Revision from week 17: a few statements about eigenvalues
Suppose $A \underline{v}_{i}=\lambda_{i} \underline{v}_{i}, \underline{v}_{i} \neq \underline{0}, i=1, \ldots, n$.
Let $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$ and let $D=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.

$$
A V=V D
$$

When the eigenvectors are linearly independent V has an inverse and A is diagonalisable. Otherwise A is said to be non-diagonalisable or deficient.
$\lambda_{1}, \ldots, \lambda_{n}$ is called the spectrum of A.

$$
\rho(A)=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}=\text { spectral radius of } A .
$$

Vector norm axioms

$$
\begin{aligned}
& \|\underline{x}\| \geq 0 \forall \underline{x} \in \mathbb{R}^{n} \text { with }\|\underline{x}\|=0 \text { if and only if } \underline{x}=\underline{0} . \\
& \|\alpha \underline{x}\|=|\alpha|\|\underline{x}\| \forall \alpha \in \mathbb{R} \text { and } \forall \underline{x} \in \mathbb{R}^{n} . \\
& \|\underline{x}+\underline{y}\| \leq\|\underline{x}\|+\|\underline{y}\| \forall \underline{x}, \underline{y} \in \mathbb{R}^{n} .
\end{aligned}
$$

Matrix norm

The matrix norm induced by a vector norm is

$$
\|A\|=\max \{\|A \underline{x}\|:\|\underline{x}\|=1\} .
$$

All of the following norm requirements are satisfied.
$\|A\| \geq 0 \forall A \in \mathbb{R}^{n, n}$ with $\|A\|=0$ if and only if $A=0$.
$\|\alpha A\|=|\alpha|\|A\| \forall \alpha \in \mathbb{R}$ and $\forall A \in \mathbb{R}^{n, n}$.
$\|A+B\| \leq\|A\|+\|B\| \forall A, B \in \mathbb{R}^{n, n}$.
We also have $\|A B\| \leq\|A\|\|B\|$.

The common vector norms

$$
\begin{aligned}
\|\underline{x}\|_{2} & =\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}=\left(\underline{x}^{T} \underline{x}\right)^{1 / 2}, \\
\|\underline{x}\|_{\infty} & =\max \left\{\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right\}, \\
\|\underline{x}\|_{1} & =\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
\end{aligned}
$$

Expressions for the common matrix norms

$$
\begin{array}{rlr}
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|, & \text { involves rows, } \\
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|, & \text { involves columns } \\
\|A\|_{2} & =\left(\rho\left(A^{T} A\right)\right)^{1 / 2} & \text { involves eigenvalues. }
\end{array}
$$

For all these norms $\rho(A) \leq\|A\|$. If $A^{T}=A$ then $\|A\|_{2}=\rho(A)$.

Which \underline{x} with $\|\underline{x}\|=1$ gives the maximum?

∞-norm case:

$$
(A \underline{x})_{i}=\sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

If we choose $\underline{x}=\left(x_{i}\right)$ such that

$$
a_{i j} x_{j}=\left|a_{i j}\right|, \quad j=1, \ldots, n
$$

then $(A \underline{x})_{i}$ is a row sum of the absolute values. We do this for the row of A which gives the largest row sum.

1-norm case: It is one of the base vectors \underline{e}_{j}.

2-norm case: It is a normalised eigenvector of the symmetric matrix $A^{T} A$ corresponding to the largest eigenvalue of $A^{T} A$.

The matrix condition number

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|, \quad 1 \leq \kappa(A) \leq \infty .
$$

We say $\kappa(A)=\infty$ when A does not have an inverse.
$\kappa(A)$ is large when A is near to a matrix which has no inverse.
In the real symmetric case \exists real eigenvalues λ_{i} and orthonormal eigenvectors \underline{v}_{i}. Let $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right), D=\operatorname{diag}\left\{\lambda_{i}\right\}$ with

$$
0<\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{1}\right| .
$$

In terms of V and D we have $A=V D V^{T}\left(V^{-1}=V^{T}\right.$ when V is orthogonal) which can be expressed in the form

$$
A=\lambda_{1} \underline{v}_{1} \underline{v}_{1}^{T}+\cdots+\lambda_{n-1} \underline{v}_{n-1} \underline{v}_{n-1}^{T}+\lambda_{n} \underline{v}_{n} \underline{v}_{n}^{T} .
$$

The nearest matrix to A in the 2-norm which is not invertible is

$$
B=\lambda_{1} \underline{v}_{1} \underline{v}_{1}^{T}+\cdots+\lambda_{n-1} \underline{v}_{n-1} \underline{v}_{n-1}^{T}
$$

We can show that

$$
\|A\|_{2}=\left|\lambda_{1}\right|, \quad\|A-B\|_{2}=\left|\lambda_{n}\right|, \quad \frac{\|A-B\|_{2}}{\|A\|_{2}}=\left|\frac{\lambda_{n}}{\lambda_{1}}\right|=\frac{1}{\kappa(A)}
$$

The matrix condition number continued

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|, \quad 1 \leq \kappa(A) \leq \infty .
$$

- Do we compute it?

Generally no but we might estimate it.

- What is it used for in this module?

