
Organisation: Lecs, Sems and Labs
MA2715_SB=Advanced Calculus and Numerical Methods

Email: Mike.Warby@brunel.ac.uk

Handouts: http://people.brunel.ac.uk/~icstmkw/ma2715/

Lectures times: Tue 15:00 and Thu 12:00.

The SEMs will be at Mon 11:00 and Tue 16:00 from week 18.

Matlab labs start this week and each person has one of the times
Thu 10:00, 14:00 and 15:00. The labs are associated with 10
credit module MA2895_CB=Numerical Analysis Project.
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Organisation: The codes MA2715, MA2815, MA2895
Assessment:

MA2715 topics are part of the 20 credit 3-hour MA2815 exam.

MA2895 has a class test on Matlab in week 22 (30%) and a
Matlab assignment with a deadline in week 28 (70%).

Labs in WLFB 106 breakdown:

M1: See your individual timetable.

M2: See your individual timetable.

F: FM degree+others, Thu 15:00.
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Overview of MA2715
Chapter 1 – revision, norms, . . .

Vectors, matrices, norms of vectors and norms of matrices.

The notation for column vectors and matrices will be as follows.

x = (xi ) =

x1
...
xn

 , A = (aij) =

a11 · · · a1n
... · · ·

...
an1 · · · ann

 .

Eigenvalues and eigenvectors are used in chapter 3 and also
appear in some expressions and explanations in other parts of
MA2715. Recall that v 6= 0 is an eigenvector of A if

Av = λv .

Norms: The notation will be ‖x‖ and ‖A‖. Specific norms with be
the 2-norm, ∞-norm and 1-norm.

Condition number: κ(A) = ‖A‖ ‖A−1‖ ≥ 1.

A large condition number means that A is close to a singular
matrix and it is difficult to accurately solve Ax = b.
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Chapter 2 – solving Ax = b
This will be about Gauss elimination methods to solve

Ax = b

for a general system of n equations in n unknowns. Here n may be
large and thus everything is done on a computer.

Basic Gauss elimination is equivalent to a factorization

A = LU,

where L =unit lower triangular matrix and U =upper
triangular matrix. Gauss elimination with pivoting of some kind is
equivalent to factorizations of the form

PA = LU or PAQ = LU

where P and Q are permutation matrices. Permutations matrices
are obtained from the identity matrix I by re-arranging the rows.
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The basic LU factorization when n = 4
Let A be a non-singular matrix.
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1



u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 .

This works if and only if all principal sub-matrices are non-singular.
In this case we also havea11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

u11 u12 u13
0 u22 u23
0 0 u33

 ,

(
a11 a12
a21 a22

)
=

(
1 0
l21 1

)(
u11 u12
0 u22

)
,

a11 = u11.

Also det(A) = det(U) = u11u22u33u44.
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Chapter 3 – u′ = Au, u(0) = u0

This will be about solving the following problem.

u′ = Au, u(0) = u0,

where A is a constant matrix. This involves a linear system of
differential equations. In full the differential equation part is

d

dx

u1(x)
...

un(x)

 =

a11 · · · a1n
... · · ·

...
an1 · · · ann


u1(x)

...
un(x)

 .

The solution can be given in terms of the eigenvalues and
eigenvectors of the matrix A when A is diagonalisable.

In all cases, diagonalisable or not, the solution can be expressed as

u(x) = exp(xA)u(0)

where here exp(xA) means the exponential matrix of xA.
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Chapter 4 – 2 point BVP
This will be about the two-point boundary value problem

u′′(x) = p(x)u′(x) + q(x)u(x) + r(x), a < x < b,

with
u(a) = g1, u(b) = g2.

Here p, q and r are suitable functions. Generally we cannot give a
“simple closed form expression” for the solution. Instead we
approximate the solution by using the finite difference method.

The relevant previous study for this is Taylor expansions which you
have seen in MA2730.
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A Taylor expansion about every mesh point
The “continuous problem” involving a ≤ x ≤ b is approximated by
a “discrete problem” involving points a = x0 < x1 < · · · < xn = b.
Equally spaced points corresponds to n ≥ 1, h = (b − a)/n and
xi = a + ih, i = 0, 1, . . . , n.

The finite difference approximation is derived by considering Taylor
expansions about every interior point xi . With
ui−1 = u(xi−1) = u(xi − h) and ui+1 = u(xi + h) = u(xi + h) we
have

ui+1 = ui + hu′i +
h2

2
u′′i +

h3

6
u′′′i +

h4

24
u′′′′i + · · ·

ui−1 = ui − hu′i +
h2

2
u′′i −

h3

6
u′′′i +

h4

24
u′′′′i + · · · .

Using these we get finite difference approximations to the
derivatives at all the points xi .
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Chapter 5 – Fourier series
Let f : R→ R denote a 2π-periodic function which is piecewise
continuous. For “most” values of x we can represent this in the
form

f (x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

where the Fourier coefficients an and bn are

an =
1

π

∫ π

−π
f (x) cos(nx) dx , bn =

1

π

∫ π

−π
f (x) sin(nx) dx .

