A for-loop and a break statement

Consider a Newton iteration for $f(x)=x^{2}-2$,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}, \quad n=0,1,2, \ldots
$$

```
x=1;
for n=1:20
    d=(x^2-2)/(2*x);
    x=x-d;
    if abs(d)<1e-12
        break
    end
end
```

Here if the test involving d is true then the break statement is executed and the you leave the loop.

A for-loop and a continue statement

On pages 13 and 14 the structure of an example is as follows.

```
% . . .
count=0;
for k=1:500
    % ..randomly generate a matrix and get the eigenvalues
    if some_tests_on_the_eigenvalues
        continue;
    end
    % ..display something
    count=count+1;
    if count==3
        break;
    end
end
```


Matrix operations

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{lll}
1 & 2 & 3 ; \\
3 & 2 & 1 ; \\
4 & 0 & 2
\end{array}\right] ; \\
& \mathrm{x}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]{ }^{\prime} ; \\
& \mathrm{b}=\mathrm{A} * \mathrm{x}
\end{aligned}
$$

Here $*$ means matrix multiplication and similarly $\mathrm{A}^{\wedge} 2$ is $\mathrm{A} * \mathrm{~A}$. In the statement starting with $\mathrm{x}=$ we get a column vector by transposing a row vector.

Using the colon notation with matrices

```
A=[[\begin{array}{llllll}{1}&{4}&{8}&{9}&{2;}\end{array};\mp@code{;}
\begin{tabular}{lllll}
0 & 1 & 9 & 8 & \(7 ;\) \\
3 & 1 & 4 & 5 & \(2 ;\)
\end{tabular}
    1 9 7 5 2;
    0 1 8 6 4];
r3=A(3, :)
c2=A(:, 2)
A3=A(2:4, 2:4)
E=A(4:end, 4:end)
```

r3 is row 3 of $A, c 2$ is column 2 of $A, A 3$ is a 3×3 sub-matrix and as A is $5 \times 5 \mathrm{E}$ is a 2×2 sub-matrix.

The output

3	1	4	5	2
$\mathrm{c} 2=$				
4				
1				
1				
9				
1				
A3 =				
1	9	8		
1	4	5		
9	7	5		
$E=$				
5	2			
6	4			

Entry-wise operations

.*, ./ and .^ are entry-wise operations. An example which also uses standard functions in a vectorised way is as follows.
Suppose we want to plot

$$
f(t)=\sin (t)+0.3 \exp \left(-0.1 t^{2}\right) \sin (10 t)
$$

$\mathrm{t}=$ linspace ($0,2 * \mathrm{pi}, 500$);
$\mathrm{y}=\sin (\mathrm{t})+0.3 * \exp \left(-0.1 * \mathrm{t} .{ }^{\wedge} 2\right) . * \sin (10 * \mathrm{t})$;
figure(2)
plot(t, y)
The one statement involving $\mathrm{y}=$ achieves what the following 4 statements do in creating the vector z.

```
z=zeros(1, 500);
for k=1:500
    z(k)=sin(t(k))+0.3*exp(-0.1*t(k)^2)*\operatorname{sin}(10*t(k));
end
```


Matrix operation/entry-wise operation comparison

| $\mathrm{A}=\left[\begin{array}{lll}4 & 1 & 1 ; \\ 1 & 4 & 1 ; \\ 1 & 1 & 4\end{array}\right] ;$ |
| :--- | :--- | :--- |
| $\mathrm{A} 2=\mathrm{A} * \mathrm{~A}$ |

$\mathrm{E} 2=\mathrm{A} . * \mathrm{~A}$

This creates the following.

18	9	9
9	18	9
9	9	18
E2 =		
16	1	1
1	16	1
1	1	16

A function file: the quadratic formula

$$
x_{1,2}=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a}
$$

```
function [x1, x2]=solve_quad(a, b, c)
d=b^2-4*a*c;
sd=sqrt(abs(d));
if d>=0
    x1=(-b-sd)/(2*a);
    x2=(-b+sd)/(2*a);
else
    x1=(-b-1i*sd)/(2*a);
    x2=(-b+1i*sd)/(2*a);
end
```

Store as solve_quad.m, 3 input arguments, 2 output arguments.