It quantifies when a matrix is nearly singular and for the problem

$$
A \underline{x}=\underline{b}
$$

it is such that if we change the entries of A or \underline{b} by terms of size ϵ then the solution may change by magnitude of about $\kappa(A) \epsilon$. It helps quantify the sensitivity of the system to changes to A and/or \underline{b}.

- Note that the ratio of the extreme eigenvalues only describes the condition number when A is real and symmetric.

Chap 2: Direct methods for solving $A \underline{x}=\underline{b}$

1. How would you solve the following 6×6 linear system?

$$
\left(\begin{array}{llllll}
3 & 0 & 1 & 2 & 4 & 6 \\
1 & 7 & 9 & 2 & 2 & 0 \\
4 & 5 & 9 & 8 & 2 & 1 \\
3 & 3 & 3 & 1 & 1 & 1 \\
8 & 4 & 0 & 3 & 5 & 2 \\
4 & 7 & 9 & 8 & 6 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{c}
-15 \\
30 \\
46 \\
6 \\
-3 \\
38
\end{array}\right)
$$

A very small problem for a computer but a bit tiring to attempt to do by hand calculations.
2. If A is $n \times n$ with $n=8000$ then how long does it take to solve $A \underline{x}=\underline{b}$ on a computer? Are the methods reliable and accurate?

Using Matlab

1. We get the answer in the 6×6 case by putting the following.
```
A=[\begin{array}{llllll}{3}&{0}&{1}&{2}&{4}&{6}\end{array}]
    1792 20
    4598 2 1
    3 3 3 1 1 1
    84035 2
    4 7 9 8 6 3];
b=[[-15 30 46 6 - -3 38]';
x=A\b
```

2. In this part of this module we describe the Gauss elimination/ $L U$ factorization method that is usually used. The number of operations grows with n like n^{3} for a full matrix. With $n=8000 \mathrm{I}$ have a timing of about 6 seconds on a laptop new in 2015. With $n=16000$ it took about 47 seconds. In practice the method is reliable but it is not guaranteed to work in every case.

Upper triangular systems

$$
\begin{array}{cccccccc}
u_{11} x_{1} & +u_{12} x_{2} & + & \ldots & & + & u_{1 n} x_{n} & = \\
+u_{22} x_{2} & + & \ldots & & b_{1} \\
\ddots & & & & u_{2 n} x_{n} & = & b_{2} \\
& & & u_{n-1, n-1} x_{n-1} & + & & & \\
& & & & & u_{n-1, n} x_{n} & = & b_{n-1} \\
u_{n n} x_{n} & & = & b_{n}
\end{array}
$$

Backward substitution:

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{i} & =\left(b_{i}-\sum_{k=i+1}^{n} u_{i k} x_{k}\right) / u_{i i}, \quad i=n-1, \ldots, 1 .
\end{aligned}
$$

$\mathcal{O}\left(n^{2} / 2\right)$ entries in U and about n^{2} operations to get \underline{x}.
With lower triangular systems we use forward substitution which has the same number of operations.

Solving $A \underline{x}=\underline{b}$ when $A=L U$

Here L is lower triangular and U is upper triangular.

$$
A \underline{x}=L U \underline{X}=\underline{b} .
$$

Algorithm:
Solve $L \underline{y}=\underline{b}$ by forward substitution.
Solve $U \underline{x}=\underline{y}$ by backward substitution.

The number of operations is about the same as computing

$$
A^{-1} \underline{b}
$$

if the inverse matrix A^{-1} is available.
It is rare to need to have A^{-1}.
Some of the material on the remaining slides will probably be covered next week.

Reduction to triangular form

Basic reduction is a specific order of the operations. At each stage in the basic reduction process we create zeros below the diagonal in a column and we have a vector of the multipliers.

$$
\begin{aligned}
A=\left(\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right)=A^{(1)}, \quad \underline{m}_{1}=\left(\begin{array}{c}
0 \\
m_{21} \\
m_{31} \\
m_{41}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{array}\right)=A^{(2)}, \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
m_{32} \\
m_{42}
\end{array}\right), \\
& \rightarrow\left(\begin{array}{cccc}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{array}\right)=U, \quad \underline{m}_{3}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
m_{43}
\end{array}\right)
\end{aligned}
$$

X and X are potentially non-zero.

The $A=L U$ factorization

When the basic reduction is possible we have the factorization

$$
\begin{gathered}
\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
m_{21} & 1 & 0 & 0 \\
m_{31} & m_{32} & 1 & 0 \\
m_{41} & m_{42} & m_{43} & 1
\end{array}\right)\left(\begin{array}{cccc}
u_{11} & u_{12} & u_{13} & u_{14} \\
0 & u_{22} & u_{23} & u_{24} \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right) . \\
L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1}=I+\underline{m}_{1} \underline{e}_{1}^{T}+\underline{m}_{2} \underline{e}_{2}^{T}+\underline{m}_{3} \underline{e}_{3}^{T},
\end{gathered}
$$

where each $M_{k}=I-\underline{m}_{k} \underline{e}_{k}^{T}$ is a Gauss transformation matrix.

Later we write $l_{i j}=m_{i j}$ for the entries of the lower triangular matrix. As the diagonal entries of L are all equal to 1 the matrix is said to be unit lower triangular.

