
Chap 3: The problem u′ = Au, u(0) = u0

Here A is n × n and u = u(x) is n × 1.

In all cases we express the solution in a “closed form” as

u(x) = exp(xA)u0, exp(xA) is the exponential matrix of xA.

When A has a complete set of eigenvectors we can do the
following.

1. Determine the eigenvalues λi and eigenvectors v i of A.

2. Form the matrix V = (v1, . . . , vn) and solve

Vc = u0.

This has a unique solution as v1, . . . , vn are linearly
independent when A has a complete set of eigenvectors.

3. The solution is given by

u(x) =
n∑

i=1

cie
λixv i .
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Example: Distinct real eigenvalues of ±1(
u1
u2

)′
=

(
0 1
1 0

)(
u1
u2

)
, u(0) =

(
2
4

)
.

The eigenvalues of the matrix are ±1 and the solution is

u(x) = −e−x
(

1
−1

)
+ 3ex

(
1
1

)
.

In components we have

u1(x) = −e−x + 3ex ,

u2(x) = e−x + 3ex ,

In this case u′′1 = u1 and u′′2 = u2 and we could have solved two
second order linear ODEs.
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Example: Complex conjugate pair of eigenvalues(
u1
u2

)′
=

(
0 −1
1 0

)(
u1
u2

)
, u(0) =

(
2
4

)
.

The eigenvalues of the matrix are the complex conjugate pair ±i
and using the method the solution is first written as

u(x) = c1e−ix
(

1
−i

)
+ c2eix

(
1
i

)
with

c1 = 1 + 2i , c2 = 1− 2i .

All the non-real quantities occur in complex conjuage pairs and by
using e±ix = cos x ± i sin x we can re-express the solution as

u1(x) = 2 cos x + 4 sin x ,

u2(x) = 4 cos x − 2 sin x .

In this case u′′1 = −u1 and u′′2 = −u2 and we could have solved two
second order linear ODEs.
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An example with distinct real eigenvalues of −6 and 5(
u1
u2

)′
=

(
6 6
−2 −7

)(
u1
u2

)
, u(0) =

(
20
−7

)
.

The eigenvalues of A are λ1 = −6 and λ2 = 5 and the eigenvectors
v1 and v2 are obtained from

A− λ1I =

(
12 6
−2 −1

)
, v1 =

(
1
−2

)
,

A− λ2I =

(
1 6
−2 −12

)
, v2 =

(
6
−1

)
.

The solution is

u(x) = e−6x
(

2
−4

)
+ e5x

(
18
−3

)
.

Note, if instead

u(0) =

(
20
−40

)
= 20v1 then u(x) = 20e−6xv1 → 0 as x →∞.
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The complex exponential
When we have more general complex eigenvalues of the form
λ = p + iq, p, q ∈ R the complex exponential is defined to mean

eλx = e(p+iq)x = epxeiqx = epx(cos(qx) + i sin(qx))

The behaviour as x →∞
As |eλx | = epx the solution u(x) tends to 0 as x →∞ for all u0
when the real part of all the eigenvalues is negative.
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The exponential matrix
For a square matrix B the exponential matrix is defined by

exp(B) = I + B +
1

2
B2 +

1

6
B3 + · · ·+ 1

n!
Bn + · · ·

This series always converges. By taking B = xA the solution of
u′ = Au is given by

u(x) = exp(xA)u0

in all cases.

When the eigenvectors v1, . . . , vn are linearly independent the
matrix V = (v1, . . . , vn) is invertible and we also have

u(x) = V exp(xD)V−1u0

with D = diag{λ1, . . . , λn}. In this case

exp(xA) = V exp(xD)V−1.
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exp(xA) in a deficient matrix case

A =

(
λ1 α
0 λ2

)
, λ1 and λ2 are the eigenvalues.

A− λ1I =

(
0 α
0 λ2 − λ1

)
and A− λ2I =

(
λ1 − λ2 α

0 0

)
v1 =

(
1
0

)
and v2 =

(
α

λ2 − λ1

)
6= 0.

The matrix V = (v1, v2) and the inverse V−1 are

V =

(
1 α
0 λ2 − λ1

)
and V−1 =

1 −α
λ2 − λ1

0 1
λ2 − λ1

 .

If D = diag{λ1, λ2} then

V exp(xD)V−1 =

eλ1x α

(
eλ2x − eλ1x

λ2 − λ1

)
0 eλ2x

→ eλ1x
(

1 αx
0 1

)
as λ2 → λ1. We will not consider such “more difficult” cases.
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Higher order ODEs – a 2nd order case
One higher order ODE can be written as a system of first order
ODEs. For example

y ′′ + b1y
′ + b0y = 0

can be written as (
u1
u2

)′
=

(
0 1
−b0 −b1

)(
u1
u2

)
with (

u1
u2

)
=

(
y
y ′

)
.

We have a closed form solution when b0 and b1 are constants. If
b0 and b1 are replaced by functions then we rarely have “closed
form expressions” for the solution.
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Higher order systems with constant coefficients

y (n) + bn−1y
(n−1) + · · ·+ b1y

′ + b0y = 0, bi constants.

u1 = y ,

u2 = y ′ = u′1,

u3 = y ′′ = u′2,

· · · · · ·
un = y (n−1) = u′n−1

From the differential equation

u′n = y (n) = −b0u1 − b1u2 − · · · − bn−1un−1.

