Chap 3: The problem $\underline{u}^{\prime}=A \underline{u}, \underline{u}(0)=\underline{u}_{0}$
Here A is $n \times n$ and $\underline{u}=\underline{u}(x)$ is $n \times 1$.
In all cases we express the solution in a "closed form" as $\underline{u}(x)=\exp (x A) \underline{u}_{0}, \quad \exp (x A)$ is the exponential matrix of $x A$.

When A has a complete set of eigenvectors we can do the following.

1. Determine the eigenvalues λ_{i} and eigenvectors \underline{v}_{i} of A.
2. Form the matrix $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$ and solve

$$
V \underline{c}=\underline{u}_{0} .
$$

This has a unique solution as $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent when A has a complete set of eigenvectors.
3. The solution is given by

$$
\underline{u}(x)=\sum_{i=1}^{n} c_{i} \mathrm{e}^{\lambda_{i} x} \underline{v}_{i} .
$$

MA2715, 2019/0 Week 22, Page 1 of 16

Example: Complex conjugate pair of eigenvalues

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{2}{4} .
$$

The eigenvalues of the matrix are the complex conjugate pair $\pm i$ and using the method the solution is first written as

$$
\underline{u}(x)=c_{1} \mathrm{e}^{-i x}\binom{1}{-i}+c_{2} \mathrm{e}^{i x}\binom{1}{i}
$$

with

$$
c_{1}=1+2 i, \quad c_{2}=1-2 i
$$

All the non-real quantities occur in complex conjuage pairs and by using $\mathrm{e}^{ \pm i x}=\cos x \pm i \sin x$ we can re-express the solution as

$$
\begin{aligned}
& u_{1}(x)=2 \cos x+4 \sin x \\
& u_{2}(x)=4 \cos x-2 \sin x
\end{aligned}
$$

In this case $u_{1}^{\prime \prime}=-u_{1}$ and $u_{2}^{\prime \prime}=-u_{2}$ and we could have solved two second order linear ODEs.

Example: Distinct real eigenvalues of ± 1

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{2}{4} .
$$

The eigenvalues of the matrix are ± 1 and the solution is

$$
\underline{u}(x)=-e^{-x}\binom{1}{-1}+3 e^{x}\binom{1}{1}
$$

In components we have

$$
\begin{aligned}
& u_{1}(x)=-\mathrm{e}^{-x}+3 \mathrm{e}^{x} \\
& u_{2}(x)=\mathrm{e}^{-x}+3 \mathrm{e}^{x}
\end{aligned}
$$

In this case $u_{1}^{\prime \prime}=u_{1}$ and $u_{2}^{\prime \prime}=u_{2}$ and we could have solved two second order linear ODEs.

MA2715, 2019/0 Week 22, Page 2 of 16

An example with distinct real eigenvalues of -6 and 5

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{cc}
6 & 6 \\
-2 & -7
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{20}{-7} .
$$

The eigenvalues of A are $\lambda_{1}=-6$ and $\lambda_{2}=5$ and the eigenvectors \underline{v}_{1} and \underline{v}_{2} are obtained from

$$
\begin{aligned}
& A-\lambda_{1} I=\left(\begin{array}{cc}
12 & 6 \\
-2 & -1
\end{array}\right), \quad \underline{v}_{1}=\binom{1}{-2}, \\
& A-\lambda_{2} I=\left(\begin{array}{cc}
1 & 6 \\
-2 & -12
\end{array}\right), \quad \underline{v}_{2}=\binom{6}{-1} .
\end{aligned}
$$

The solution is

$$
\underline{u}(x)=\mathrm{e}^{-6 x}\binom{2}{-4}+\mathrm{e}^{5 x}\binom{18}{-3}
$$

Note, if instead

$$
\underline{u}(0)=\binom{20}{-40}=20 \underline{v}_{1} \quad \text { then } \underline{u}(x)=20 \mathrm{e}^{-6 x} \underline{v}_{1} \rightarrow \underline{0} \quad \text { as } x \rightarrow \infty .
$$

The exponential matrix

The complex exponential

When we have more general complex eigenvalues of the form $\lambda=p+i q, p, q \in \mathbb{R}$ the complex exponential is defined to mean

$$
\mathrm{e}^{\lambda x}=\mathrm{e}^{(p+i q) x}=\mathrm{e}^{p x} \mathrm{e}^{i q x}=\mathrm{e}^{p x}(\cos (q x)+i \sin (q x))
$$

The behaviour as $x \rightarrow \infty$

As $\left|\mathrm{e}^{\lambda x}\right|=\mathrm{e}^{p x}$ the solution $\underline{u}(x)$ tends to $\underline{0}$ as $x \rightarrow \infty$ for all \underline{u}_{0} when the real part of all the eigenvalues is negative.

MA2715, 2019/0 Week 22, Page 5 of 16

$\exp (x A)$ in a deficient matrix case

$$
\begin{gathered}
A=\left(\begin{array}{cc}
\lambda_{1} & \alpha \\
0 & \lambda_{2}
\end{array}\right), \quad \lambda_{1} \text { and } \lambda_{2} \text { are the eigenvalues. } \\
A-\lambda_{1} I=\left(\begin{array}{cc}
0 & \alpha \\
0 & \lambda_{2}-\lambda_{1}
\end{array}\right) \quad \text { and } \quad A-\lambda_{2} I=\left(\begin{array}{cc}
\lambda_{1}-\lambda_{2} & \alpha \\
0 & 0
\end{array}\right) \\
\underline{v}_{1}=\binom{1}{0} \quad \text { and } \quad \underline{v}_{2}=\binom{\alpha}{\lambda_{2}-\lambda_{1}} \neq 0 .
\end{gathered}
$$

The matrix $V=\left(\underline{v}_{1}, \underline{v}_{2}\right)$ and the inverse V^{-1} are

$$
V=\left(\begin{array}{cc}
1 & \alpha \\
0 & \lambda_{2}-\lambda_{1}
\end{array}\right) \quad \text { and } \quad V^{-1}=\left(\begin{array}{cc}
1 & \frac{-\alpha}{\lambda_{2}-\lambda_{1}} \\
0 & \frac{1}{\lambda_{2}-\lambda_{1}}
\end{array}\right)
$$

If $D=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}\right\}$ then

$$
V \exp (x D) V^{-1}=\left(\begin{array}{cc}
\mathrm{e}^{\lambda_{1} x} & \alpha\left(\frac{\mathrm{e}^{\lambda_{2} x}-\mathrm{e}^{\lambda_{1} x}}{\lambda_{2}-\lambda_{1}}\right. \\
0 & \mathrm{e}^{\lambda_{2} x}
\end{array}\right) \rightarrow \mathrm{e}^{\lambda_{1} x}\left(\begin{array}{cc}
1 & \alpha x \\
0 & 1
\end{array}\right)
$$

as $\lambda_{2} \rightarrow \lambda_{1}$. We will not consider such "more difficult" cases.

For a square matrix B the exponential matrix is defined by

$$
\exp (B)=I+B+\frac{1}{2} B^{2}+\frac{1}{6} B^{3}+\cdots+\frac{1}{n!} B^{n}+\cdots
$$

This series always converges. By taking $B=x A$ the solution of $\underline{u}^{\prime}=A \underline{u}$ is given by

$$
\underline{u}(x)=\exp (x A) \underline{u}_{0}
$$

in all cases

When the eigenvectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent the matrix $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$ is invertible and we also have

$$
\underline{u}(x)=V \exp (x D) V^{-1} \underline{u}_{0}
$$

with $D=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. In this case

$$
\exp (x A)=V \exp (x D) V^{-1}
$$

MA2715, 2019/0 Week 22, Page 6 of 16

Higher order ODEs - a 2nd order case

One higher order ODE can be written as a system of first order ODEs. For example

$$
y^{\prime \prime}+b_{1} y^{\prime}+b_{0} y=0
$$

can be written as

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-b_{0} & -b_{1}
\end{array}\right)\binom{u_{1}}{u_{2}}
$$

with

$$
\binom{u_{1}}{u_{2}}=\binom{y}{y^{\prime}} .
$$

We have a closed form solution when b_{0} and b_{1} are constants. If b_{0} and b_{1} are replaced by functions then we rarely have "closed form expressions" for the solution.

