
Chap 4: Preliminary material
Central difference approximations of u′ and u′′

Let ui = u(xi) and consider Taylor expansions about xi of
ui−1 = u(xi−1) = u(xi − h) and ui+1 = u(xi + h) = u(xi + h).

ui+1 = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i +

h4

24
u′′′′i + · · ·

ui−1 = ui − hu′i +
h2

2
u′′i −

h3

6
u′′′i +

h4

24
u′′′′i + · · · .

Adding and subtracting gives

ui+1 + ui−1 = 2

(
ui +

h2

2
u′′i +

h4

24
u′′′′i + · · ·

)
ui+1 − ui−1 = 2

(
hu′i +

h3

6
u′′′i + · · ·

)
.

ui+1 − 2ui + ui−1

h2
= u′′i +O(h2),

ui+1 − ui−1
2h

= u′i +O(h2).

MA2715, 2019/0 Week 23, Page 1 of 20

Chap 4: The two-point BVP

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x), a < x < b,

u(a) = g1, u(b) = g2.

The FD approximation – a summary
With a uniform mesh with h = (b − a)/N, xi = a + ih,
i = 0, 1, . . . ,N and Ui ≈ u(xi) the central difference finite
difference approximation involves the following.

Ui+1 − 2Ui + Ui−1

h2
= pi

(
Ui+1 − Ui−1

2h

)
+ qiUi + ri ,

i = 1, 2, . . . ,N − 1.

U0 = g1 and UN = g2.

The “continuous” problem for u(x), a ≤ x ≤ b is approximated by
a “discrete” problem involving U0,U1, . . . ,UN .

MA2715, 2019/0 Week 23, Page 2 of 20

The local truncation error
The local truncation error is concerned with how nearly the exact
solution satisfies the difference equations that determine the finite
difference approximation. It is defined as follows for
i = 1, . . . ,N − 1.

Li =
ui+1 − 2ui + ui−1

h2
−
(
pi

(
ui+1 − ui−1

2h

)
+ qiui + ri

)
= O(h2).

MA2715, 2019/0 Week 23, Page 3 of 20

The linear system AU = c

A =



a11 a12 0 · · · 0

a21
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . aN−2,N−1
0 · · · 0 aN−1,N−2 aN−1,N−1


,

ai ,i−1 = −1− hpi
2
, aii = 2 + h2qi , ai ,i+1 = −1 +

hpi
2
.

c1 = −h2r1 +

(
1 +

hp1
2

)
g1,

ci = −h2ri , 2 ≤ i ≤ N − 2,

cN−1 = −h2rN−1 +

(
1− hpN−1

2

)
g2.

It is O(N) storage and it O(N) operations to solve for U.
MA2715, 2019/0 Week 23, Page 4 of 20

The system in the special case u′′ = r
When p(x) = q(x) = 0 we have U0 = g1, UN = g2 and

Ui+1 − 2Ui + Ui−1

h2
= ri , i = 1, 2, . . . ,N − 1.

The tri-diagonal system is as follows.

2 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 2




U1

U2
...

UN−2
UN−1

 =


−h2r1 + g1
−h2r2

...
−h2rN−2

−h2rN−1 + g2

 .

It is O(N) storage and it O(N) operations to solve for U.

MA2715, 2019/0 Week 23, Page 5 of 20

Matlab, the spdiags function and \
For the problem u′′ = r , and assuming that a, b, N, g1 and g2
have been given and r(x) is available, the statements to get U can
be as follows.

% Uniform mesh

x=linspace(a, b, N+1); x=x(:);

h=(b-a)/N;

% set-up the tri-diagonal matrix A

N1=N-1;

o=ones(N1, 1);

A=spdiags([-o, 2*o, -o], -1:1, N1, N1);

% set-up the rhs vector c

c=-h*h*r(x(2:N));

c(1)=c(1)+g1;

c(N1)=c(N1)+g2;

% solve the equations

U=[g1; zeros(N1, 1); g2];

U(2:N)=A\c;

MA2715, 2019/0 Week 23, Page 6 of 20

Creating a version as a function
By starting with a statement which contains function we get a
function file version.

function[x, U]=fd_solver(a, b, N, r, g1, g2)

x=linspace(a, b, N+1); x=x(:);

h=(b-a)/N;

% ..statements as before but not shown here

% solve the equations

U=[g1; zeros(N1, 1); g2];

U(2:N)=A\c;

It is good practice to add suitable comments and in particular to
explain the input and output arguments.

