - Sheet 1-page -9 -

By Stokes' theorem we have

$$
\int_{S}(\nabla \times \underline{q}) \cdot \mathrm{d} \underline{s}=\oint_{C} \underline{q} \cdot \mathrm{~d} \underline{r}
$$

where C is the perimeter of the surface which is the circle $x^{2}+y^{2}=4$ in the plane $z=0$. A parametric description of this circle is

$$
C=\{\underline{r}(t)=2(\cos t \underline{i}+\sin t \underline{j}):-\pi<t \leq \pi\}
$$

and on this circle

$$
\underline{q}=\left(x^{2}+y-4\right) \underline{i}+3 x y \underline{j}=\left(4 \cos ^{2} t+2 \sin t-4\right) \underline{i}+12 \cos t \sin t \underline{j} .
$$

Now

$$
\frac{\mathrm{d} \underline{r}}{\mathrm{~d} t}=2(-\sin t \underline{i}+\cos t \underline{j})
$$

and

$$
\underline{q} \cdot \frac{\mathrm{~d} \underline{r}}{\mathrm{~d} t}=\left(-8 \cos ^{2} t \sin t-4 \sin ^{2} t+8 \sin t\right)+12 \cos ^{2} t \sin t .
$$

Only one of the terms is not an odd function of t and thus

$$
\int_{-\pi}^{\pi} \underline{q} \cdot \frac{\mathrm{~d} \underline{r}}{\mathrm{~d} t} \mathrm{~d} t=-4 \int_{-\pi}^{\pi} \sin ^{2} t \mathrm{~d} t=-4 \pi .
$$

Exercises involving Green's theorem in the plane

1. Verify Green's theorem in the plane for

$$
\oint_{C}\left(x y+y^{2}\right) \mathrm{d} x+x^{2} \mathrm{~d} y
$$

where C is the closed curve bounded by $y=x$ and $y=x^{2}, 0 \leq x \leq 1$.

Answer

Green's theorem in the plane is a special case of Stokes' theorem and the integrand in the area integral involves

$$
\underline{k} \cdot(\nabla \times \underline{F})=\underline{k} \cdot\left|\begin{array}{ccc}
\frac{i}{\partial} & \frac{j}{\partial} & \frac{k}{\partial} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & 0
\end{array}\right|=\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} .
$$

Green's theorem is

$$
\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\oint_{C} F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y
$$

For this question

$$
F_{1}=x y+y^{2}, \quad F_{2}=x^{2},
$$

for the partial derivatives

$$
\frac{\partial F_{1}}{\partial y}=x+2 y, \quad \frac{\partial F_{2}}{\partial x}=2 x \quad \text { giving } \quad \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=x-2 y .
$$

and

$$
\underline{F} \cdot \mathrm{~d} \underline{r}=F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y=\left(x y+y^{2}\right) \mathrm{d} x+x^{2} \mathrm{~d} y .
$$

The curve C has 2 parts corresponding to $y=x$ and to $y=x^{2}$ and as $0 \leq x \leq 1$ the part corresponding to $y=x^{2}$ is the lower of the two curves in $0<x<1$ with the 2 curves meeting at $x=0$ and $x=1$. Let C_{1} denote the straight line segment and let C_{2} denote the quadratic and note the direction of the integration along each part of C as shown in the diagram below.

On C_{1} we have $y=x$ and hence

$$
\int_{C_{1}} \underline{F} \cdot \mathrm{~d} \underline{r}=\int_{x=1}^{0}\left(x^{2}+x^{2}\right) \mathrm{d} x+x^{2} \mathrm{~d} x=-\int_{0}^{1} 3 x^{2} \mathrm{~d} x=-1 .
$$

On C_{2} we have $y=x^{2}, \mathrm{~d} y=2 x \mathrm{~d} x$ and hence

$$
\int_{C_{2}} \underline{F} \cdot \mathrm{~d} \underline{r}=\int_{x=0}^{1}\left(x^{3}+x^{4}\right) \mathrm{d} x+2 x^{3} \mathrm{~d} x=\int_{0}^{1}\left(3 x^{3}+x^{4}\right) \mathrm{d} x=\frac{3}{4}+\frac{1}{5}=\frac{19}{20} .
$$

Combining these two results gives

$$
\int_{C} \underline{F} \cdot \mathrm{~d} \underline{r}=-\frac{1}{20} .
$$

To compute instead the area integral we have

$$
\begin{aligned}
\int_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} s & =\int_{x=0}^{1} \int_{y=x^{2}}^{x}(x-2 y) \mathrm{d} y \mathrm{~d} x \\
& =\int_{x=0}^{1}\left[x y-y^{2}\right]_{x^{2}}^{x} \mathrm{~d} x \\
& =\int_{x=0}^{1}\left(x^{2}-x^{2}\right)-\left(x^{3}-x^{4}\right) \mathrm{d} x \\
& =\int_{x=0}^{1}\left(-x^{3}+x^{4}\right) \mathrm{d} x \\
& =-\frac{1}{4}+\frac{1}{5}=-\frac{1}{20}
\end{aligned}
$$

2. Use Green's theorem in the plane to evaluate

$$
\oint_{C}\left(x^{2}-2 x y\right) \mathrm{d} x+\left(x^{2} y+3\right) \mathrm{d} y
$$

where C is the boundary of the region enclosed by $y=8 x^{2}, x=2$ and $y=0$. Check your answer by direct integration.