Higher order systems with constant coefficients

$$
y^{(n)}+b_{n-1} y^{(n-1)}+\cdots+b_{1} y^{\prime}+b_{0} y=0, \quad b_{i} \text { constants. }
$$

$$
\begin{aligned}
u_{1} & =y \\
u_{2} & =y^{\prime}=u_{1}^{\prime} \\
u_{3} & =y^{\prime \prime}=u_{2}^{\prime} \\
\cdots & \cdots \\
u_{n} & =y^{(n-1)}=u_{n-1}^{\prime}
\end{aligned}
$$

From the differential equation

$$
u_{n}^{\prime}=y^{(n)}=-b_{0} u_{1}-b_{1} u_{2}-\cdots-b_{n-1} u_{n-1}
$$

Thus we have

$$
\underline{u}^{\prime}=A \underline{u} \quad \text { with } A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \cdots & \cdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-b_{0} & -b_{1} & \cdots & \cdots & -b_{n-1}
\end{array}\right)
$$

Chap 4: The two-point BVP

$$
\begin{aligned}
& u^{\prime \prime}(x)=p(x) u^{\prime}(x)+q(x) u(x)+r(x), \quad a<x<b \\
& \quad u(a)=g_{1}, \quad u(b)=g_{2}
\end{aligned}
$$

The FD approximation - a summary

With a uniform mesh with $h=(b-a) / N, x_{i}=a+i h$, $i=0,1, \ldots, N$ and $U_{i} \approx u\left(x_{i}\right)$ the central difference finite difference approximation involves the following.

$$
\begin{gathered}
\frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}=p_{i}\left(\frac{U_{i+1}-U_{i-1}}{2 h}\right)+q_{i} U_{i}+r_{i} \\
i=1,2, \ldots, N-1 . \\
U_{0}=g_{1} \quad \text { and } \quad U_{N}=g_{2}
\end{gathered}
$$

The "continuous" problem for $u(x), a \leq x \leq b$ is approximated by a "discrete" problem involving $U_{0}, U_{1}, \ldots, U_{N}$.

Characteristic equation/ auxiliary equation

The characteristic equation of A is the auxiliary equation

$$
\lambda^{n}+b_{n-1} \lambda^{n-1}+\cdots+b_{1} \lambda+b_{0}=0
$$

When $n=4$ expand the determinant about the last row to give

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\left|\begin{array}{cccc}
\lambda & -1 & 0 & 0 \\
0 & \lambda & -1 & 0 \\
0 & 0 & \lambda & -1 \\
b_{0} & b_{1} & b_{2} & \lambda+b_{3}
\end{array}\right| \\
&=\left(-b_{0}\right)\left|\begin{array}{ccc}
-1 & 0 & 0 \\
\lambda & -1 & 0 \\
0 & \lambda & -1
\end{array}\right|+b_{1}\left|\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & -1 & 0 \\
0 & \lambda & -1
\end{array}\right| \\
&+\left(-b_{2}\right)\left|\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & 0 \\
0 & 0 & -1
\end{array}\right|+\left(\lambda+b_{3}\right)\left|\begin{array}{ccc}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
0 & 0 & \lambda
\end{array}\right| \\
&= b_{0}+b_{1} \lambda+b_{2} \lambda^{2}+\left(b_{3}+\lambda\right) \lambda^{3} \text {. } \\
& \text { MA2715, 2019/0 Week 22, Page } 10 \text { of } 16
\end{aligned}
$$

The central difference approximations

Let $u_{i}=u\left(x_{i}\right)$ and consider Taylor expansions about x_{i} of $u_{i-1}=u\left(x_{i-1}\right)=u\left(x_{i}-h\right)$ and $u_{i+1}=u\left(x_{i}+h\right)=u\left(x_{i}+h\right)$.

$$
\begin{aligned}
& u_{i+1}=u_{i}+h u_{i}^{\prime}+\frac{h^{2}}{2} u_{i}^{\prime \prime}+\frac{h^{3}}{6} u_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} u_{i}^{\prime \prime \prime \prime}+\cdots \\
& u_{i-1}=u_{i}-h u_{i}^{\prime}+\frac{h^{2}}{2} u_{i}^{\prime \prime}-\frac{h^{3}}{6} u_{i}^{\prime \prime \prime}+\frac{h^{4}}{24} u_{i}^{\prime \prime \prime \prime}+\cdots
\end{aligned}
$$

