Revision from week 17: a few statements about eigenvalues Suppose $A\underline{v}_i = \lambda_i \underline{v}_i$, $\underline{v}_i \neq \underline{0}$, i = 1, ..., n. Let $V = (\underline{v}_1, ..., \underline{v}_n)$ and let $D = \text{diag}\{\lambda_1, ..., \lambda_n\}$.

$$AV = VD.$$

When the eigenvectors are linearly independent V has an inverse and A is **diagonalisable**. Otherwise A is said to be **non-diagonalisable** or **deficient**.

 $\lambda_1, \ldots, \lambda_n$ is called the **spectrum** of *A*.

 $\rho(A) = \max\{|\lambda_1|, \ldots, |\lambda_n|\} =$ spectral radius of A.

MA2715, 2019/0 Week 18, Page 1 of 12

Vector norm axioms

$$\begin{split} \|\underline{x}\| &\geq 0 \ \forall \underline{x} \in \mathbb{R}^n \text{ with } \|\underline{x}\| = 0 \text{ if and only if } \underline{x} = \underline{0}. \\ \|\alpha \underline{x}\| &= |\alpha| \|\underline{x}\| \ \forall \alpha \in \mathbb{R} \text{ and } \forall \underline{x} \in \mathbb{R}^n. \\ \|\underline{x} + \underline{y}\| &\leq \|\underline{x}\| + \|\underline{y}\| \ \forall \underline{x}, \underline{y} \in \mathbb{R}^n. \end{split}$$

Matrix norm

The matrix norm induced by a vector norm is

$$||A|| = \max\{||A\underline{x}|| : ||\underline{x}|| = 1\}.$$

All of the following norm requirements are satisfied. $||A|| \ge 0 \ \forall A \in \mathbb{R}^{n,n}$ with ||A|| = 0 if and only if A = 0. $||\alpha A|| = |\alpha| ||A|| \ \forall \alpha \in \mathbb{R}$ and $\forall A \in \mathbb{R}^{n,n}$. $||A + B|| \le ||A|| + ||B|| \ \forall A, B \in \mathbb{R}^{n,n}$.

We also have $||AB|| \leq ||A|| ||B||$.

MA2715, 2019/0 Week 18, Page 2 of 12

The common vector norms

$$\begin{aligned} \|\underline{x}\|_{2} &= (x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2})^{1/2} = (\underline{x}^{T} \underline{x})^{1/2}, \\ \|\underline{x}\|_{\infty} &= \max\{|x_{1}|, \dots, |x_{n}|\}, \\ \|\underline{x}\|_{1} &= |x_{1}| + |x_{2}| + \dots + |x_{n}|. \end{aligned}$$

Expressions for the common matrix norms

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|, \quad \text{involves rows,}$$
$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|, \quad \text{involves columns,}$$
$$\|A\|_{2} = \left(\rho(A^{T}A)\right)^{1/2} \quad \text{involves eigenvalues.}$$

For all these norms $\rho(A) \leq ||A||$. If $A^T = A$ then $||A||_2 = \rho(A)$. MA2715, 2019/0 Week 18, Page 3 of 12

Which <u>x</u> with $||\underline{x}|| = 1$ gives the maximum?

 ∞ -norm case:

$$(A\underline{x})_i = \sum_{j=1}^n a_{ij} x_j = \sum_{j=1}^n |a_{ij}|$$

If we choose $\underline{x} = (x_i)$ such that

$$a_{ij}x_j = |a_{ij}|, \quad j = 1, \ldots, n,$$

then $(A\underline{x})_i$ is a row sum of the absolute values. We do this for the row of A which gives the largest row sum.

1-norm case: It is one of the base vectors \underline{e}_i .

2-norm case: It is a normalised eigenvector of the symmetric matrix $A^T A$ corresponding to the largest eigenvalue of $A^T A$.

MA2715, 2019/0 Week 18, Page 4 of 12

The matrix condition number

 $\kappa(A) = \|A\| \|A^{-1}\|, \quad 1 \le \kappa(A) \le \infty.$

We say $\kappa(A) = \infty$ when A does not have an inverse.

 $\kappa(A)$ is large when A is near to a matrix which has no inverse. In the real symmetric case \exists real eigenvalues λ_i and orthonormal eigenvectors \underline{v}_i . Let $V = (\underline{v}_1, \dots, \underline{v}_n)$, $D = \text{diag}\{\lambda_i\}$ with

$$0<|\lambda_n|\leq\cdots\leq|\lambda_1|.$$

In terms of V and D we have $A = VDV^T$ ($V^{-1} = V^T$ when V is orthogonal) which can be expressed in the form

$$A = \lambda_1 \underline{\nu}_1 \underline{\nu}_1^{\mathsf{T}} + \dots + \lambda_{n-1} \underline{\nu}_{n-1} \underline{\nu}_{n-1}^{\mathsf{T}} + \lambda_n \underline{\nu}_n \underline{\nu}_n^{\mathsf{T}}.$$

The nearest matrix to A in the 2-norm which is not invertible is

$$B = \lambda_1 \underline{v}_1 \underline{v}_1^T + \dots + \lambda_{n-1} \underline{v}_{n-1} \underline{v}_{n-1}^T.$$

We can show that

$$\|A\|_{2} = |\lambda_{1}|, \quad \|A - B\|_{2} = |\lambda_{n}|, \quad \frac{\|A - B\|_{2}}{\|A\|_{2}} = \left|\frac{\lambda_{n}}{\lambda_{1}}\right| = \frac{1}{\kappa(A)}.$$
MA2715, 2019/0 Week 18, Page 5 of 12

The matrix condition number continued

$$\kappa(A) = ||A|| ||A^{-1}||, \quad 1 \le \kappa(A) \le \infty.$$

Do we compute it?

