Key points in chapter 1

Suppose A is $n \times n$ and suppose $A \underline{v}_{i}=\lambda_{i} \underline{v}_{i}, \underline{v}_{i} \neq \underline{0}, i=1, \ldots, n$. \underline{v}_{i} is an eigenvector, λ_{i} is the eigenvalue.

$$
\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}=\text { spectral radius of } A
$$

We have vector norms and we use the notation $\|\underline{x}\|$.
The matrix norm induced by a vector norm is

$$
\|A\|=\max \{\|A \underline{x}\|:\|\underline{x}\|=1\}
$$

For all such matrix norms $\rho(A) \leq\|A\|$.
The matrix condition number is defined by

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|, \quad 1 \leq \kappa(A) \leq \infty
$$

We say $\kappa(A)=\infty$ when A does not have an inverse.
$\kappa(A)$ is large when A is near to a matrix which has no inverse.
When this is the case the solution \underline{x} to $A \underline{x}=\underline{b}$ is very sensitive to changes in A and/or \underline{b}.

The common vector norms

$$
\begin{aligned}
\|\underline{x}\|_{2} & =\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}=\left(\underline{x}^{\top} \underline{x}\right)^{1 / 2}, \\
\|\underline{x}\|_{\infty} & =\max \left\{\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right\}, \\
\|\underline{x}\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
\end{aligned}
$$

Expressions for the common vector norms

$$
\begin{aligned}
\|A\|_{\infty} & =\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
\|A\|_{1} & =\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \\
\|A\|_{2} & =\left(\rho\left(A^{T} A\right)\right)^{1 / 2}
\end{aligned}
$$

$\|A\|_{\infty}$ and $\|A\|_{1}$ are "easy to calculate".
$\|A\|_{2}$ is "expensive to calculate".

Chap 2: Direct methods for solving $A \underline{x}=\underline{b}$ Upper triangular systems

$u_{11} \chi_{1}$	$+$	$u_{12} x_{2}$	$+$	\ldots	$+$	$u_{1 n} x_{n}$	$=$	b_{1}
	$+$	$u_{22} x_{2}$	$+$	\ldots	+	$u_{2 n} x_{n}$	$=$	b_{2}
				$u_{n-1, n-1} x_{n-1}$	+	$u_{n-1, n} x_{n}$	$=$	b_{n-1}
						$u_{n n} x_{n}$	$=$	b_{n}

Backward substitution:

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{i} & =\left(b_{i}-\sum_{k=i+1}^{n} u_{i k} x_{k}\right) / u_{i i}, \quad i=n-1, \ldots, 1
\end{aligned}
$$

$\mathcal{O}\left(n^{2} / 2\right)$ entries in U and about n^{2} operations to get \underline{x}.
With lower triangular systems we use forward substitution which has the same number of operations.

Solving $A \underline{x}=\underline{b}$ when $A=L U$

Here L is lower triangular and U is upper triangular.

$$
A \underline{x}=L U \underline{x}=\underline{b} .
$$

Algorithm:
Solve $L \underline{y}=\underline{b}$ by forward substitution.
Solve $U \underline{x}=\underline{y}$ by backward substitution.

The number of operations is about the same as computing

$$
A^{-1} \underline{b}
$$

if the inverse matrix A^{-1} is available.
It is rare to need to have A^{-1}. When we write $\underline{x}=A^{-1} \underline{b}$ it should be considered as a way of describing the solution and not a preferred method to compute the solution.

Reduction to triangular form

At each stage in the basic reduction process we create zeros below the diagonal in a column and we have a vector of the multipliers.

$$
\begin{aligned}
A=\left(\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right)=A^{(1)}, \quad \underline{m}_{1}=\left(\begin{array}{c}
0 \\
m_{21} \\
m_{31} \\
m_{41}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right)=A^{(2)}, \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
m_{32} \\
m_{42}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right)=U, \quad \underline{m}_{3}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
m_{43}
\end{array}\right)
\end{aligned}
$$

X and X are potentially non-zero.

3×3 example

Solve

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
5 \\
13
\end{array}\right) .
$$

Basic Gauss elimination involves the following sequence.

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & 1 & -1 & 5 \\
3 & 2 & 1 & 13
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & -3 & -7 \\
0 & -1 & -2 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & -3 & -7 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

At the 1st stage we subtract multiples of row 1 from rows 2 and 3 .
At the 2nd stage we subtract multiples of row 2 from row3.
Back substiution then gives $x_{3}=2, x_{2}=1$ and $x_{1}=3$. Here collecting the multipliers together gives $A=L U$ with

$$
L=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 1 & 1
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -3 \\
0 & 0 & 1
\end{array}\right)
$$

The $A=L U$ factorization

When the basic reduction is possible we have the factorization

$$
\begin{gathered}
\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
m_{21} & 1 & 0 & 0 \\
m_{31} & m_{32} & 1 & 0 \\
m_{41} & m_{42} & m_{43} & 1
\end{array}\right)\left(\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & u_{14} \\
0 & u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right) . \\
L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1}=I+\underline{m}_{1} \underline{e}_{1}^{T}+\underline{m}_{2} \underline{e}_{2}^{T}+\underline{m}_{3} \underline{e}_{3}^{T},
\end{gathered}
$$

where each $M_{k}=I-\underline{m}_{k} \underline{e}_{k}^{T}$ is a Gauss transformation matrix with the inverse being $M_{k}^{-1}=I+\underline{m}_{k} \underline{e}_{k}^{T}$.

Later we sometimes write $l_{i j}=m_{i j}$ for the entries of the lower triangular matrix L. As the diagonal entries of L are all equal to 1 the matrix is said to be unit lower triangular.

Factorization of the principal sub-matrices

$$
\begin{aligned}
&\left(\begin{array}{rl}
a_{11} & =u_{11} \cdot \\
a_{21} & a_{12}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
l_{21} & 1
\end{array}\right)\left(\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right) \\
&\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right)\left(\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right) . \\
&\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
l_{21} & 1 & 0 & 0 \\
l_{31} & l_{32} & 1 & 0 \\
l_{41} & l_{42} & l_{43} & 1
\end{array}\right)\left(\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & u_{14} \\
0 & u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right) \\
& \text { In general }
\end{aligned}
$$

This factorization is possible if all the principle sub-matrices are invertible, i.e. the entries $u_{k k} \neq 0, k=1, \ldots, n-1$. We also need $u_{n n} \neq 0$ to solve a system.

