
2019 Fourier series question,
a piecewise defined function,

sketching, odd-even and points of discontinuity
Let f1 and f2 be 2π-periodic function defined on (−π, π] as follows.

f1(x) =

{
1, if |x | ≤ π/2,

0, if −π < x < −π/2 or π/2 < x ≤ π,

f2(x) =


1, if 0 ≤ x ≤ π/2,

−1, if −π/2 ≤ x < 0,

0, if −π < x < −π/2 or π/2 < x ≤ π.

In both cases the expressions giving the value of the function at a
point x depends on which part of (−π, π] the point lies.

For f1(x) the ranges x are (−π,−π/2), [−π/2, π/2] and
(π/2, π/2].

For f2(x) the ranges x are (−π,−π/2], (−π/2, 0] (0,−π/2) and
[π/2, π).
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The function f1(x) on (−π, π]
For f1(x) the ranges x are (−π,−π/2), [−π/2, π/2] and
(π/2, π/2].

Planning: The x-axis.

−π −π/2 0 π/2 π

The “join points” in (−π, π) are x = −π/2 and x = π/2.

The function values near the join points?

As x increases f1(x) abruptly changes from 0 to 1 as we move
through −π/2.

As x increases f1(x) abruptly changes from 1 to 0 as we move
through π/2.

The points x = ±π/2 are points of discontinuity of f1(x).

When we restrict to (−π, π) the Fourier series for f1(x) is the same
as f1(x) at all points of continuity of f1(x) which is all points in
(−π, π) except the two points x = ±π/2.
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f1(x) on (−π, π], a sketch
Recall again the definition of f1.

f1(x) =

{
1, if |x | ≤ π/2,

0, if −π < x < −π/2 or π/2 < x ≤ π,

There are only two different values of the function and it is
described as a piecewise constant function. We have enough
information to give a sketch.

1

−π −π/2 0 π/2 π
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f1(x) extending the sketch to (−π, 3π)
Before this it is given note that f1(π) = 0 and the limit of f1(x)asx
tends to −π is also 0. The 2π-periodic version is continuous at
such points.

The points of discontinuity in (−π, π) are x = ±π/2 and
x = −π/2 + 2π and π/2 + 2π.

The sketch on (−π, 3π) is given next.

−π −π/2 0

1

π/2 3π/2 5π/2 3π
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Is f1, odd, even or neither?
A function g(x) is even if g(−x) = g(x).

A function g(x) is odd if g(−x) = −g(x).

In the Fourier series context where the functions are piecewise
defined we can restrict this to be just being satisfied at the points
of continuity.

If neither property holds then the function is not an even function
and it is not an odd function.

In the case of f1(x) we have an even function and we confirm this
by noting that it holds in (−π/2, π/2) and it holds in the “outer
parts”, i.e. in (−π,−π/2) and (π/2, π).
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How does the even property of f1 affect things?
As f1(x) is even and as cos(nx) is even the product
g(x) = f1(x) cos(nx) is even and we have the following two results.
For any integrand we have∫ π

−π
g(x) dx =

∫ 0

−π
g(x) dx +

∫ π

0
g(x) dx

and as g(x) is even we have∫ 0

−π
g(x) dx =

∫ π

0
g(x) dx .

Thus ∫ π

−π
g(x) dx = 2

∫ π

0
g(x) dx

and

an =
2

π

∫ π

0
f1(x) cos(nx)dx .
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The even property of f1 and bn = 0
As f1(x) is even and as sin(nx) is odd the product
g(x) = f1(x) sin(nx) is odd and we have the following two results.
For any integrand we have∫ π

−π
g(x) dx =

∫ 0

−π
g(x) dx +

∫ π

0
g(x) dx

and as g(x) is odd we have∫ 0

−π
g(x) dx = −

∫ π

0
g(x) dx .

Thus ∫ π

−π
g(x) dx = 0.

and
bn = 0.

An even function has a Fourier series which only has cosine terms.
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Determining an with f1(x) being piecewise defined
We still need to compute the following.

an =
2

π

∫ π

0
f1(x) cos(nx)dx .

As f1(x) has one value in (0, π/2) and a different value in (π/2, π)
we have∫ π

0
f1(x) cos(nx)dx =

∫ π/2

0
f1(x) cos(nx)dx +

∫ π

π/2
f1(x) cos(nx)dx ,

=

∫ π/2

0
cos(nx)dx .

At the last step we have used the property that the integrand is 0
in (π/2, π) and f1(x) = 1 in (0, π/2).
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Finishing the computation for f1(x)
When n ≥ 1 we have

an =
2

π

∫ π/2

0
cos(nx)dx

= =
2

π

sin(nπ/2)

n
.

When n is even sin(nπ/2) = 0 and hence an = 0 when n ≥ 1 is
even.

