MA2741: Spring Term - Exercise sheet 1

Exercises involving the Divergence theorem

1. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem to prove that

$$
\int_{S} \underline{r} \cdot \mathrm{~d} \underline{s}=3 V
$$

where \underline{r} is the position vector of a point on the surface and V is the volume of the region Ω.
2. Use the Divergence theorem to evaluate

$$
\int_{S} \underline{F} \cdot \mathrm{~d} \underline{s},
$$

where

$$
\underline{F}=\left(z^{2}-1\right)\left(x y^{2} \underline{i}+x y \underline{j}+y^{2} \underline{k}\right)
$$

and S is the closed surface of the cube centred at the origin and with sides of length 2 units with each side parallel to one of the planes $x=0, y=0$ and $z=0$. Check you answer by doing the surface integrals.
3. Show that

$$
\int_{S} \underline{q} \cdot \mathrm{~d} \underline{s}=\frac{\pi}{6}
$$

where $\underline{q}=z^{2} \underline{k}$ and S is the whole of the surface of the cone $x^{2}+y^{2}=(1-z)^{2}$, $0 \leq z \leq 1$, including the base $x^{2}+y^{2}=1, z=0$. Use direct evaluation and the Divergence theorem.
4. A closed region Ω is bounded by a simple surface S. Use the Divergence theorem to prove that

$$
\int_{\Omega} \nabla \phi \cdot \nabla \psi \mathrm{d} v=\int_{S} \phi \frac{\partial \psi}{\partial n} \mathrm{~d} s-\int_{\Omega} \phi \nabla^{2} \psi \mathrm{~d} v
$$

where ϕ and ψ are scalar fields. Hence, prove Green's second identity which is

$$
\int_{\Omega}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) \mathrm{d} v=\int_{S}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial n}\right) \mathrm{d} s .
$$

Exercises involving Stokes' theorem

1. Given that S is the hemisphere of unit radius described by

$$
\underline{r}(u, v)=\sin v \cos u \underline{i}+\sin v \sin u \underline{j}+\cos v \underline{k}, \quad 0 \leq u \leq 2 \pi, \quad 0 \leq v \leq \pi / 2
$$

and C is the closed curve that bounds the hemisphere in the $x y$-plane, evaluate

$$
\oint_{C} \underline{q} \cdot \mathrm{~d} \underline{r} \quad \text { and } \quad \int_{S}(\nabla \times \underline{q}) \cdot \mathrm{d} \underline{s}
$$

where
i) $\underline{q}=U y \underline{i}, U$ constant,
ii) $\underline{q}=y^{2} \underline{i}+x \underline{j}$.

What do you notice about your answers?
2. Verify Stokes' theorem for the vector field $\underline{F}=x^{2} y \underline{i}+z \underline{j}$ and the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.
3. Evaluate

$$
\int_{S}(\nabla \times \underline{q}) \cdot \mathrm{d} \underline{s}
$$

where

$$
\underline{q}=\left(x^{2}+y-4\right) \underline{i}+3 x y \underline{j}+\left(2 x z+z^{2}\right) \underline{k}
$$

and S is the surface of the paraboloid $z=4-\left(x^{2}+y^{2}\right)$ above the $x y$-plane.

Exercises involving Green's theorem in the plane

1. Verify Green's theorem in the plane for

$$
\oint_{C}\left(x y+y^{2}\right) \mathrm{d} x+x^{2} \mathrm{~d} y
$$

where C is the closed curve bounded by $y=x$ and $y=x^{2}, 0 \leq x \leq 1$.
2. Use Green's theorem in the plane to evaluate

$$
\oint_{C}\left(x^{2}-2 x y\right) \mathrm{d} x+\left(x^{2} y+3\right) \mathrm{d} y
$$

where C is the boundary of the region enclosed by $y=8 x^{2}, x=2$ and $y=0$. Check your answer by direct integration.