Among the things that is likely to be considered are the following.

I Determining the coefficients for several functions which will
often need integration by parts.

I Stating conditions when the series converges to f (x).
I When it is valid to integrate or differentiate the series to

obtain another Fourier series.
I If time permits then some applications of Fourier series may

be briefly mentioned.
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Key points in the week 17 lectures
Let x = (xi ) and y = (yi ) denote real column vectors of length n.
Inner product of x and y :

xT y = x1y1 + · · ·+ xnyn.

Outer product of x and y : x yT , an n × n matrix.

v1, . . . , vn are linearly dependent if ∃ α = (αi ) 6= 0 such that

α1v1 + · · ·+ αnvn = 0.

Represent a matrix A in terms of its columns as

A = (a1, . . . , an).

Then
Ax = x1a1 + · · ·+ xnan,

a linear combination of the columns of A. For A to be invertible
(i.e. non-singular) we need the columns to be linearly
independent. When A is invertible the columns of AT are also
linearly independent.
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Eigenvalues/Eigenvectors
v 6= 0 is an eigenvector of A with eigenvalue λ if Av = λv .

A− λI is a singular matrix when λ is an eigenvalue and λ satisfies
the characteristic equation

det(A− λI ) = 0.

det(tI − A) is called the characteristic polynomial.

Suppose Av i = λv i , v i 6= 0, i = 1, . . . , n. The spectrum of A is
the set

{λ1, . . . , λn}.

The spectral radius of A is

ρ(A) = max{|λ1|, . . . , |λn|}.
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Some results about eigenvalues and eigenvectors

1. A is non-singular if and only if λi 6= 0 for i = 1, . . . , n.

2. Let v1, . . . , vn be eigenvectors of A with Av i = λiv i .

A(v1, . . . , vn) = (Av1, . . . ,Avn) = (λ1v1, . . . , λnvn).

The last right hand side expression can be written as VD, i.e.

AV = VD, with V = (v1, . . . , vn) and D =

λ1 . . .

λn

 .

When v1, . . . , vn are linearly independent V is invertible and

V−1AV = D, A = VDV−1.

A is diagonalisable when this is the case. Otherwise the
matrix is deficient.
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Examples with 2× 2 matrices

1.

A = I2 =

(
1 0
0 1

)
.

det(I2 − tI2) =

∣∣∣∣1− t 0
0 1− t

∣∣∣∣ = (1− t)2.

We have repeated eigenvalues with λ1 = λ2 = 1 and every
non-zero vector in R2 is an eigenvector. ρ(A) = 1.

2.

A =

(
2 1
1 2

)
,

∣∣∣∣2− t 1
1 2− t

∣∣∣∣ = (2− t)2−1 = (1− t)(3− t).

Symmetric matrix, distinct eigenvalues λ1 = 1 and λ2 = 3.
ρ(A) = 3.

A− λ1I =

(
1 1
1 1

)
, A− λ2I =

(
−1 1
1 −1

)
v1 =

(
1
−1

)
, v2 =

(
1
1

)
.
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Examples with 2× 2 matrices continued

3.

A =

(
0 −1
1 0

)
,

∣∣∣∣−t −1
1 −t

∣∣∣∣ = t2 + 1 = (i − t)(−i − t).

A real matrix with complex eigenvalues λ1 = i , λ2 = −i . The
eigenvectors are also complex. ρ(A) = 1.

4.

A =

(
0 1
0 0

)
,

∣∣∣∣−t 1
0 −t

∣∣∣∣ = t2.

Repeated eigenvalues with λ1 = λ2 = 0. ρ(A) = 0.

A = A− λ1I =

(
0 1
0 0

)
.

The only direction which is an eigenvector is

v1 =

(
1
0

)
.

The matrix is deficient.
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Norms
We consider these for vectors and square matrices. The value of a
norm is usually written using the ‖.‖ notation rather than the
function notation. To be called a norm the following properties
must hold.

Vector norm axioms
‖x‖ ≥ 0 ∀x ∈ Rn with ‖x‖ = 0 if and only if x = 0.

‖αx‖ = |α| ‖x‖ ∀α ∈ R and ∀x ∈ Rn.

‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x , y ∈ Rn.

The common vector norms

‖x‖2 =
(
x21 + x22 + · · ·+ x2n

)1/2
=
(
xT x

)1/2
,

‖x‖∞ = max{|x1|, . . . , |xn|},
‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.
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Matrix norm
The matrix norm induced by a vector norm is

‖A‖ = max{‖Ax‖ : ‖x‖ = 1}.

All of the following norm requirements are satisfied.

‖A‖ ≥ 0 ∀A ∈ Rn,n with ‖A‖ = 0 if and only if A = 0.

‖αA‖ = |α| ‖A‖ ∀α ∈ R and ∀A ∈ Rn,n.

‖A + B‖ ≤ ‖A‖+ ‖B‖ ∀A,B ∈ Rn,n.

We also have ‖AB‖ ≤ ‖A‖ ‖B‖.

For any norm of this type ρ(A) ≤ ‖A‖.
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