An odd number is a number of the form n = 2m− 1, m = 1, 2, . . ..

nπ/2 = mπ − π/2

and

sin(mπ − π/2) = − cos(mπ) = −(−1)m = (−1)m+1 = (−1)m−1.

Thus

a2m−1 =
2

π

(−1)m+1

2m − 1
.
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The coefficient a0 for f1(x) and the series

a0 =
2

π

∫ π/2

0
dx =

2

π

π

2
= 1.

To summarise, and this was in the question, the Fourier series for
f1(x)

a0
2

+
∞∑

m=1

a2m−1 cos((2m − 1)x)

=
1

2
+

2

π

(
cos(x)− cos(3x)

3
+

cos(5x)

5

+ · · ·+ (−1)m+1 cos((2m − 1)x)

2m − 1
+ · · ·

)
.

It was not part of the question but you can note from this
expression that at the points of discontinuity the value of the series
is a0/2 = 1/2 which is the average of the values for x either side of
the points ±π/2.
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The function f2(x) is an odd function

f2(x) =


1, if 0 ≤ x ≤ π/2,

−1, if −π/2 ≤ x < 0,

0, if −π < x < −π/2 or π/2 < x ≤ π.

The value in (−π/2, 0) is −1 which is −1 times the value in
(0, π/). Thus the odd property holds here.

The odd property also holds in the outer part as −1 times 0 is 0.

Hence the odd property holds at all points of continuity.

The implication of this for the Fourier series is that it only involves
sine terms.
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The coefficients in the series for f2(x)
As the function is an odd function we have

bn =
1

π

∫ π

−π
f2(x) sin(nx) dx =

2

π

∫ π

0
f2(x) sin(nx) dx .

As f2(x) = 1 in (0, π/2) and it is 0 in (π/2, π) we have

bn =
2

π

∫ π/2

0
sin(nx) dx =

2

π

[
− cos(nx)

n

]π/2
0

=
2

nπ
(− cos(nπ/2) + 1) .

cos(nπ/2) takes values 0, −1, 0, 1 and 0 as n = 1, . . . , 5. Thus

b1 =
2

π
, b2 =

4

2π
= b1, b3 =

2

3π
, b4 = 0, b5 =

2

5π
.
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2018 Fourier series question,
expanded explanation of the solution

In the question we have the following.

Let f1 : R→ R and f2 : R→ R denote the 2π-periodic functions
given on (−π, π] by

f1(x) =


1 , −π < x ≤ −π/2 ,

0 , −π/2 < x < π/2 ,

1 , π/2 ≤ x ≤ π ,
and f2(x) = −x

2
+

∫ x

0
f1(t) dt .

The first thing to note about the piecewise constant function f1(x)
is that it is even.

This is the case in (−π/2, π/2) where f (x) = 0.

In the “outer” parts (−π,−π/2) and (π/2, π) this is true with
f (x) = 1.

As f1(x) is even the Fourier series only has cosine terms.
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The Fourier coefficients of f1(x)
For the constant term

πa0 = 2

∫ π

0
dx = 2

∫ π

π/2
dx = π, a0 = 1.

For n ≥ 1,

πan = 2

∫ π

π/2
cos(nx) dx =

2

n
[sin(nx)]ππ/2 = −2

n
sin(nπ/2).

The values of sin(nπ/2) are respectively 1, 0, −1, 0, 1 etc.

When n is even we hence have an = 0.

To represent a general odd number let n = 2m − 1.

nπ

2
= mπ − π

2
, sin(nπ/2) = − cos(mπ) = −(−1)m.

Hence

a2m−1 =
2(−1)m

π(2m − 1)
.

MA2715, 2019/0 Week 31, Page 14 of 24

The piecewise linear function f2(x)
Firstly when |x | < π/2 we have f1(x) = 0 and thus∫ x

0
f1(t) dt = 0.

Hence when |x | < π/2, f2(x) = −x/2.

For x ≥ π/2,∫ x

0
f1(t) dt =

∫ π/2

0
f1(t) dt +

∫ x

π/2
f1(t) dt

=

∫ x

π/2
f1(t) dt =

∫ x

π/2
dt = x − π/2.

Thus in (π/2, π) we have

f2(x) =
x − π

2
.
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The piecewise linear function f2(x) continued
For x ≤ −π/2,∫ x

0
f1(t) dt =

∫ −π/2
0

f1(t) dt +

∫ x

−π/2
f1(t) dt

=

∫ x

−π/2
f1(t) dt =

∫ x

−π/2
dt = x + π/2.

Thus in (−π,−π/2) we have

f2(x) =
x + π

2
.
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A sketch of the piecewise linear function f2(x)
To help understand what a sketch of f2(x) looks like you might
note that the derivative (where it exists) is the value of f1(x)
minus 1/2, i.e.

f ′2(x) =


1/2 , −π < x ≤ −π/2 ,

−1/2 , −π/2 < x < π/2 ,

1/2 , π/2 ≤ x ≤ π.

