
Chap 5: Fourier series for periodic functions
Let f : (−π, π]→ R be a bounded piecewise continuous function
which we continue to be a 2π-periodic function defined on R, i.e.

f (x + 2π) = f (x), ∀x ∈ R.

The Fourier series of this function is written as

f (x) ∼ a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

where

an =
1

π

∫ π

−π
f (x) cos(nx) dx and bn =

1

π

∫ π

−π
f (x) sin(nx) dx .

When certain sufficient conditions about f hold we have that

f (x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

at all the points of continuity of f (x).
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Examples of 2π periodic functions
Let f1(x) and f2(x) be defined on (−π, π] as follows.

f1(x) =

{
1, if 0 ≤ x ≤ π,
0, if −π < x < 0,

and f2(x) = |x |.

Both of these are continued 2π-periodically and a sketch of both is
shown below.

−3π −2π −π 0 π 2π 3π

π

1

−3π −2π −π 0 π 2π 3π

π
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Orthogonal functions on (−π, π)
and the value of integrals

If f and g are from the list

1, cos(x), sin(x) cos(2x), sin(2x), . . . , cos(nx), sin(nx), . . . .

and f 6= g then ∫ π

−π
f (x)g(x) dx = 0.

When f (x) = g(x) we have the following cases.∫ π

−π
dx = 2π,∫ π

−π
cos2(nx) dx = π,∫ π

−π
sin2(nx) dx = π.
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The formula for the Fourier coefficients an and bn
If our starting point are numbers an and bn such that the series
converges to define

f (x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

and the convergence is such that all operations such as
interchanging infinite sums and integrals are valid then the
orthogonality properties imply the following.∫ π

−π
f (x) dx = a0π,∫ π

−π
f (x) cos(mx) dx = amπ,∫ π

−π
f (x) sin(mx) dx = bmπ.

This gives a justification for the formulas used.
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The Heaviside function on (−π, π]
Let

f1(x) =

{
1, if 0 ≤ x ≤ π,
0, if −π < x < 0

which we continue in a 2π-periodic way.

−3π −2π −π 0 π 2π 3π

π

1

Determining the coefficients gives the following.

f1(x) ∼ 1

2
+

2

π

(
sin(x) +

sin(3x)

3
+ · · ·+ sin((2n − 1)x

2n − 1
+ · · ·

)
.

We can immediately observe that when x = kπ the value of the
series is 1/2. The series does converge to f1(x) at these points of
discontinuity.
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A plot of a truncated Fourier series for f1(x)

S63(x) =
1

2
+

2

π

(
sin(x) +

sin(3x)

3
+ · · ·+ sin(63x)

63

)
.
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Fourier series for f1 with terms up to sin(63x)
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The function f2(x) = |x | on (−π, π]
In this case convergence occurs at all points and we can write for
|x | ≤ π.

|x | =
π

2
− 4

π

(
cos(x) +

cos(3x)

32
+ · · ·+ cos((2n − 1)x)

(2n − 1)2
+ · · ·

)
.

The 2π-periodic function extension is continuous at all points.

−3π −2π −π 0 π 2π 3π

π

Observe that f2(x) is an even function of x which is why bn = 0
and only cosine terms are involved. Integration by parts is used to
determine

an =
2

π

∫ π

0
x cos(nx) dx .

MA2715, 2019/0 Week 25, Page 7 of 16



A plot of a truncated Fourier series for f2(x)

S7(x) =
π

2
− 4

π

(
cos(x) +

cos(3x)

32
+

cos(5x)

52
+

cos(7x)

72

)
.
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Fourier series for f2 with terms up to cos(7x)
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The function f3(x) = x on (−π, π]
A sketch of the 2π-periodic extension is as follows.

−3π −π π 3π

When x ∈ (−π, π) we have pointwise convergence to f3(x) and

x = 2
∞∑
n=1

(−1)n+1

n
sin(nx) = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− · · ·

)
.

We can immediately observe that when x = π the value of the
series is 0. The series does converge here but not to f3(π) = π or
to the limit as we tend to −π which is −π. The 2π-periodic
extension is discontinuous at the points (2k + 1)π, k ∈ Z.