Thus we have

u′ = Au with A =


0 1 0 · · · 0
0 0 1 · · · 0
... · · · · · · . . . 0
0 0 0 · · · 1
−b0 −b1 · · · · · · −bn−1

 .
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Characteristic equation/ auxiliary equation
The characteristic equation of A is the auxiliary equation

λn + bn−1λ
n−1 + · · ·+ b1λ+ b0 = 0.

When n = 4 expand the determinant about the last row to give

det(λI − A) =

∣∣∣∣∣∣∣∣
λ −1 0 0
0 λ −1 0
0 0 λ −1
b0 b1 b2 λ+ b3

∣∣∣∣∣∣∣∣
= (−b0)

∣∣∣∣∣∣
−1 0 0
λ −1 0
0 λ −1

∣∣∣∣∣∣+ b1

∣∣∣∣∣∣
λ 0 0
0 −1 0
0 λ −1

∣∣∣∣∣∣
+(−b2)

∣∣∣∣∣∣
λ −1 0
0 λ 0
0 0 −1

∣∣∣∣∣∣+ (λ+ b3)

∣∣∣∣∣∣
λ −1 0
0 λ −1
0 0 λ

∣∣∣∣∣∣
= b0 + b1λ+ b2λ

2 + (b3 + λ)λ3.
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Chap 4: The two-point BVP

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x), a < x < b,

u(a) = g1, u(b) = g2.

The FD approximation – a summary
With a uniform mesh with h = (b − a)/N, xi = a + ih,
i = 0, 1, . . . ,N and Ui ≈ u(xi ) the central difference finite
difference approximation involves the following.

Ui+1 − 2Ui + Ui−1

h2
= pi

(
Ui+1 − Ui−1

2h

)
+ qiUi + ri ,

i = 1, 2, . . . ,N − 1.

U0 = g1 and UN = g2.

The “continuous” problem for u(x), a ≤ x ≤ b is approximated by
a “discrete” problem involving U0,U1, . . . ,UN .
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The central difference approximations
Let ui = u(xi ) and consider Taylor expansions about xi of
ui−1 = u(xi−1) = u(xi − h) and ui+1 = u(xi + h) = u(xi + h).

ui+1 = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i +

h4

24
u′′′′i + · · ·

ui−1 = ui − hu′i +
h2

2
u′′i −

h3

6
u′′′i +

h4

24
u′′′′i + · · · .

Adding and subtracting gives

ui+1 + ui−1 = 2

(
ui +

h2

2
u′′i +

h4

24
u′′′′i + · · ·

)
ui+1 − ui−1 = 2

(
hu′i +

h3

6
u′′′i + · · ·

)
.

ui+1 − 2ui + ui−1

h2
= u′′i +O(h2),

ui+1 − ui−1
2h

= u′i +O(h2).
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The exact values ui and the discrete values Ui

The exact values satisfy u0 = g1, uN = g2 and the following.

ui+1 − 2ui + ui−1

h2
= pi

(
ui+1 − ui−1

2h

)
+ qiui + ri +O(h2),

i = 1, 2, . . . ,N − 1.

The finite approximation satisfy U0 = g1, UN = g2 and the
following.

Ui+1 − 2Ui + Ui−1

h2
= pi

(
Ui+1 − Ui−1

2h

)
+ qiUi + ri ,

i = 1, 2, . . . ,N − 1.

Each equation only involves 2 or 3 of the terms Ui .

Let U = (U1, . . . ,UN−1)T . U is determined by solving a linear
system AU = c .
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The local truncation error
The local truncation error is concerned with how nearly the exact
solution satisfies the difference equations that determine the finite
difference approximation. It is defined as follows for
i = 1, . . . ,N − 1.

Li =
ui+1 − 2ui + ui−1

h2
−
(
pi

(
ui+1 − ui−1

2h

)
+ qiui + ri

)
= O(h2).
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The linear system AU = c

A =



a11 a12 0 · · · 0

a21
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . aN−2,N−1
0 · · · 0 aN−1,N−2 aN−1,N−1


,

ai ,i−1 = −1− hpi
2
, aii = 2 + h2qi , ai ,i+1 = −1 +

hpi
2
.

c1 = −h2r1 +

(
1 +

hp1
2

)
g1,

ci = −h2ri , 2 ≤ i ≤ N − 2,

cN−1 = −h2rN−1 +

(
1− hpN−1

2

)
g2.

It is O(N) storage and it O(N) operations to solve for U.
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The system in the special case u′′ = r
In the “basic” scheme in one of the MA2895 assignment tasks you
have you have p(x) = 0 and the central difference version. When
we have the further simplification q(x) = 0 we have U0 = g1,
UN = g2 and

Ui+1 − 2Ui + Ui−1

h2
= ri , i = 1, 2, . . . ,N − 1.

The tri-diagonal system is as follows.

2 −1 0 · · · 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 2




U1

U2
...

UN−2
UN−1

 =


−h2r1 + g1
−h2r2

...
−h2rN−2

−h2rN−1 + g2

 .

It is O(N) storage and it O(N) operations to solve for U.
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