Answer

In this question

$$
F_{1}=x^{2}-2 x y, \quad F_{2}=x^{2} y+3
$$

giving

$$
\frac{\partial F_{1}}{\partial y}=-2 x, \quad \frac{\partial F_{2}}{\partial x}=2 x y \quad \text { so that } \quad \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=2 x(y+1)
$$

and we need to verify that

$$
\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\oint_{C} F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y
$$

for the curve C specified. The curve C has 3 parts as shown in the following diagram corresponding to the x-axis from 0 to 2 (the part C_{1}), the line $x=2$ from $y=0$ to $y=32$ (the part C_{2}) and the curve $y=8 x^{2}$ from $x=2$ to $x=0$ (the part C_{3}).

For the area integral we have

$$
\begin{aligned}
\int_{x=0}^{2} \int_{y=0}^{8 x^{2}} 2 x(1+y) \mathrm{d} y \mathrm{~d} x & =\int_{x=0}^{2} 2 x\left[y+\frac{y^{2}}{2}\right]_{0}^{8 x^{2}} \mathrm{~d} x \\
& =\int_{0}^{2} 16 x^{3}+64 x^{5} \mathrm{~d} x \\
& =16\left(\frac{2^{4}}{4}\right)+64\left(\frac{2^{6}}{6}\right) \\
& =64\left(1+\frac{32}{3}\right)=64\left(\frac{35}{3}\right) .
\end{aligned}
$$

To calculate the line integral we consider each part separately as follows.
On $C_{1}, y=0, \mathrm{~d} y=0$ and $F_{1}=x^{2}$. Thus

$$
\int_{C_{1}} \underline{F} \cdot \mathrm{~d} \underline{r}=\int_{0}^{2} F_{1} \mathrm{~d} x=\int_{0}^{2} x^{2} \mathrm{~d} x=\frac{8}{3}
$$

On $C_{2}, x=2, \mathrm{~d} x=0$ and $F_{2}=4 y+3$. Thus

$$
\int_{C_{2}} \underline{F} \cdot \mathrm{~d} \underline{r}=\int_{0}^{32} F_{2} \mathrm{~d} y=\int_{0}^{32}(4 y+3) \mathrm{d} y=2(32)^{2}+3(32) .
$$

On $C_{3}, y=8 x^{2}, \mathrm{~d} y=16 x$ and to express F_{1} and F_{2} in terms of x we have

$$
F_{1}=x^{2}-2 x y=x^{2}-16 x^{3}, \quad F_{2}=x^{2} y+3=8 x^{4}+3 .
$$

For the direction of the integration it is from $x=2$ to $x=0$ and thus

$$
\begin{aligned}
\int_{C_{2}} \underline{F} \cdot \mathrm{~d} \underline{r} & =\int_{2}^{0} F_{1} \mathrm{~d} x+F_{2} \mathrm{~d} y \\
& =-\int_{0}^{2} x^{2}-16 x^{3}+\left(8 x^{3}+3\right)(16 x) \mathrm{d} x \\
& =\int_{0}^{2}\left(-48 x-x^{2}+16 x^{3}-128 x^{5}\right) \mathrm{d} x \\
& =-48\left(\frac{4}{2}\right)-\left(\frac{8}{3}\right)+16\left(\frac{16}{4}\right)-128\left(\frac{64}{6}\right) \\
& =-32-\left(\frac{8}{3}\right)-128\left(\frac{32}{3}\right) .
\end{aligned}
$$

Combining the contributions from C_{1}, C_{2} and C_{3} gives

$$
\begin{aligned}
& \frac{8}{3}+\left(2(32)^{2}+3(32)\right)+\left(-32-\left(\frac{8}{3}\right)-128\left(\frac{32}{3}\right)\right) \\
= & 64+64(32)-64\left(\frac{64}{3}\right)=64\left(1+32-\left(\frac{64}{3}\right)\right)=64\left(\frac{35}{3}\right) .
\end{aligned}
$$

[^0]: - Exercise sheet and answers - Term 2 - Sheet 1-page -7-

