
Revision from week 17: a few statements about eigenvalues

Suppose Av i = λiv i , v i 6= 0, i = 1, . . . , n.

Let V = (v1, . . . , vn) and let D = diag{λ1, . . . , λn}.

AV = VD.

When the eigenvectors are linearly independent V has an inverse
and A is diagonalisable. Otherwise A is said to be
non-diagonalisable or deficient.

λ1, . . . , λn is called the spectrum of A.

ρ(A) = max{|λ1|, . . . , |λn|} = spectral radius of A.
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Vector norm axioms
‖x‖ ≥ 0 ∀x ∈ Rn with ‖x‖ = 0 if and only if x = 0.

‖αx‖ = |α| ‖x‖ ∀α ∈ R and ∀x ∈ Rn.

‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x , y ∈ Rn.

Matrix norm
The matrix norm induced by a vector norm is

‖A‖ = max{‖Ax‖ : ‖x‖ = 1}.

All of the following norm requirements are satisfied.

‖A‖ ≥ 0 ∀A ∈ Rn,n with ‖A‖ = 0 if and only if A = 0.

‖αA‖ = |α| ‖A‖ ∀α ∈ R and ∀A ∈ Rn,n.

‖A + B‖ ≤ ‖A‖+ ‖B‖ ∀A,B ∈ Rn,n.

We also have ‖AB‖ ≤ ‖A‖ ‖B‖.
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The common vector norms

‖x‖2 =
(
x21 + x22 + · · ·+ x2n

)1/2
=
(
xT x

)1/2
,

‖x‖∞ = max{|x1|, . . . , |xn|},
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

Expressions for the common matrix norms

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |, involves rows,

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, involves columns,

‖A‖2 =
(
ρ(ATA)

)1/2
involves eigenvalues.

For all these norms ρ(A) ≤ ‖A‖. If AT = A then ‖A‖2 = ρ(A).
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Which x with ‖x‖ = 1 gives the maximum?
∞-norm case:

(Ax)i =
n∑

j=1

aijxj =
n∑

j=1

|aij |

If we choose x = (xi ) such that

aijxj = |aij |, j = 1, . . . , n,

then (Ax)i is a row sum of the absolute values. We do this for the
row of A which gives the largest row sum.

1-norm case: It is one of the base vectors e j .

2-norm case: It is a normalised eigenvector of the symmetric
matrix ATA corresponding to the largest eigenvalue of ATA.
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The matrix condition number

κ(A) = ‖A‖ ‖A−1‖, 1 ≤ κ(A) ≤ ∞.
We say κ(A) =∞ when A does not have an inverse.

κ(A) is large when A is near to a matrix which has no inverse.

In the real symmetric case ∃ real eigenvalues λi and orthonormal
eigenvectors v i . Let V = (v1, . . . , vn), D = diag{λi} with

0 < |λn| ≤ · · · ≤ |λ1|.
In terms of V and D we have A = VDV T (V−1 = V T when V is
orthogonal) which can be expressed in the form

A = λ1v1 v
T
1 + · · ·+ λn−1vn−1 v

T
n−1 + λnvn v

T
n .

The nearest matrix to A in the 2-norm which is not invertible is

B = λ1v1 v
T
1 + · · ·+ λn−1vn−1 v

T
n−1.

We can show that

‖A‖2 = |λ1|, ‖A− B‖2 = |λn|,
‖A− B‖2
‖A‖2

=

∣∣∣∣λnλ1
∣∣∣∣ =

1

κ(A)
.
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The matrix condition number continued

κ(A) = ‖A‖ ‖A−1‖, 1 ≤ κ(A) ≤ ∞.

I Do we compute it?

Generally no but we might estimate it.

I What is it used for in this module?

It quantifies when a matrix is nearly singular and for the
problem

Ax = b

it is such that if we change the entries of A or b by terms of
size ε then the solution may change by magnitude of about
κ(A)ε. It helps quantify the sensitivity of the system to
changes to A and/or b.

I Note that the ratio of the extreme eigenvalues only describes
the condition number when A is real and symmetric.
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Chap 2: Direct methods for solving Ax = b

1. How would you solve the following 6× 6 linear system?

3 0 1 2 4 6
1 7 9 2 2 0
4 5 9 8 2 1
3 3 3 1 1 1
8 4 0 3 5 2
4 7 9 8 6 3





x1
x2
x3
x4
x5
x6

 =



−15
30
46
6
−3
38


A very small problem for a computer but a bit tiring to
attempt to do by hand calculations.

2. If A is n × n with n = 8000 then how long does it take to
solve Ax = b on a computer? Are the methods reliable and
accurate?
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Using Matlab

1. We get the answer in the 6× 6 case by putting the following.

A=[3 0 1 2 4 6

1 7 9 2 2 0

4 5 9 8 2 1

3 3 3 1 1 1

8 4 0 3 5 2

4 7 9 8 6 3];

b=[-15 30 46 6 -3 38]’;

x=A\b

2. In this part of this module we describe the Gauss elimination/
LU factorization method that is usually used. The number of
operations grows with n like n3 for a full matrix. With
n = 8000 I have a timing of about 6 seconds on a laptop new
in 2015. With n = 16000 it took about 47 seconds. In
practice the method is reliable but it is not guaranteed to
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Upper triangular systems

u11x1 + u12x2 + · · · + u1nxn = b1
+ u22x2 + · · · + u2nxn = b2

. . .
...

un−1,n−1xn−1 + un−1,nxn = bn−1
unnxn = bn

Backward substitution:

xn = bn/unn

xi =

(
bi −

n∑
k=i+1

uikxk

)
/uii , i = n − 1, . . . , 1 .

O(n2/2) entries in U and about n2 operations to get x .
With lower triangular systems we use forward substitution which
has the same number of operations.
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Solving Ax = b when A = LU
Here L is lower triangular and U is upper triangular.

Ax = LUx = b.

Algorithm:

Solve Ly = b by forward substitution.

Solve Ux = y by backward substitution.

The number of operations is about the same as computing

A−1b

if the inverse matrix A−1 is available.

It is rare to need to have A−1.

Some of the material on the remaining slides will probably be
covered next week.
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Reduction to triangular form
Basic reduction is a specific order of the operations. At each stage
in the basic reduction process we create zeros below the diagonal
in a column and we have a vector of the multipliers.

A =


x x x x
x x x x
x x x x
x x x x

 →


x x x x
0 x x x
0 x x x
0 x x x

 = A(1), m1 =


0

m21

m31

m41

 ,

→


x x x x
0 x x x
0 0 x x
0 0 x x

 = A(2), m2 =


0
0

m32

m42

 ,

→


x x x x
0 x x x
0 0 x x
0 0 0 x

 = U, m3 =


0
0
0

m43

 .

x and x are potentially non-zero.
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The A = LU factorization
When the basic reduction is possible we have the factorization
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0

m21 1 0 0
m31 m32 1 0
m41 m42 m43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .

L = M−11 M−12 M−13 = I + m1e
T
1 + m2e

T
2 + m3e

T
3 ,

where each Mk = I −mke
T
k is a Gauss transformation matrix.

Later we write lij = mij for the entries of the lower triangular
matrix. As the diagonal entries of L are all equal to 1 the matrix is
said to be unit lower triangular.
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