Exercises for revision week

1. Consider the following 3×3 matrices.

$$
A_{1}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 3 & 4 \\
2 & 4 & 5
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
1 & 3 & 4 \\
0 & 1 & 2 \\
2 & 4 & 5
\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}
1 & 3 & 2 \\
1 & 3 & 2 \\
2 & 2 & 2
\end{array}\right), \quad A_{4}=\left(\begin{array}{lll}
2 & 2 & 2 \\
1 & 3 & 2 \\
1 & 3 & 2
\end{array}\right) .
$$

For each matrix either determine the $L U$ factorization, where L is unit lower triangular and U is upper triangular, or give a reason why the matrix does not have a $L U$ factorization. If a matrix has a $L U$ factorization then you must show intermediate computations to show how you obtained the factors.
2. In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=u_{i}(x)$. Find the solution of the following system of ordinary differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-7 & -8 \\
5 & 6
\end{array}\right)\binom{u_{1}}{u_{2}} \quad \text { with } \underline{u}(0)=\binom{-5}{2} .
$$

You must explain all the intermediate workings.
Suppose that we replace the initial condition by

$$
\underline{u}(0)=\binom{\alpha}{2}
$$

For what value of α will the solution be such that $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$. You need to explain your answer.

3 . Let $f(x)$ be a 2π-periodic function defined on $(-\pi, \pi]$ by

$$
f(x)= \begin{cases}x(\pi+x), & -\pi<x \leq 0 \\ x(\pi-x), & 0<x \leq \pi\end{cases}
$$

Explain why $f(x)$ is an odd function on $(-\pi, \pi)$.
Let $g(x)=f^{\prime}(x)$. Sketch $g(x)$ on the interval $(-\pi, 3 \pi)$. