Possible statements/syntax in the MA2895 class test

- Creating vectors and matrices, e.g. [and], a comma to separate entries on a row, a semi-colon to separate rows, the use of the transpose '. Combining matrices to create larger matrices.
- * and ${ }^{\text {^ as matrix operations. }}$
- Entry-wise operations such as .*, .^ and ./ etc.
- The use of \&\& (logical and) and II (logical or).
- The use of the colon notation to extract parts of vectors and matrices.
- Decision statements, e.g. if and if-else constructions.
- for-loops
- break and continue in a loop.
- Basic use of fprintf for formatted output.
- The function statement at the top of function files.

Matrices ...what is displayed?

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{llll}
7 & 8 & 2 & 4
\end{array}\right] \text {; } \\
& y=\left[\begin{array}{llll}
1 & 1 & 1 & 2
\end{array}\right]^{\prime} \text {; } \\
& \mathrm{A}=\left[\begin{array}{lllll}
0 & 2 & 4 & 6 & 8 ;
\end{array}\right. \\
& 7 \text { 5 3 1 0; } \\
& 9 \text { 9 } 4 \text { 1 } 4 \text {; } \\
& 78878 \text { 8; } \\
& 543 \text { 2 1]; } \\
& \mathrm{v} 1=\mathrm{A}(4,5) \\
& \mathrm{v} 2=\mathrm{x}+\mathrm{A}(1: 4,1) \\
& \text { v3=A(1:2:5, 5) } \\
& \mathrm{v} 4=\mathrm{A} \text { (end, 2:4) } \\
& \text { v5=A([3 } 313], 1: 3) \\
& \mathrm{v} 6=\left[\begin{array}{llll}
\mathrm{x} & \mathrm{y} & \mathrm{y} & \mathrm{x}
\end{array}\right]
\end{aligned}
$$

Loops ... what is displayed?
 A for-loops and a break statement

```
for k=1:4
    y=k^3+k^2;
    fprintf('k=%d, y=%2d\n', k, y);
end
```

for $k=1: 4$
$y=k^{\wedge} 3+k^{\wedge} 2$
if $\mathrm{y}>=30$
break
end
end
k

Loops ... what is displayed? for-loops, break and continue statements

for $k=1: 5$
$\mathrm{y}=\mathrm{k}^{\wedge} 3+\mathrm{k}^{\wedge} 2$;
if $y<=20$
continue;
end
if $y>100$
break;
end
disp(y)
end
k

Matrix operations ...what is displayed Matrix multiplication, entry-wise operations

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ll}
1 & 2 ; \\
5 & 4 ; \\
7 & 6
\end{array}\right] ; \\
& \mathrm{B}=\mathrm{A} . .^{\wedge} 2 \\
& \mathrm{C}=\mathrm{A}^{\prime} * \mathrm{~A} \\
& \mathrm{E}=\mathrm{A} * \mathrm{~A}
\end{aligned}
$$

Creating a function

Let $\underline{x}=\left(x_{i}\right)$ be a vector of length $m \geq n$ and let

$$
f_{n}(\underline{x})= \begin{cases}\|\underline{x}\|_{1}, & \text { if } 1 \leq n \leq 3 \\ x_{4}^{2}+\cdots+x_{m}^{2}+\|\underline{x}\|_{1}, & \text { otherwise }\end{cases}
$$

Write a function starting with the following which computes this.
function $y=f u n 20(x, n)$
$\mathrm{m}=$ length (x) ;

Which function computes \cdots ?

Suppose we want a function to compute

$$
g_{m}(x)=\sin (x)+\frac{\sin (3 x)}{3}+\frac{\sin (5 x)}{5}+\cdots+\frac{\sin ((2 m+1) x)}{2 m+1}
$$

Which of the following functions works correctly for a scalar x and for all $m \geq 0$.

```
function y=gm1(x, m)
k=1:2:(2*m+1);
y=sin(k*x)*(ones(m+1, 1)./k(:));
```

function $y=g m 2(x, m)$
$\mathrm{y}=0$;
for $\mathrm{k}=2 * \mathrm{~m}+1: 2: 1$
$\mathrm{y}=\mathrm{y}+\sin (\mathrm{k} * \mathrm{x}) / \mathrm{k}$;
end

Which function computes ... continued?

```
function \(y=g m 3(x, m)\)
\(\mathrm{y}=0\);
\(\mathrm{s}=0\);
for \(k=0: m\)
    \(\mathrm{s}=\mathrm{s}+\sin ((2 * \mathrm{k}+1) * \mathrm{x}) /(2 * \mathrm{k}+1) ;\)
end
```

function $y=g m 4(x, m)$
$\mathrm{y}=0$;
for $k=1: m$
$\mathrm{y}=\mathrm{y}+\sin ((2 * \mathrm{k}+1) * \mathrm{x}) /(2 * \mathrm{k}+1) ;$
end

