Chap 3: The problem $\underline{u}^{\prime}=A \underline{u}, \underline{u}(0)=\underline{u}_{0}$

Here A is $n \times n$ and $\underline{u}=\underline{u}(x)$ is $n \times 1$.

The scalar case ($n=1$)

A first order ODE with a constant coefficient
When $u=u(x)$ and

$$
u^{\prime}=a u, \quad u(0)=u_{0}
$$

with a being a constant, the solution is

$$
u(x)=u_{0} \mathrm{e}^{a x}
$$

Later the exponential matrix $\exp (x A)$ will be introduced and we show that the solution can always be written in the form

$$
\underline{u}(x)=\exp (x A) \underline{u}_{0} .
$$

A first order ODE system with a constant matrix

Suppose now that $\underline{u}=\underline{u}(x)$ is a vector of length n and

$$
\underline{u}^{\prime}=A \underline{u}, \quad \underline{u}(0)=\underline{u}_{0},
$$

where A is $n \times n$ matrix not depending on x. In full this is

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\begin{array}{c}
u_{1}(x) \\
\vdots \\
u_{n}(x)
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \cdots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
u_{1}(x) \\
\vdots \\
u_{n}(x)
\end{array}\right) .
$$

Let $\underline{v}_{i} \neq \underline{0}$ be an eigenvector of A with eigenvalue λ_{i} for $i=1, \ldots, n$. The vector valued functions

$$
\mathrm{e}^{\lambda_{i} x} \underline{v}_{i}, \quad i=1, \ldots, n
$$

all satisfy $\underline{u}^{\prime}=A \underline{u}$.

The general solution and the specific solution

$$
\underline{u}^{\prime}-A \underline{u}=\underline{0}
$$

is a linear differential equation and the general solution is

$$
\underline{u}(x)=\sum_{i=1}^{n} c_{i} \mathrm{e}^{\lambda_{i} x} \underline{v}_{i}
$$

for constants c_{1}, \ldots, c_{n} when $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent.

$$
\underline{u}(0)=c_{1} \underline{v}_{1}+\cdots+c_{n} \underline{v}_{n}=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=V_{\underline{c}}
$$

where

$$
V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right) .
$$

The particular solution satisfying $\underline{u}(0)=\underline{u}_{0}$ requires that

$$
V \underline{c}=\underline{u}_{0} .
$$

Summary of the method for solving
 $$
\underline{u}^{\prime}=A \underline{u}, \quad \underline{u}(0)=\underline{u}_{0}
$$

1. Determine the eigenvalues λ_{i} and eigenvectors \underline{v}_{i} of A.
2. Form the matrix $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$. If V is non-singular then solve

$$
V \underline{c}=\underline{u}_{0} .
$$

This requires that $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent.
3. The solution is given by

$$
\begin{aligned}
\underline{u}(x) & =\sum_{i=1}^{n} c_{i} \mathrm{e}^{\lambda_{i} x} \underline{v}_{i} \\
& =V\left(\begin{array}{lll}
\mathrm{e}^{\lambda_{1} x} & & \\
& \ddots & \\
& & \mathrm{e}^{\lambda_{n} x}
\end{array}\right) \underline{c} \\
& =V \exp (x D) V^{-1} \underline{u}_{0} .
\end{aligned}
$$

Example: Distinct real eigenvalues cases

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{2}{4} .
$$

The eigenvalues of the matrix are ± 1 and the solution is

$$
\underline{u}(x)=-\mathrm{e}^{-x}\binom{1}{-1}+3 \mathrm{e}^{x}\binom{1}{1} .
$$

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{cc}
6 & 6 \\
-2 & -7
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{20}{-7} .
$$

The eigenvalues of A are $\lambda_{1}=-6$ and $\lambda_{2}=5$ with eigenvectors given respectively by

$$
\underline{v}_{1}=\binom{1}{-2}, \quad \underline{v}_{2}=\binom{6}{-1} .
$$

The solution is

$$
\underline{u}(x)=\mathrm{e}^{-6 x}\binom{2}{-4}+\mathrm{e}^{5 x}\binom{18}{-3} .
$$

Example: Complex conjugate pair of eigenvalues

$$
\binom{u_{1}}{u_{2}}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad \underline{u}(0)=\binom{2}{4} .
$$

The eigenvalues of the matrix are the complex conjugate pair $\pm i$ and using the method the solution is first written as

$$
\underline{u}(x)=c_{1} \mathrm{e}^{-i x}\binom{1}{-i}+c_{2} \mathrm{e}^{i x}\binom{1}{i}
$$

with

$$
c_{1}=1+2 i, \quad c_{2}=1-2 i
$$

All the non-real quantities occur in complex conjuage pairs and by using $\mathrm{e}^{ \pm i x}=\cos x \pm i \sin x$ we can re-express the solution as

$$
\begin{aligned}
& u_{1}(x)=2 \cos x+4 \sin x \\
& u_{2}(x)=4 \cos x-2 \sin x
\end{aligned}
$$

In this case $u_{1}^{\prime \prime}=-u_{1}$ and $u_{2}^{\prime \prime}=-u_{2}$ and we could have solved two second order linear ODEs.

The complex exponential

When we have more general complex eigenvalues of the form
$\lambda=p+i q, p, q \in \mathbb{R}$ the complex exponential is defined to mean

$$
\mathrm{e}^{\lambda x}=\mathrm{e}^{(p+i q) x}=\mathrm{e}^{p x} \mathrm{e}^{i q x}=\mathrm{e}^{p x}(\cos (q x)+i \sin (q x))
$$

The behaviour as $x \rightarrow \infty$

As $\left|\mathrm{e}^{\lambda x}\right|=\mathrm{e}^{p x}$ the solution $\underline{u}(x)$ tends to $\underline{0}$ as $x \rightarrow \infty$ for all \underline{u}_{0} when the real part of all the eigenvalues is negative.

The exponential matrix

For a square matrix B the exponential matrix is defined by

$$
\exp (B)=I+B+\frac{1}{2!} B^{2}+\frac{1}{3!} B^{3}+\cdots+\frac{1}{m!} B^{m}+\cdots
$$

This series always converges. By taking $B=x A$ the solution of $\underline{u}^{\prime}=A \underline{u}$ is given by

$$
\underline{u}(x)=\exp (x A) \underline{u}_{0}
$$

in all cases.

When the eigenvectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ are linearly independent the matrix $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$ is invertible and we also have

$$
\underline{u}(x)=V \exp (x D) V^{-1} \underline{u}_{0}
$$

with $D=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. In this case

$$
\exp (x A)=V \exp (x D) V^{-1}
$$