MA2715, 2019/0 Week 23, Page 7 of 20

Illustrating tri-diagonal matrices in Matlab

% small tri-diagonal matrix

n=4;

o=ones(n, 1);

A=spdiags([-o 2*o -o], -1:1, n, n);

[L, U]=lu(A);

FA=full(A)

FL=full(L)

FU=full(U)

MA2715, 2019/0 Week 23, Page 8 of 20

The LU factorization of A when n = 4

FA =

2 -1 0 0

-1 2 -1 0

0 -1 2 -1

0 0 -1 2

FL =

1.0000 0 0 0

-0.5000 1.0000 0 0

0 -0.6667 1.0000 0

0 0 -0.7500 1.0000

FU =

2.0000 -1.0000 0 0

0 1.5000 -1.0000 0

0 0 1.3333 -1.0000

0 0 0 1.2500

MA2715, 2019/0 Week 23, Page 9 of 20

Testing the solver in Matlab
We create a problem for which we know the solution u(x).

[a, b] = [0, π], u(x) = cos(3x), r(x) = u′′(x) = −9 cos(3x).

Here r(x) is the rhs function to use in the numerical scheme.

% Test problem

a=0; b=pi;

uex =@(x) cos(3*x);

r =@(x) -9*cos(3*x);

g1=uex(a);

g2=uex(b);

N=4;

[x, U]=fd_solver(a, b, N, r, g1, g2)

MA2715, 2019/0 Week 23, Page 10 of 20

Trying the method for N = 2k , k = 2, 3, . . . , 16

% Test problem set-up statements

a=0; b=pi;

uex =@(x) cos(3*x);

r =@(x) -9*cos(3*x);

g1=uex(a);

g2=uex(b);

for k=2:16

N=2^k;

[x, U]=fd_solver(a, b, N, r, g1, g2);

fprintf(’N=%5d, error=%12.4e\n’, ...

N, norm(uex(x)-U, inf));

end

MA2715, 2019/0 Week 23, Page 11 of 20

The output from the previous script
The 15 lines of output are as follows.

N= 4, error= 7.5570e-01

N= 8, error= 1.4986e-01

N= 16, error= 3.9892e-02

N= 32, error= 9.8432e-03

N= 64, error= 2.4528e-03

N= 128, error= 6.1270e-04

N= 256, error= 1.5314e-04

N= 512, error= 3.8288e-05

N= 1024, error= 9.5720e-06

N= 2048, error= 2.3930e-06

N= 4096, error= 5.9825e-07

N= 8192, error= 1.4957e-07

N=16384, error= 3.7401e-08

N=32768, error= 9.4565e-09

N=65536, error= 2.3234e-09

Note that as N is doubled the error decreases by about 4
illustrating that the error decreases like h2.

MA2715, 2019/0 Week 23, Page 12 of 20

The ratios and a neater table version
To save the errors, compute the ratios and have a neat table you
can do the following.

% ..set-up as before

fprintf(’%5s %12s %10s\n’, ...

’N’, ’Error’, ’Ratios’);

e=zeros(1, 16);

for k=2:16

N=2^k;

[x, U]=fd_solver(a, b, N, r, g1, g2);

e(k)=norm(uex(x)-U, inf);

if k==2

fprintf(’%5d %12.4e\n’, N, e(k));

else

fprintf(’%5d %12.4e %10.6f\n’,...

N, e(k), e(k-1)/e(k));

end

end

MA2715, 2019/0 Week 23, Page 13 of 20

The neater table output
The previous program creates the following table.

N Error Ratios

4 7.5570e-01

8 1.4986e-01 5.042612

16 3.9892e-02 3.756714

32 9.8432e-03 4.052725

64 2.4528e-03 4.013054

128 6.1270e-04 4.003256

256 1.5314e-04 4.000813

512 3.8288e-05 3.999763

1024 9.5720e-06 4.000051

2048 2.3930e-06 4.000012

4096 5.9825e-07 3.999998

8192 1.4957e-07 3.999873

16384 3.7401e-08 3.998959

32768 9.4565e-09 3.955107

65536 2.3234e-09 4.070037

It is the matching of the widths in the fprintf statements which
gives the alignment.

