Revision from week 17: a few statements about eigenvalues
Suppose Av; = \jv;, v; #0,i=1,...,n.
Let V= (vq, ..., v,) and let D = diag{A1,...,An}.

AV = VD.

When the eigenvectors are linearly independent V' has an inverse
and A is diagonalisable. Otherwise A is said to be
non-diagonalisable or deficient.

A1, ..., Ap is called the spectrum of A.

p(A) = max{|A1],...,|A\n|} = spectral radius of A.
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Vector norm axioms
|x|]| > 0 Vx € R" with ||x|| = 0 if and only if x = 0.
llax|| = || [|x|| Yo € R and Vx € R".
1+ y [l < [Ix[[ + [ly]l vx, y € R".

Matrix norm

The matrix norm induced by a vector norm is
JAll = max{[|Ax]| - lx]| = 1}.

All of the following norm requirements are satisfied.
IIA|l > 0 VA € R™" with ||A]| = 0 if and only if A= 0.
|eA|| = |a| ||A]] Yo € R and YA € R™".

A+ Bl < [[All + [|B]| YA, B € R™".

We also have ||AB]| < ||A| ||B]|-
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The common vector norms

1/2 1/2
e = (458 +- )" = (xTx) ",
e = max{lal...,Ixal},
Idls = bl + bl -4 [xal-

Expressions for the common matrix norms

Ao = max Z |ajj], involves rows,
1<i<n

AL = max Z |ajjl, involves columns,

Al = (p(ATA)> involves eigenvalues.

For all these norms p(A) < ||A||. If AT = A then ||A]2 = p(A).
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Which x with ||x|| =1 gives the maximum?

oo-norm case:
n n

(Ax)i =D ai =D |a]
j=1 j=1

If we choose x = (x;) such that
a,'ij=|a,'J", j:].,‘..,n,

then (Ax); is a row sum of the absolute values. We do this for the
row of A which gives the largest row sum.

1-norm case: It is one of the base vectors ;.

2-norm case: It is a normalised eigenvector of the symmetric
matrix AT A corresponding to the largest eigenvalue of AT A.
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The matrix condition number

K(A) = A AT, 1< w(A) < oo
We say k(A) = oo when A does not have an inverse.
k(A) is large when A is near to a matrix which has no inverse.
In the real symmetric case J real eigenvalues \; and orthonormal
eigenvectors v;. Let V = (vq,...,v,), D =diag{\;} with
0<|An] <o <A1l
In terms of V and D we have A= VDVT (V=1 = VT when V is

orthogonal) which can be expressed in the form

A:)\111Zir+ I Y L/ Vi 1-|->\va

The nearest matrix to A in the 2-norm which is not invertible is
B=Xvyv{ + -+ Apo1v, v 5.
We can show that
|IA—Bll2 _
1Al

A 1
[All2 = A, [[A= Bll2 = [Anl, J —
120 0 weba pasi0A)
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The matrix condition number continued

K(A) = [A[HIATY], 1< K(A) < 0.

Do we compute it?
Generally no but we might estimate it.
What is it used for in this module?

It quantifies when a matrix is nearly singular and for the
problem
Ax=0>b

it is such that if we change the entries of A or b by terms of
size € then the solution may change by magnitude of about
k(A)e. It helps quantify the sensitivity of the system to
changes to A and/or b.

Note that the ratio of the extreme eigenvalues only describes

the condition number when A is real and symmetric.
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Chap 2: Direct methods for solving Ax = b

1. How would you solve the following 6 x 6 linear system?

30124 6\ /x ~15
179220]|[|x 30
4598 2 1|[x| | 46
33311 1||x| | 6
8 4035 2||x -3
47986 3/ \x 38

A very small problem for a computer but a bit tiring to
attempt to do by hand calculations.

2. If Alis n x n with n = 8000 then how long does it take to
solve Ax = b on a computer? Are the methods reliable and
accurate?
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Using Matlab

1. We get the answer in the 6 x 6 case by putting the following.

A=[3
1
4
3
8
4

b=[-1

x=A\b

0
7
5
3
4
7

5

1

©O© O W WOV ©
0 W = 0 N
o U= NN

2

4

30 46

6
0
1
1
2

31;
6 -3 38]7;

In this part of this module we describe the Gauss elimination/

LU factorization method that is usually used. The number of
operations grows with n like n3 for a full matrix. With

n = 8000 | have a timing of about 6 seconds on a laptop new
in 2015. With n = 16000 it took about 47 seconds. In
practice the method is reliable but it is not guaranteed to

work in every case.
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Upper triangular systems

uiixi +  uiexe + +  uinxn = b
+ Uxnxp + + wpxp = b
Up—1,n—1Xpn—1 + Up—1,nXp = bn—1

UnnXn = b

Backward substitution:

Xn = bn/unn

n
Xj = (b,‘— Z U,'ka)/u,','7 i:n—l,...,l.

k=i+1

O(n?/2) entries in U and about n? operations to get x.

With lower triangular systems we use forward substitution which
has the same number of operations.
MA2715, 2019/0 Week 18, Page 9 of 12



Solving Ax = b when A= LU

Here L is lower triangular and U is upper triangular.

Ax = LUx = b.

Algorithm:
Solve Ly = b by forward substitution.

Solve Ux = y by backward substitution.
The number of operations is about the same as computing
A7lb

if the inverse matrix A~1 is available.

It is rare to need to have A~ L.

Some of the material on the remaining slides will probably be

covered next week.
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Reduction to triangular form

Basic reduction is a specific order of the operations. At each stage
in the basic reduction process we create zeros below the diagonal
in a column and we have a vector of the multipliers.

X X X X X X X X 0
A_ X X X X _ 0 X X X TC) I my1
X X X X 0 X X X b=l ms
X X X X 0 X X X maq
X X X X 0
0 x x x| _ 42 1 0
— 0 0 X X =A%, M2 = m3o
0 0 X X myo
X X X X 0
0 x x x 0
T loox x|7Y m=]
0 0 0 X my3

x and X are potentially non-zero.
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The A = LU factorization

When the basic reduction is possible we have the factorization

ail ar a3 adui 1 0 0 O Uyl Up U3 Ui
ax ax» axs au| |[ma 1 0 0 0 wup w3 ux;
a3 ax a3 aw| |[mxm mn 1 0 0 0 uss w
ag1  ag 43 as mar Mg Mz 1 0 0 0 g

L=MIMAMY =1 + myel + myed + mye],

where each M, = | — mkng is a Gauss transformation matrix.

Later we write /; = mj; for the entries of the lower triangular
matrix. As the diagonal entries of L are all equal to 1 the matrix is
said to be unit lower triangular.
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