As f3(x) is an odd function of x we have an = 0 and only sine
terms are involved. Integration by parts is used to determine

bn =
2

π

∫ π

0
x sin(nx) dx .
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A plot of a truncated Fourier series for f3(x)

S64(x) = 2
64∑
n=1

(−1)n+1

n
sin(nx).
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Fourier series for f3 with terms up to sin(64x)
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Combining Fourier series

f4(x) =
f2(x) + f3(x)

2
=
|x |+ x

2
=

{
0, −π < x < 0,

x , 0 ≤ x ≤ π.

Combining the series for f2(x) and f3(x) gives

f4(x) =
π

4
− 2

π

(
cos(x) +

cos(3x)

32
+ · · ·+ cos((2n − 1)x)

(2n − 1)2
+ · · ·

)
+

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− · · ·

)
for −π < x < π.

x = π + 2kπ, k ∈ Z are points of discontinuity of the 2π-periodic
extension.
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Sufficient conditions for pointwise convergence
Let f (x) be piecewise continuous on (−π, π] with the left and right
limits f (x−) and f (x+) existing at all points. Suppose also that
for some δ > 0 f (x) is differentiable in (x − δ, x) and in (x , x + δ)
with a left and right derivative at x . These are sufficient conditions
for

lim
m→∞

a0
2

+
m∑

n=1

(an cos(nx) + bn sin(nx)) =
f (x−) + f (x+)

2
.

At points of continuity

lim
m→∞

a0
2

+
m∑

n=1

(an cos(nx) + bn sin(nx)) = f (x).

There are no known conditions which are both necessary and
sufficient for the pointwise convergence of Fourier series.
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Sufficient conditions continued
The proof is beyond the syllabus of MA2715. If it was done then
some steps to show would involve the following.

1. Express a term in the series as an integral.

an cos(nx) + bn sin(nx)

=
1

π

∫ π

−π
(cos(nt) cos(nx) + sin(nt) cos(nx))f (t) dt

=
1

π

∫ π

−π
cos(n(x − t))f (t) dt.

2. When we sum the previous terms we need the Dirichlet kernel
which is

1

2
+ cos(t) + cos(2t) + · · ·+ cos(mt) =

sin(m + 1/2)t)

2 sin(t/2)
.
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Sufficient conditions continued

3. The Riemann Lebesgue lemma. For a suitable function g(x)
we have

lim
m→∞

∫ π

−π
g(x) sin((m + 1/2)x) dx = 0.

4. Representation of the partial sums and the convergence.

Sm(x) =
a0
2

+
m∑

n=1

(an cos(nx) + bn sin(nx))

=
1

π

∫ π

−π
f (t + x)

(sin(m + 1/2)t)

2 sin(t/2)
dt.

The remaining details are to show that

Sm(x)− f (x−) + f (x+)

2
= . . .details. . .→ 0 as m→∞.
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Comments about other types of convergence
With, as before,

Sm(x) =
a0
2

+
m∑

n=1

(an cos(nx) + bn sin(nx))

the orthogonality properties of the functions quickly leads to∫ π

−π
Sm(x)2 dx = π

(
a20
2

+
m∑

n=1

(a2n + b2n)

)
and ∫ π

−π
f (x)2 dx =

∫ π

−π
Sm(x)2 dx +

∫ π

−π
(f (x)− Sm(x))2 dx .

It is beyond the syllabus of MA2715 to cover this but with not too
restrictive requirements on f (x) it can be shown that Sm tends to
f in the sense that∫ π

−π
(f (x)− Sm(x))2 dx → 0 as m→∞.

MA2715, 2019/0 Week 25, Page 15 of 16



Half range Fourier series
If f (x) is just given on (0, π) then we can continue it as an even
function or we can continue as an odd function. The even or odd
extensions both have Fourier series.

The half range cosine series for f (x) defined on (0, π) is

f (x) ∼ a0
2

+
∞∑
n=1

an cos(nx), an =
2

π

∫ π

0
f (x) cos(nx) dx .

The half range sine series for f (x) defined on (0, π) is

f (x) ∼
∞∑
n=1

bn sin(nx), bn =
2

π

∫ π

0
f (x) sin(nx) dx .

We hence get two different representations on (0, π).
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