Adding and subtracting gives

$$
\begin{aligned}
u_{i+1}+u_{i-1} & =2\left(u_{i}+\frac{h^{2}}{2} u_{i}^{\prime \prime}+\frac{h^{4}}{24} u_{i}^{\prime \prime \prime}+\cdots\right) \\
u_{i+1}-u_{i-1} & =2\left(h u_{i}^{\prime}+\frac{h^{3}}{6} u_{i}^{\prime \prime \prime}+\cdots\right) . \\
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}} & =u_{i}^{\prime \prime}+\mathcal{O}\left(h^{2}\right), \quad \frac{u_{i+1}-u_{i-1}}{2 h}=u_{i}^{\prime}+\mathcal{O}\left(h^{2}\right) .
\end{aligned}
$$

The exact values u_{i} and the discrete values U_{i}
The exact values satisfy $u_{0}=g_{1}, u_{N}=g_{2}$ and the following.

$$
\begin{aligned}
& \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=p_{i}\left(\frac{u_{i+1}-u_{i-1}}{2 h}\right)+q_{i} u_{i}+r_{i}+\mathcal{O}\left(h^{2}\right) \\
& \quad i=1,2, \ldots, N-1
\end{aligned}
$$

The finite approximation satisfy $U_{0}=g_{1}, U_{N}=g_{2}$ and the following.

$$
\begin{aligned}
& \frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}=p_{i}\left(\frac{U_{i+1}-U_{i-1}}{2 h}\right)+q_{i} U_{i}+r_{i} \\
& \quad i=1,2, \ldots, N-1
\end{aligned}
$$

Each equation only involves 2 or 3 of the terms U_{i}.
Let $\underline{U}=\left(U_{1}, \ldots, U_{N-1}\right)^{T}$. \underline{U} is determined by solving a linear system $A \underline{U}=\underline{c}$.

The linear system $A \underline{U}=\underline{c}$

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & 0 & \cdots & 0 \\
a_{21} & \ddots & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & \ddots & a_{N-2, N-1} \\
0 & \cdots & 0 & a_{N-1, N-2} & a_{N-1, N-1}
\end{array}\right) \\
a_{i, i-1}=-1-\frac{h p_{i}}{2}, \quad a_{i i}=2+h^{2} q_{i}, \quad a_{i, i+1}=-1+\frac{h p_{i}}{2} . \\
c_{1}=-h^{2} r_{1}+\left(1+\frac{h p_{1}}{2}\right) g_{1} \\
c_{i} \\
=-h^{2} r_{i}, \quad 2 \leq i \leq N-2 \\
c_{N-1}
\end{gathered}=-h^{2} r_{N-1}+\left(1-\frac{h p_{N-1}}{2}\right) g_{2} .
$$

It is $\mathcal{O}(N)$ storage and it $\mathcal{O}(N)$ operations to solve for \underline{U}.

The local truncation error

The local truncation error is concerned with how nearly the exact solution satisfies the difference equations that determine the finite difference approximation. It is defined as follows for $i=1, \ldots, N-1$.
$L_{i}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}-\left(p_{i}\left(\frac{u_{i+1}-u_{i-1}}{2 h}\right)+q_{i} u_{i}+r_{i}\right)=\mathcal{O}\left(h^{2}\right)$.

MA2715, 2019/0 Week 22, Page 14 of 16

The system in the special case $u^{\prime \prime}=r$
In the "basic" scheme in one of the MA2895 assignment tasks you have you have $p(x)=0$ and the central difference version. When we have the further simplification $q(x)=0$ we have $U_{0}=g_{1}$, $U_{N}=g_{2}$ and

$$
\frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}=r_{i}, \quad i=1,2, \ldots, N-1
$$

The tri-diagonal system is as follows.

$$
\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N-2} \\
U_{N-1}
\end{array}\right)=\left(\begin{array}{c}
-h^{2} r_{1}+g_{1} \\
-h^{2} r_{2} \\
\vdots \\
-h^{2} r_{N-2} \\
-h^{2} r_{N-1}+g_{2}
\end{array}\right)
$$

It is $\mathcal{O}(N)$ storage and it $\mathcal{O}(N)$ operations to solve for \underline{U}.

