
Basic Gauss elimination to get the triangular form
At each stage in the basic reduction process we create zeros below
the diagonal in a column and we have a vector of the multipliers.

A =


x x x x
x x x x
x x x x
x x x x

 →


x x x x
0 x x x
0 x x x
0 x x x

 = A(1), m1 =


0

m21

m31

m41

 ,

→


x x x x
0 x x x
0 0 x x
0 0 x x

 = A(2), m2 =


0
0

m32

m42

 ,

→


x x x x
0 x x x
0 0 x x
0 0 0 x

 = U, m3 =


0
0
0

m43

 .

x and x are potentially non-zero.
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The A = LU factorization
When the basic reduction is possible we have the factorization
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0

m21 1 0 0
m31 m32 1 0
m41 m42 m43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .

L = M−11 M−12 M−13 = I + m1e
T
1 + m2e

T
2 + m3e

T
3 ,

where each Mk = I −mke
T
k is a Gauss transformation matrix.

Later we write lij = mij for the entries of the lower triangular
matrix. As the diagonal entries of L are all equal to 1 the matrix is
said to be unit lower triangular.
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Factorization of the principal sub-matrices
Let Ak be the k × k principal sub-matrix of A.

a11 = u11.(
a11 a12
a21 a22

)
=

(
1 0
l21 1

)(
u11 u12
0 u22

)
a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 .


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .

In general
det(Ak) = u11 · · · ukk .

This factorization is possible if all the principle sub-matrices are
invertible, i.e. the entries ukk 6= 0, k = 1, . . . , n − 1. We also need
unn 6= 0 to solve a system.
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The order of the computations
The Gauss elimination order of the computations involves the
following.

A =

 2 3 1
−2 −2 −2
−2 −4 4

 −→
2 3 1

0 1 −1
0 −1 5

 −→
2 3 1

0 1 −1
0 0 4

 .

m1 =

 0
−1
−1

 , m2 =

 0
0
−1

 .

From this we have all the entries in the factorization. 2 3 1
−2 −2 −2
−2 −4 4

 =

 1 0 0
−1 1 0
−1 −1 1

2 3 1
0 1 −1
0 0 4

 .

We get row 1 of U, column 1 of L, row 2 of U, column 2 of L and
finally row 3 of U.
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The order of the computations continued
An A = LU approach involves considering the following.

A =

 2 3 1
−2 −2 −2
−2 −4 4

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 .

We could instead consider growing sub-matrices with an
intermediate state being the following. 2 3 1

−2 −2 −2
−2 −4 4

 =

 1 0 0
−1 1 0
l31 l32 1

2 3 u13
0 1 u23
0 0 u33

 .

To complete the computations we need to get l31 before l32. We
need to get u13 before u23 and both are needed to get u33.

With small problems and hand calculation there is no reduction in
effort.

MA2715, 2019/0 Week 20, Page 5 of 16

When the LU factorization is not possible
On the exercises there is the following matrix.

A =

 0 3 1
−2 1 −1
1 10 3


We cannot do the basic factorization as a11 = 0. However we can
do the basic factorization if we re-order the rows to−2 1 −1

0 3 1
1 10 3

 or

 1 10 3
−2 1 −1
0 3 1

 .

Similarly the basic factorization does not work with the following.

B =

1 1 2
1 1 3
5 4 3


Here the 2× 2 principal sub-matrix is not invertible. If we swap
rows 1 and row 3 or we swap rows 2 and 3 then we can factorize.
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Factorizations for different orders

A =

 0 3 1
−2 1 −1
1 10 3


Just swapping rows 1 and 3 leads to the following. 1 10 3

−2 1 −1
0 3 1

 =

 1 0 0
−2 1 0
0 1/7 1

1 10 3
0 21 5
0 0 2/7

 .

Matlab will “re-arrange” so that all multipliers are less than or
equal to 1 in magnitude. Two row swaps are needed in this case
and we get the following.−2 1 −1

1 10 3
0 3 1

 =

 1 0 0
−1/2 1 0

0 2/7 1

−2 1 −1
1 21/2 −5/2
0 0 2/7


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Do we only swap to avoid having a pivot equal to 0?
We have to swap in the following case.(

0 1
1 1

)(
x1
x2

)
=

(
1
3

)
.

In theory we do not need to swap if we change the above to the
following. (

10−20 1
1 1

)(
x1
x2

)
=

(
1
3

)
.

However not swapping in this case leads to the wrong answer when
implemented on a computer with usual floating point arithmetic.
In the elimination step the “next 2,2 entry” and a rhs entry are
exactly 1− 1020 and 3− 1020 but rounding stores this as(

10−20 1
0 −1020

)(
x1
x2

)
=

(
1

−1020

)
and the rounded system has solution x1 = 0 and x2 = 1.

Without rounding the solution is close to (2, 1)T .
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The row pivoting decision
In the case of an n × n matrix at the stage when the first k − 1
columns have been reduced the main entries to consider are the
following. 

a
(k−1)
kk · · · a

(k−1)
kn

a
(k−1)
k+1,k · · · a

(k−1)
k+1,n

... · · ·
...

a
(k−1)
n,k · · · a

(k−1)
n,n


Row pivoting (known as partial pivoting) involves considering the
largest of the column k entries∣∣∣a(k−1)kk

∣∣∣ , ∣∣∣a(k−1)k+1,k

∣∣∣ , . . . , ∣∣∣a(k−1)nk

∣∣∣ .
Swapping is done to put the largest entry in magnitude in the top
position. If all entries are 0 then the matrix does not have an
inverse.

When we can continue the multipliers have magnitudes ≤ 1.
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Does row pivoting work in practice?
Yes. The procedure has been used for a long time and it can be
used with confidence.

Is row pivoting guaranteed to work on a computer?
No.

The worst case is illustrated by considering the matrix

A4 =


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

 =


1 0 0 0
−1 1 0 0
−1 −1 1 0
−1 −1 −1 1




1 0 0 1
0 1 0 2
0 0 1 22

0 0 0 23

 .

If we consider a sequence of matrices with this structure then the
n × n matrix An is not too badly conditioned but the condition
number of the factors Ln and Un grow rapidly with n. If rows were
swapped then it would work better but the row pivoting decision is
not to swap at each stage as it does not consider the large entries
in the last column. MA2715, 2019/0 Week 20, Page 10 of 16

How is Ln badly conditioned when det(Ln) = 1?
On the exercises (Qu. 10) we have

L5 =


1 0 0 0 0
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1

 .

We can get the inverse L−15 col-by-col by forward substitution.

L−1
5 =


1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
22 2 1 1 0
23 22 2 1 1

 .

For the corresponding matrix L−1n we have ‖L−1n ‖∞ = 2n−1.

Although a matrix is invertible if and only if its determinant is
non-zero the size of the determinant is often not a good indication
as to whether the matrix is nearly singular as this example shows.
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Other strategies
Suppose that we are at the start of the kth stage.

a
(k−1)
kk · · · a

(k−1)
kn

a
(k−1)
k+1,k · · · a

(k−1)
k+1,n

... · · ·
...

a
(k−1)
n,k · · · a

(k−1)
n,n


Complete pivoting finds the largest entry in magnitude in this
matrix. If this is in position s, t then rows k and s are swapped and
columns k and t are swapped. The factorization is then of the form

PAQ = LU

where both P and Q are permutation matrices.
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Solving Ax = b when we need to swap rows
Part 1 of Qu. 8 of the the latest exercise sheet requires row
swapping.  0 3 1

−2 1 −1
1 10 3

x1
x2
x3

 =

 −4
−8
−12

 .

After swapping we have 1 10 3
−2 1 −1
0 3 1

x1
x2
x3

 =

−12
−8
−4

 .

If we keep the right hand side from the start then the basic Gauss
elimination involves the following steps.

 1 10 3 −12
−2 1 −1 −8
0 3 1 −4

→
1 10 3 −12

0 21 5 −32
0 3 1 −4

→
1 10 3 −12

0 21 5 −32
0 0 2/7 4/7

 .
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Solving Ax = b or first getting A = LU continued 1 10 3
−2 1 −1
0 3 1

→
1 10 3

0 21 5
0 3 1

→
1 10 3

0 21 5
0 0 2/7

 .

If you note the multipliers used then we have the factorization 1 10 3
−2 1 −1
0 3 1

 =

 1 0 0
−2 1 0
0 1/7 1

1 10 3
0 21 5
0 0 2/7

 .

Solving Ly = b involves 1 0 0
−2 1 0
0 1/7 1

y1
y2
y3

 =

−12
−8
−4


By forward substitution this gives

y1 = −12, y2 = −32, y3 = −4 + 32/7 = 4/7.

Note that y is the same as the last column when we use the right
hand side in all the elimination steps.
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Summary of chapter 2: Ax = b
Let A be a n × n matrix and let L be unit lower triangular and U
upper triangular of the same size. Also let P denote a n × n
permutation matrix.

1. Triangular systems can be solved by forward or backward
substitution depending on their shape.

2. If PA = LU then we our system is PAx = Pb and we have
LUx = Pb = b′. Solve Ly = b′ followed by solving Ux = y .

3. In basic Gauss elimination P = I . O(2n3/3) operations are
involved to reduce to triangular form. Without pivoting all the
principal sub-matrices need to be invertible.

4. x = A−1b describes the solution but it is not an efficient way
to get the solution. We can get A−1 column-by-column by
first factorizing and then solving linear systems such as

x j = A−1e j gives Ax j = e j .
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Other factorizations and some comments
Other similar factorizations exist in this context.

I Rook pivoting is like complete pivoting and involves possibly
swapping rows and columns and gives a factorization

PAQ = LU

where P and Q are both permutation matrices. Complete
pivoting is more stable than PA = LU but take about twice as
long to compute. Rook pivoting is more stable than PA = LU
and only takes slightly longer to compute.

I The following has not been covered this year but when A is
real and symmetric and positive definite there is a Cholesky
factorization

A = RTR

where R is a general upper triangular matrix with rii > 0.
Another common term for upper triangular is right triangular.
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