Generally no but we might estimate it.

What is it used for in this module?

It quantifies when a matrix is nearly singular and for the problem

$$A\underline{x} = \underline{b}$$

it is such that if we change the entries of A or \underline{b} by terms of size ϵ then the solution may change by magnitude of about $\kappa(A)\epsilon$. It helps quantify the sensitivity of the system to changes to A and/or \underline{b} .

Note that the ratio of the extreme eigenvalues only describes the condition number when A is real and symmetric. MA2715, 2019/0 Week 18, Page 6 of 12

Chap 2: Direct methods for solving $A\underline{x} = \underline{b}$

1. How would you solve the following 6×6 linear system?

$$\begin{pmatrix} 3 & 0 & 1 & 2 & 4 & 6 \\ 1 & 7 & 9 & 2 & 2 & 0 \\ 4 & 5 & 9 & 8 & 2 & 1 \\ 3 & 3 & 3 & 1 & 1 & 1 \\ 8 & 4 & 0 & 3 & 5 & 2 \\ 4 & 7 & 9 & 8 & 6 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} -15 \\ 30 \\ 46 \\ 6 \\ -3 \\ 38 \end{pmatrix}$$

A very small problem for a computer but a bit tiring to attempt to do by hand calculations.

2. If A is $n \times n$ with n = 8000 then how long does it take to solve $A\underline{x} = \underline{b}$ on a computer? Are the methods reliable and accurate?

MA2715, 2019/0 Week 18, Page 7 of 12

Using Matlab

1. We get the answer in the 6×6 case by putting the following.

A=[3 0 1 2 4 6 1 7 9 2 2 0 4 5 9 8 2 1 3 3 3 1 1 1 8 4 0 3 5 2 4 7 9 8 6 3]; b=[-15 30 46 6 -3 38]';

x=A∖b

2. In this part of this module we describe the Gauss elimination/ LU factorization method that is usually used. The number of operations grows with n like n³ for a full matrix. With n = 8000 I have a timing of about 6 seconds on a laptop new in 2015. With n = 16000 it took about 47 seconds. In practice the method is reliable but it is not guaranteed to work in every case.
MA2715, 2019/0 Week 18, Page 8 of 12

Upper triangular systems

$$u_{11}x_{1} + u_{12}x_{2} + \cdots + u_{1n}x_{n} = b_{1} \\ + u_{22}x_{2} + \cdots + u_{2n}x_{n} = b_{2} \\ \vdots \\ u_{n-1,n-1}x_{n-1} + u_{n-1,n}x_{n} = b_{n-1} \\ u_{nn}x_{n} = b_{n}$$

Backward substitution:

$$x_n = b_n/u_{nn}$$

$$x_i = \left(b_i - \sum_{k=i+1}^n u_{ik} x_k\right)/u_{ii}, \quad i = n-1, \dots, 1.$$

 $\mathcal{O}(n^2/2)$ entries in U and about n^2 operations to get \underline{x} . With lower triangular systems we use forward substitution which has the same number of operations.

MA2715, 2019/0 Week 18, Page 9 of 12

Solving $A\underline{x} = \underline{b}$ when A = LU

Here L is lower triangular and U is upper triangular.

$$A\underline{x} = LU\underline{x} = \underline{b}.$$

Algorithm:

Solve $Ly = \underline{b}$ by forward substitution.

Solve $U\underline{x} = y$ by backward substitution.

The number of operations is about the same as computing

if the inverse matrix A^{-1} is available.

It is rare to need to have A^{-1} .

Some of the material on the remaining slides will probably be covered next week. MA2715, 2019/0 Week 18, Page 10 of 12

Reduction to triangular form

Basic reduction is a specific order of the operations. At each stage in the basic reduction process we create zeros below the diagonal in a column and we have a vector of the **multipliers**.

x and X are potentially non-zero.

MA2715, 2019/0 Week 18, Page 11 of 12

,

The A = LU factorization

When the basic reduction is possible we have the factorization

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ m_{21} & 1 & 0 & 0 \\ m_{31} & m_{32} & 1 & 0 \\ m_{41} & m_{42} & m_{43} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{pmatrix}$$

$$L = M_1^{-1}M_2^{-1}M_3^{-1} = I + \underline{m}_1\underline{e}_1^T + \underline{m}_2\underline{e}_2^T + \underline{m}_3\underline{e}_3^T,$$

where each $M_k = I - \underline{m}_k \underline{e}_k^T$ is a **Gauss transformation matrix**.

Later we write $l_{ij} = m_{ij}$ for the entries of the lower triangular matrix. As the diagonal entries of *L* are all equal to 1 the matrix is said to be **unit lower triangular**.

MA2715, 2019/0 Week 18, Page 12 of 12