Slide 2 output, v1 to v4

The output from slide 2 statements is as follows.

$$
\begin{aligned}
& \text { v1 = } \\
& 8 \\
& \text { v2 = } \\
& 7 \\
& 15 \\
& 11 \\
& 11 \\
& \text { v3 = } \\
& 8 \\
& 4 \\
& 1 \\
& \text { v4 = } \\
& 4 \\
& 3 \\
& 2
\end{aligned}
$$

Slide 2 output, v5 to v6

9	9	4
9	9	4
9	9	4
v6 =		
7	1	1
8	1	1
2	1	1
4	2	2

Note that the part $\left.\begin{array}{lll}3 & 3 & 3\end{array}\right]$ means that a part of row 3 is repeated when creating v5.

Slide 3 output

In the first case it is as follows.
$\mathrm{k}=1, \mathrm{y}=2$
$\mathrm{k}=2, \mathrm{y}=12$
$\mathrm{k}=3, \mathrm{y}=36$
$\mathrm{k}=4, \mathrm{y}=80$

Slide 3 output continued

In the second case it is as follows.

$$
\begin{aligned}
& \mathrm{y}= \\
& 2 \\
& \mathrm{y}= \\
& 12 \\
& \text { y }= \\
& 36 \\
& \mathrm{k}= \\
& 3
\end{aligned}
$$

The break statement means that the loop finishes when $\mathrm{k}=3$ and as k is displayed after the loop this is the last value shown.

Slide 4 output

The output is as follows.

$$
\mathrm{k}=\begin{aligned}
& 36 \\
& 80 \\
& 5
\end{aligned}
$$

When $\mathrm{k}=1$ and when $\mathrm{k}=2$ the value of y is less than 20 and the continue statement is executed and thus there is no output.
When $\mathrm{k}=3$ and when $\mathrm{k}=4$ both tests are false and and the statement where y is displayed is reached which is why 36 and 80 are shown.

When $\mathrm{k}=5$ the test attached to the break statement is true and we leave the loop. After the loop k still contains the value 5 and this is the last output.

Slide 5 output

The output is as follows.

$\mathrm{B}=$		
1	4	
25	16	
49	36	
$\mathrm{C}=$		
75	64	
64	56	
E =		
5	13	19
13	41	59
19	59	85

Remember that it is an entry-wise operation to get B but for C and E symmetric matrices are created and $*$ means matrix multiplication.

Slide 6 - a possible version of the function

One possibility for the function which follows the description quite closely is the following.

```
function y=fun20(x, n)
m=length(x);
if 1<=n && n<=3
    y=norm(x, 1);
else
    y=norm(x, 1);
    for k=4:m
        y=y+x(k)^2;
    end
end
```


Slide 6 - another version of the function

A shorter version exploiting Matlab capabilities and avoiding the loop is to have the following.
function $y=f u n 20 b(x, n)$
$\mathrm{m}=$ length (x) ;
$y=n o r m(x, 1)$;
if $1<=n$ \& \& $n<=3$
return
end
$y=y+\operatorname{sum}(x(4: m) . \wedge 2)$;

Slide 7 - which functions work correctly

gm1.m is correct. k is a row vector and thus $\sin (\mathrm{k} * \mathrm{x})$ is a row vector which deals with computing all the sine terms. The later part creates a column vector of the " $1 / \mathrm{k}$ " terms and the row vector times the column vector gives the required sum.
gm2.m is not correct. The part $2 * \mathrm{~m}+1: 2: 1$ gives an empty vector and thus y remains at 0 . The step needs to change to -2 to work.

Slide 8 - which functions . . correctly

gm3.m is not correct as y is set to 0 and it is never changed. The sum is computed locally as s but this is not returned by the function.
gm4.m is not correct as the term $\sin (\mathrm{x})$ when k is 0 is not included.

Some tests with gm1, gm2, gm3 and gm4

```
x=linspace(0, 2*pi, 201);
y1=zeros (1, 201);
y2=y1; y3=y1; y4=y1;
for k=1:201
    y1(k)=gm1(x (k), 20);
    y2(k)=gm2(x(k), 20);
    y3(k)=gm3(x(k), 20);
    y4(k)=gm4(x(k), 20);
end
figure(101)
plot(x, y1); print2pdf('gm1plot.pdf')
figure(102)
plot(x, y2); print2pdf('gm2plot.pdf')
figure(103)
plot(x, y3); print2pdf('gm3plot.pdf')
figure(104)
plot(x, y4); print2pdf('gm4plot.pdf')

\section*{gm1plot.pdf}


\section*{gm2plot.pdf}


\section*{gm3plot.pdf}


\section*{gm4plot.pdf}
```

