Exercises for revision week

1. Consider the following 3×3 matrices.

$$
A_{1}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 3 & 4 \\
2 & 4 & 5
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2 \\
2 & 4 & 5
\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}
1 & 3 & 2 \\
1 & 3 & 2 \\
2 & 2 & 2
\end{array}\right), \quad A_{4}=\left(\begin{array}{lll}
2 & 2 & 2 \\
1 & 3 & 2 \\
1 & 3 & 2
\end{array}\right) .
$$

For each matrix either determine the $L U$ factorization, where L is unit lower triangular and U is upper triangular, or give a reason why the matrix does not have a $L U$ factorization. If a matrix has a $L U$ factorization then you must show intermediate computations to show how you obtained the factors.

Solution

An $n \times n$ matrix $A=\left(a_{i j}\right)$ has a $L U$ factorization if the principal sub-matrices of size $1, \ldots, n-1$ are all non-singular. We do not actually need A itself to be non-singular to get the factors but if A is singular with the principal sub-matrices being non-singular then the $n . n$ entry of U is 0 . Thus when $n=3$ we have a $L U$ factorization if

$$
a_{11} \neq 0 \quad \text { and } \quad \operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \neq 0 .
$$

The basic Gauss elimination process gets the factors when it runs to completion.
A_{1} does not have a factorization as the 1,1 entry is 0 .
A_{3} does not have a factorization as the 2×2 principal sub-matrix is

$$
\left(\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right)
$$

is singular.
In the case of A_{2} the basic Gauss elimination process gives the following.

$$
A_{2}=\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2 \\
2 & 4 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 3 & 4 \\
0 & 1 & 2 \\
0 & -2 & -3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)=U
$$

The vector of the multipliers at each step are

$$
\underline{m}_{1}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right),
$$

Thus

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -2 & 1
\end{array}\right), \quad U=\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

In the case of A_{4} we note that the last 2 rows are the same and thus the matrix is singular but this does not prevent the reduction process running to completion. We get the following.

$$
A_{4}=\left(\begin{array}{lll}
2 & 2 & 2 \\
1 & 3 & 2 \\
1 & 3 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right)=U
$$

The vector of the multipliers at each step are

$$
\underline{m}_{1}=\left(\begin{array}{c}
0 \\
1 / 2 \\
1 / 2
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
$$

Thus

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
1 / 2 & 1 & 1
\end{array}\right), \quad U=\left(\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right) .
$$

2. In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=u_{i}(x)$. Find the solution of the following system of ordinary differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-7 & -8 \\
5 & 6
\end{array}\right)\binom{u_{1}}{u_{2}} \quad \text { with } \underline{u}(0)=\binom{-5}{2} .
$$

You must explain all the intermediate workings.
Suppose that we replace the initial condition by

$$
\underline{u}(0)=\binom{\alpha}{2}
$$

For what value of α will the solution be such that $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$. You need to explain your answer.

Solution

Let A denote the 2×2 matrix, i.e.

$$
\begin{gathered}
A=\left(\begin{array}{cc}
-7 & -8 \\
5 & 6
\end{array}\right) . \\
\operatorname{det}(A-\lambda I)=(-7-\lambda)(6-\lambda)-(-40)=\lambda^{2}+\lambda-2=(\lambda+2)(\lambda-1) .
\end{gathered}
$$

The eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=1$.

$$
A-\lambda_{1} I=\left(\begin{array}{cc}
-5 & -8 \\
5 & 8
\end{array}\right), \quad A-\lambda_{2} I=\left(\begin{array}{cc}
-8 & -8 \\
5 & 5
\end{array}\right)
$$

For the eignevectors associated with λ_{1} and λ_{2} we can take respectively

$$
\underline{v}_{1}=\binom{8}{-5}, \quad \underline{v}_{2}=\binom{1}{-1} .
$$

The general solution of the system of ODEs is

$$
\underline{u}(x)=c_{1} \mathrm{e}^{-2 x} \underline{v}_{1}+c_{2} \mathrm{e}^{x} \underline{v}_{2} .
$$

To satisfy the initial conditions we need

$$
\underline{u}(0)=c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}=\left(\begin{array}{cc}
8 & 1 \\
-5 & -1
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{-5}{2} .
$$

If we add the two equations then we eliminate c_{2} and get

$$
3 c_{1}=-3, \quad c_{1}=-1
$$

Then from the first equation

$$
8(-1)+c_{2}=-5, \quad c_{2}=3 .
$$

The solution is

$$
\underline{u}(x)=-\mathrm{e}^{-2 x}\binom{8}{-5}+3 \mathrm{e}^{x}\binom{1}{-1} .
$$

Recall that the general solution is

$$
\underline{u}(x)=c_{1} \mathrm{e}^{-2 x} \underline{v}_{1}+c_{2} \mathrm{e}^{x} \underline{v}_{2} .
$$

We only have $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$ when $c_{2}=0$. With the different initial condition we need

$$
\binom{\alpha}{2}=c_{1}\binom{8}{-5} .
$$

By just considering the direction of the vector we need

$$
\frac{\alpha}{2}=\frac{8}{-5}, \quad \alpha=-\frac{16}{5} .
$$

3 . Let $f(x)$ be a 2π-periodic function defined on $(-\pi, \pi]$ by

$$
f(x)= \begin{cases}x(\pi+x), & -\pi<x \leq 0 \\ x(\pi-x), & 0<x \leq \pi\end{cases}
$$

Explain why $f(x)$ is an odd function on $(-\pi, \pi)$.
Let $g(x)=f^{\prime}(x)$. Sketch $g(x)$ on the interval $(-\pi, 3 \pi)$. Indicate whether or not $g(x)$ is a continuous function.
Explain why the Fourier series for $f(x)$ is given by

$$
\frac{8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3^{3}}+\frac{\sin (5 x)}{5^{3}}+\cdots+\frac{\sin ((2 m-1) x)}{(2 m-1)^{3}}+\cdots\right) .
$$

You need to give intermediate workings to explain why the series has this form.

Solution

Let $a>0$. From the above $f(a)=a(\pi-a)$ (using the ($0, \pi$) part).
$f(-a)=(-a)(\pi+(-a))=-a(\pi-a)$ (using the $(-\pi, 0)$ part).
Thus $f(-a)=-f(a)$ and $f(x)$ is an odd function.
Now

$$
g(x)=f^{\prime}(x)= \begin{cases}\pi-2 x, & -\pi<x \leq 0 \\ \pi-2 x, & 0<x \leq \pi\end{cases}
$$

This is piecewise linear with continuity at $x=0$ with $g(0)=\pi$ and the 2π-peroidic extension is also continuous with $g(\pi)=g(-\pi)=-\pi$.
For a sketch of $g(x)=f^{\prime}(x)$ on $[-\pi, 3 \pi]$ we have the following.

As $f(x)$ is an odd function there are no cosine terms and hence $a_{n}=0$.
Also, as $f(x)$ is an odd function the integration can be done by just using $(0, \pi)$, i.e.

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) \mathrm{d} x
$$

We integration by parts to determine b_{n} and as $f(x)$ is a degree 2 polynomial on $(0, \pi)$ we need to do this twice. Firstly, we note that $f^{\prime}(x)=\pi-2 x$ amd $f^{\prime \prime}(x)=-2$ on this interval. In the integration by parts we always differentiate the polynomial term and a consequence we integrate the trig. term.
Integrating by parts once gives

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi}\left(\left[-f(x) \frac{\cos (n x)}{n}\right]_{0}^{\pi}+\int_{0}^{\pi} f^{\prime}(x) \frac{\cos (n x)}{n} \mathrm{~d} x\right) \\
& =\frac{2}{\pi}\left(\int_{0}^{\pi} f^{\prime}(x) \frac{\cos (n x)}{n} \mathrm{~d} x\right), \quad \text { as } f(0)=f(\pi)=0
\end{aligned}
$$

For the next integration by parts we have

$$
\begin{aligned}
\int_{0}^{\pi} f^{\prime}(x) \cos (n x) \mathrm{d} x & =\left[f^{\prime}(x) \frac{\sin (n x)}{n}\right]_{0}^{\pi}-\int_{0}^{\pi} f^{\prime \prime}(x) \frac{\sin (n x)}{n} \mathrm{~d} x \\
& =-\int_{0}^{\pi} f^{\prime \prime}(x) \frac{\sin (n x)}{n} \mathrm{~d} x, \quad \text { as } \sin (0)=\sin (n \pi)=0 \\
& =2 \int_{0}^{\pi} \frac{\sin (n x)}{n} \mathrm{~d} x, \quad \text { as } f^{\prime \prime}(x)=-2, \\
& =\frac{2}{n^{2}}[-\cos (n x)]_{0}^{\pi}=\frac{2}{n^{2}}(-\cos (n \pi)+1)=\frac{2}{n^{2}}\left(-(-1)^{n}+1\right) \\
& = \begin{cases}0 & \text { if } n \text { is even, } \\
\frac{4}{n^{2}} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Putting everything together with the previous $2 /(\pi n)$ term gives

$$
b_{n}= \begin{cases}0 & \text { if } n \text { is even } \\ \frac{8}{\pi n^{3}} & \text { if } n \text { is odd }\end{cases}
$$

4. Consider the following symmetric 3×3 matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Given that

$$
A=L U \quad \text { with } L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right), \quad U=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)
$$

determine the inverse matrices L^{-1} and A^{-1} using forwards and/or backward substitution, as appropriate, and determine $\left\|A^{-1}\right\|_{\infty}$. You need to show intermediate workings.