The function f2(x) has constant slope in (−π,−π/2),
(−π/2, π/2), and (π/2, π). It is a straight line segment in each
part and at the join points it is continuous. The sketch just
involves 3 straight line segments.

The values at the join points are

f2(−π) = f2(π) = 0, f2(−π/2) = π/4, f2(π/2) = −π/4
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Finally the sketch of f2(x)

−π −π/2 π/2 π

π/4

−π/4

This function is an odd function.
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The Fourier series of f ′2(x)
As f2(x) is an odd function the Fourier series only involves sine
terms.

We have already noted that

f ′2(x) = −1

2
+ f1(x).

The Fourier series for this function is the series for f1(x) without
the constant term, i.e.

a1 cos(x) + a3 cos(3x) + a5 cos(5x) + · · ·

Term-by-term integration gives us our series just having sine terms
and if we also not that f2(0) = 0 the answer is

f2(x) = a1 sin(x) +
a3
3

sin(3x) +
a5
5

sin(5x) + · · ·

We can put = here as f2(x) is continuous for all x and thus the
Fourier series of f2(x) is the same as f2(x) at all points.
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The use of Taylor series and
finite difference approximations

Let u(x) be sufficiently smooth near to 0 and let h be sufficiently
small such that all Taylor expansions about 0 are valid. Consider
the following.

I (h) =
−u(3h) + 9u(h)− 8u(0)

6h
,

J(h) =
−u(2h) + 8u(h)− 8u(−h) + u(−2h)

12h
.

We want Taylor expansions of I (h) and J(h) about 0.

The points 3h and h in I (h) are both on the same side of 0.

The points ±2h and ±h are symmetrical about 0.
Both cases need the following Taylor expansion

u(h) = u(0) + u′(0)h +
u′′(0)

2
h2 +

u′′′(0)

6
h3 + · · ·
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The expression for I (h)

u(h) = u(0) + u′(0)h +
u′′(0)

2
h2 +

u′′′(0)

6
h3 + · · ·

If we replace h by 3h then we get

u(3h) = u(0) + u′(0)(3h) +
u′′(0)

2
(3h)2 +

u′′′(0)

6
(3h)3 + · · ·

If we multiply the u(h) version by 9 then

9u(h) = 9u(0) + 9u′(0)h +
9u′′(0)

2
h2 +

9u′′′(0)

6
h3 + · · ·

Thus

9u(h)− u(3h) = 8u(0) + 6u′(0)h +
(−18)u′′′(0)

6
h3 + · · ·

= 8u(0) + 6u′(0)h − 3u′′′(0)h3 + · · · .

Hence

I (h) =
9u(h)− u(3h)− 8u(0)

6h
= u′(0)− u′′′(0)

2
h2 + · · ·
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The expression for J(h)

u(h) = u(0) + u′(0)h +
u′′(0)

2
h2 +

u′′′(0)

6
h3 + · · ·

If we replace h by −h then we get

u(−h) = u(0)− u′(0)h +
u′′(0)

2
h2 − u′′′(0)

6
h3 + · · ·

and subtracting from u(h) gives

u(h)− u(−h) = 2u′0h +
u′′′0
3
h3 +

u
(5)
0

60
h5 +O(h7).

There are no even index terms. Replacing h by 2h in the above
gives

u(2h)− u(−2h) = 4u′0h +
8u′′′0

3
h3 +

32u
(5)
0

60
h5 +O(h7).
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The expression for J(h) continued
A key point is to note that

−u(2h)+8u(h)−8u(−h)+u(−2h) = 8(u(h)−u(−h))−(u(2h)−u(−2h)).

u(h)− u(−h) = 2u′0h +
u′′′0
3
h3 +

u
(5)
0

60
h5 +O(h7),

8(u(h)− u(−h)) = 16u′0h +
8u′′′0

3
h3 +

8u
(5)
0

60
h5 +O(h7),

u(2h)− u(−2h) = 4u′0h +
8u′′′0

3
h3 +

32u
(5)
0

60
h5 +O(h7).

Thus

8(u(h)− u(−h))− (u(2h)− u(−2h)) = 12u′0h−
24u

(5)
0

60
h5 +O(h7)

and

J(h) = u′0 −
u
(5)
0

30
h4 +O(h7).
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The use of Taylor series — some comments

I (h) =
−u(3h) + 9u(h)− 8u(0)

6h
,

J(h) =
−u(2h) + 8u(h)− 8u(−h) + u(−2h)

12h
.

I When giving the details attempt to line up the corresponding
powers of h as this makes it easier when combining terms.

I Do not try and do too many steps in one go. You are more
likely to make mistakes.

I When there is symmetry, e.g. in the J(h) case, make use of it
so that less has to be written down.
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