MA2715, 2019/0 Week 23, Page 14 of 20

Chapter 4 summary
I Most differential equations do not have a “closed form”

solution but you can still approximate the solution using
numerical methods.

I To understand the finite difference approximations to
derivatives you need to understand Taylor series expansions,
e.g.

ui+1 = u(xi + h) = ui + hu′i +
h2

2!
u′′i +

h3

3!
u′′′i +

h4

4!
u′′′′i + · · ·

ui−1 = u(xi − h) = ui − hu′i +
h2

2!
u′′i −

h3

3!
u′′′i +

h4

4!
u′′′′i + · · ·

Re-arranging gives the following.

u′′i =
ui+1 − 2ui + ui−1

h2
− h2

12
u′′′′(xi) +O(h4).

u′i =
ui+1 − ui−1

2h
− h2

6
u′′′(xi) +O(h4).

The central difference approximations follow from this.
MA2715, 2019/0 Week 23, Page 15 of 20

Chapter 4 summary continued

I Derivative boundary conditions can also be handled, i.e. we
can consider

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x), a < x < b,

u(a) = g1, u′(b) = g3.

By appropriately combining Taylor expansions we get

4u(b − h)− u(b − 2h) = 3u(b)− 2hu′(b) +
4h3

6
u′′′(b) + · · ·

See the exercise sheet for other finite difference schemes with
some involving more than 3 points.

I The matrix of the linear system to solve is tri-diagonal. When
the interval [a, b] is divided into N equal sub-intervals of
width h = (b − a)/N the storage required grows like O(N)
and the amount of computation also grows like O(N). An
efficient implementation can be done in Matlab.

MA2715, 2019/0 Week 23, Page 16 of 20

Comments about the initial value problem
The scalar case is

u′ = f (t, u(t)), u(t0) = u0.

Consider Taylor expansions about tn evaluated at tn + h.

un+1 = un + hu′n +O(h2),

= un + hu′n +
h2

2
u′′n +O(h3),

= un + hu′n +
h2

2
u′′n +

h3

6
u′′′n +O(h4),

As u(t) satisfies the ODE we have the following.

u′(t) = f (t, u(t)),

u′′(t) =

(
∂f

∂t
+
∂f

∂u
u′
)

(t, u(t)),

by the chain rule of partial differentiation. The complexity of the
derivatives increases considerable in the general case for each
higher derivative.

MA2715, 2019/0 Week 23, Page 17 of 20

Taylor’ series methods
Let tn = t0 + nh, n = 0, 1, . . . with tf − t0 = Nh. Let
Un ≈ un = u(tn).

In all cases U0 = u0. These methods need f and the partial
derivatives (depending on the scheme).

Euler’s method

Un+1 = Un + hf (tn,Un), n = 0, 1, 2,

Local truncation error is O(h2). Accumulated error is O(h).

The TS(2) method

Un+1 = Un + hf (tn,Un) +
h2

2

(
∂f

∂t
(tn,Un) + f (tn,Un)

∂f

∂u
(tn,Un)

)
,

n = 0, 1, 2,

Local truncation error is O(h3). Accumulated error is O(h2).
MA2715, 2019/0 Week 23, Page 18 of 20

Huen’s method for scalars
This has the same accuracy as the TS(2) scheme and only needs
function values.

Heun’s method for the scalar problem. Start with U0 = u(0).

For n = 0, 1, 2, . . .
k1 = f (tn,Un),

k2 = f (tn + h,Un + hk1),

Un+1 = Un + h
2 (k1 + k2).

End For loop

This can be generalised to the case of systems.

MA2715, 2019/0 Week 23, Page 19 of 20

The Runge-Kutta method of order 4 for systems
The best known of the Runge Kutta schemes is the following
scheme which has an accumulated error of O(h4). In the case of
systems the problem is

u′(t) = f (t, u(t)), u(0) = u0

and the scheme is as follows.
For n = 0, 1, 2, . . .

k1 = f (tn, Un),

k2 = f (tn + h/2, Un + (h/2)k1),

k3 = f (tn + h/2, Un + (h/2)k2),

k4 = f (tn + h, Un + hk3),

Un+1 = Un + h
6 (k1 + 2k2 + 2k3 + k4).

End For loop

This method is from around 1900 and is still used today. The
Matlab solver ode45() makes use of the RK4 scheme as part of
what it does.

MA2715, 2019/0 Week 23, Page 20 of 20

