
Chap 3: The problem u′ = Au, u(0) = u0

Here A is n × n and u = u(x) is n × 1.

The scalar case (n = 1)

A first order ODE with a constant coefficient

When u = u(x) and

u′ = au, u(0) = u0,

with a being a constant, the solution is

u(x) = u0eax .

Later the exponential matrix exp(xA) will be introduced and we
show that the solution can always be written in the form

u(x) = exp(xA)u0.
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A first order ODE system with a constant matrix
Suppose now that u = u(x) is a vector of length n and

u′ = Au, u(0) = u0,

where A is n × n matrix not depending on x . In full this is

d

dx

u1(x)
...

un(x)

 =

a11 · · · a1n
... · · ·

...
an1 · · · ann


u1(x)

...
un(x)

 .

Let v i 6= 0 be an eigenvector of A with eigenvalue λi for
i = 1, . . . , n. The vector valued functions

eλixv i , i = 1, . . . , n

all satisfy u′ = Au.
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The general solution and the specific solution

u′ − Au = 0

is a linear differential equation and the general solution is

u(x) =
n∑

i=1

cie
λixv i

for constants c1, . . . , cn when v1, . . . , vn are linearly independent.

u(0) = c1v1 + · · ·+ cnvn =
(
v1, . . . , vn

)c1
...
cn

 = Vc

where
V =

(
v1, . . . , vn

)
.

The particular solution satisfying u(0) = u0 requires that

Vc = u0.
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Summary of the method for solving
u′ = Au, u(0) = u0

1. Determine the eigenvalues λi and eigenvectors v i of A.

2. Form the matrix V = (v1, . . . , vn). If V is non-singular then
solve

Vc = u0.

This requires that v1, . . . , vn are linearly independent.

3. The solution is given by

u(x) =
n∑

i=1

cie
λixv i

= V

eλ1x

. . .

eλnx

 c

= V exp(xD)V−1u0.
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Example: Distinct real eigenvalues cases(
u1
u2

)′
=

(
0 1
1 0

)(
u1
u2

)
, u(0) =

(
2
4

)
.

The eigenvalues of the matrix are ±1 and the solution is

u(x) = −e−x
(

1
−1

)
+ 3ex

(
1
1

)
.

(
u1
u2

)′
=

(
6 6
−2 −7

)(
u1
u2

)
, u(0) =

(
20
−7

)
.

The eigenvalues of A are λ1 = −6 and λ2 = 5 with eigenvectors
given respectively by

v1 =

(
1
−2

)
, v2 =

(
6
−1

)
.

The solution is

u(x) = e−6x
(

2
−4

)
+ e5x

(
18
−3

)
.
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Example: Complex conjugate pair of eigenvalues(
u1
u2

)′
=

(
0 −1
1 0

)(
u1
u2

)
, u(0) =

(
2
4

)
.

The eigenvalues of the matrix are the complex conjugate pair ±i
and using the method the solution is first written as

u(x) = c1e−ix
(

1
−i

)
+ c2eix

(
1
i

)
with

c1 = 1 + 2i , c2 = 1− 2i .

All the non-real quantities occur in complex conjuage pairs and by
using e±ix = cos x ± i sin x we can re-express the solution as

u1(x) = 2 cos x + 4 sin x ,

u2(x) = 4 cos x − 2 sin x .

In this case u′′1 = −u1 and u′′2 = −u2 and we could have solved two
second order linear ODEs.
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The complex exponential
When we have more general complex eigenvalues of the form
λ = p + iq, p, q ∈ R the complex exponential is defined to mean

eλx = e(p+iq)x = epxeiqx = epx(cos(qx) + i sin(qx))

The behaviour as x →∞
As |eλx | = epx the solution u(x) tends to 0 as x →∞ for all u0
when the real part of all the eigenvalues is negative.
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The exponential matrix
For a square matrix B the exponential matrix is defined by

exp(B) = I + B +
1

2!
B2 +

1

3!
B3 + · · ·+ 1

m!
Bm + · · ·

This series always converges. By taking B = xA the solution of
u′ = Au is given by

u(x) = exp(xA)u0

in all cases.

When the eigenvectors v1, . . . , vn are linearly independent the
matrix V = (v1, . . . , vn) is invertible and we also have

u(x) = V exp(xD)V−1u0

with D = diag{λ1, . . . , λn}. In this case

exp(xA) = V exp(xD)V−1.
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