Chap 5: Fourier series for periodic functions

Let $f:(-\pi, \pi] \rightarrow \mathbb{R}$ be a bounded piecewise continuous function which we continue to be a 2π-periodic function defined on \mathbb{R}, i.e.

$$
f(x+2 \pi)=f(x), \quad \forall x \in \mathbb{R}
$$

The Fourier series of this function is written as

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x
$$

Sufficient conditions for

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

will be considered later.

Functions which are orthogonal on $(-\pi, \pi)$

Functions f and g defined on $(-\pi, \pi)$ are orthogonal if

$$
\int_{-\pi}^{\pi} f(x) g(x) \mathrm{d} x=0
$$

The following functions are orthogonal to each other in this sense.

$$
1, \cos (x), \sin (x) \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x), \ldots
$$

These functions are also 2π-periodic with 2π being the least period for $\cos (x)$ and $\sin (x)$.

Examples of 2π periodic functions

Let $f_{1}(x)$ and $f_{2}(x)$ be defined on $(-\pi, \pi]$ as follows.

$$
f_{1}(x)=\left\{\begin{array}{ll}
1, & \text { if } 0 \leq x \leq \pi, \\
0, & \text { if }-\pi<x<0,
\end{array} \quad \text { and } \quad f_{2}(x)=|x| .\right.
$$

Both of these are continued 2π-periodically and a sketch of both is shown below.

MA2715, 2019/0 Week 24, Page 2 of 12

Addition formulas to help evaluate the integrals

 In complex form we have$$
e^{i(a+b)}=e^{i a} e^{i b}, \quad e^{i(a-b)}=e^{i a} e^{-i b}
$$

By adding and subtracting the expanded version of the above and taking real and imaginary parts leads to

$$
\begin{aligned}
\cos (a) \cos (b) & =\frac{\cos (a+b)+\cos (a-b)}{2} \\
\sin (a) \cos (b) & =\frac{\sin (a+b)+\sin (a-b)}{2} \\
\sin (a) \sin (b) & =\frac{\cos (a-b)-\cos (a+b)}{2} \\
\cos (a) \sin (b) & =\frac{\sin (a+b)-\sin (a-b)}{2}
\end{aligned}
$$

If a and b are integers then $a \pm b$ are integers. When $p \neq 0$ is a integer

$$
\int_{-\pi}^{\pi} \cos (p x) \mathrm{d} x=0, \quad \int_{-\pi}^{\pi} \sin (p x) \mathrm{d} x=0
$$

When $f \neq g$ and when $f=g$
If f and g are from the list
$1, \cos (x), \sin (x) \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x), \ldots$
and $f \neq g$ then

$$
\int_{-\pi}^{\pi} f(x) g(x) \mathrm{d} x=0
$$

When $f(x)=g(x)$ we have the following cases.

$$
\begin{aligned}
\int_{-\pi}^{\pi} \mathrm{d} x & =2 \pi \\
\int_{-\pi}^{\pi} \cos ^{2}(n x) \mathrm{d} x & =\pi \\
\int_{-\pi}^{\pi} \sin ^{2}(n x) \mathrm{d} x & =\pi
\end{aligned}
$$

The Heaviside function on $(-\pi, \pi]$

Let

$$
f_{1}(x)= \begin{cases}1, & \text { if } 0 \leq x \leq \pi \\ 0, & \text { if }-\pi<x<0\end{cases}
$$

which we continue in a 2π-periodic way.
Determining the coefficients gives the following.
$f_{1}(x) \sim \frac{1}{2}+\frac{2}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3}+\cdots+\frac{\sin ((2 n-1) x}{2 n-1}+\cdots\right)$.
We can immediately observe that when $x=k \pi$ the value of the series is $1 / 2$. The series does not converge to $f_{1}(x)$ at these points of discontinuity.

The formula for the Fourier coefficients a_{n} and b_{n}

If our starting point are numbers a_{n} and b_{n} such that the series converges to define

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

and the convergence is such that all operations such as interchanging infinite sums and integrals are valid then the orthogonality properties imply the following.

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \mathrm{d} x & =a_{0} \pi \\
\int_{-\pi}^{\pi} f(x) \cos (m x) \mathrm{d} x & =a_{m} \pi \\
\int_{-\pi}^{\pi} f(x) \sin (m x) \mathrm{d} x & =b_{m} \pi
\end{aligned}
$$

This gives a justification for the formulas used.
MA2715, 2019/0 Week 24, Page 6 of 12

A plot of a truncated Fourier series for $f_{1}(x)$

$$
S_{63}(x)=\frac{1}{2}+\frac{2}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3}+\cdots+\frac{\sin (63 x)}{63}\right)
$$

MA2715, 2019/0 Week 24, Page 8 of 12

The function $f_{2}(x)=|x|$ on $(-\pi, \pi]$
In this case convergence occurs at all points and we can write for $|x| \leq \pi$.
$|x|=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos (x)+\frac{\cos (3 x)}{3^{2}}+\cdots+\frac{\cos ((2 n-1) x)}{(2 n-1)^{2}}+\cdots\right)$.
The 2π-periodic function extension is continuous at all points.
Observe that $f_{2}(x)$ is an even function of x which is why $b_{n}=0$ and only cosine terms are involved. Integration by parts is used to determine

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) \mathrm{d} x .
$$

The function $f_{3}(x)=x$ on $(-\pi, \pi]$

In this case for $x \in(-\pi, \pi)$ we have convergence to $f_{3}(x)$ and we can write
$x=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)=2\left(\sin (x)-\frac{\sin (2 x)}{2}+\frac{\sin (3 x)}{3}-\cdots\right)$.
We can immediately observe that when $x=\pi$ the value of the series is 0 . The series does converge here but not to $f_{3}(\pi)=\pi$ or to the limit as we tend to $-\pi$ which is $-\pi$. The 2π-periodic extension is discontinuous at the points $(2 k+1) \pi, k \in \mathbb{Z}$.
Observe that $f_{3}(x)$ is an odd function of x which is why $a_{n}=0$ and only sine terms are involved. Integration by parts is used to determine

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) \mathrm{d} x
$$

A plot of a truncated Fourier series for $f_{3}(x)$

$$
S_{64}(x)=2 \sum_{n=1}^{64} \frac{(-1)^{n+1}}{n} \sin (n x) .
$$