Solution

Let \underline{e}_{i} denote the i th base vector, i.e. the i th column of the identity matrix. We can describe the i th column of the inverse matrix as

$$
\underline{x}=A^{-1} \underline{e}_{i} \text { so that } A \underline{x}=L U \underline{x}=\underline{e}_{i} .
$$

Thus we can get A^{-1} column-by-column by solving linear systems and as we already have the $L U$ factorization we just need to use forward and back substitution in each case. In each case we first obtain \underline{y} by solving $L \underline{y}=\underline{e}_{i}$ and then we get \underline{x} by solving $U \underline{x}=\underline{y}$.
Consider $i=1$.

$$
L \underline{y}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

This gives

$$
\begin{gathered}
y_{1}=1, \quad y_{2}=1 / 2, \quad y_{3}=1 / 3 . \\
U \underline{x}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 / 2 \\
1 / 3
\end{array}\right) .
\end{gathered}
$$

This gives

$$
x_{3}=1 / 4, \quad x_{2}=1 / 2, \quad x_{1}=3 / 4 .
$$

Consider $i=2$.

$$
L \underline{y}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

This gives

$$
y_{1}=0, \quad y_{2}=1, \quad y_{3}=2 / 3 .
$$

$$
U \underline{x}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 \\
2 / 3
\end{array}\right) .
$$

This gives

$$
x_{3}=1 / 2, \quad x_{2}=1, \quad x_{1}=1 / 2 .
$$

Consider $i=3$.

$$
L \underline{y}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

This gives

$$
\begin{gathered}
y_{1}=0, \quad y_{2}=0, \quad y_{3}=1 . \\
U \underline{x}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

This gives

$$
x_{3}=3 / 4, \quad x_{2}=1 / 2, \quad x_{1}=1 / 4 .
$$

We have already solved problems of the form $L \underline{y}=\underline{e}_{i}$ and thus the vectors \underline{y} are the columns of the inverse of L. To summarize

$$
L^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 / 2 & 1 & 0 \\
1 / 3 & 2 / 3 & 1
\end{array}\right), \quad A^{-1}=\left(\begin{array}{ccc}
3 / 4 & 1 / 2 & 1 / 4 \\
1 / 2 & 1 & 1 / 2 \\
1 / 4 & 1 / 2 & 3 / 4
\end{array}\right) .
$$

The row sums of magnitudes of the entries of A are 3,4 and 3 and hence $\|A\|_{\infty}=4$. The row sums of magnitudes of the entries of A^{-1} are $3 / 2,2$ and $3 / 2$ and hence $\left\|A^{-1}\right\|_{\infty}=2$.
5. Let u be an infinitely differentiable function defined in a region which contains [$-2 h, 2 h]$, where $h>0$, and assume that the Maclaurin series expansion are valid at all points in this interval. Assuming that h is small, show that

$$
\frac{u(2 h)-4 u(h)+6 u(0)-4 u(-h)+u(-2 h)}{h^{4}}=u^{(4)}(0)+c_{2} h^{2} u^{(6)}(0)+\mathcal{O}\left(h^{4}\right)
$$

and determine the constant c_{2}. You need to show all the Maclaurin series that you use and you ned to show all other intermediate working.

Solution

The Maclaurin expansion of $u(x)$ about 0 evaluated at $x=h$ is

$$
u(h)=u(0)+h u^{\prime}(0)+\frac{h^{2}}{2} u^{\prime \prime}(0)+\frac{h^{3}}{6} u^{\prime \prime \prime}(0)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}(0)+\cdots
$$

If we replace h by $-h$ then we have

$$
u(-h)=u(0)-h u^{\prime}(0)+\frac{h^{2}}{2} u^{\prime \prime}(0)-\frac{h^{3}}{6} u^{\prime \prime \prime}(0)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}(0)+\cdots
$$

Adding these two expressions cancels the odd powers of h and we get

$$
u(h)+u(-h)=2 u(0)+h^{2} u^{\prime \prime}(0)+\frac{h^{4}}{12} u^{(4)}(0)+\frac{h^{6}}{369} u^{(6)}(0)+\cdots
$$

If we replace h by $2 h$ in the last expression then we get

$$
u(2 h)+u(-2 h)=2 u(0)+4 h^{2} u^{\prime \prime}(0)+\frac{16 h^{4}}{12} u^{(4)}(0)+\frac{64 h^{6}}{360} u^{(6)}(0)+\cdots
$$

Thus

$$
u(2 h)+u(-2 h)-4(u(h)+u(-h))=-6 u(0)+h^{4} u^{(4)}(0)+\frac{60}{360} h^{6} u^{(6)}(0)+\cdots
$$

Rearranging gives

$$
\frac{u(2 h)-4 u(h)+6 u(0)-4 u(-h)+u(-2 h)}{h^{4}}=u^{(4)}(0)+\frac{1}{6} h^{2} u^{(6)}(0)+\mathcal{O}\left(h^{4}\right) .
$$

Thus $c_{2}=1 / 6$.

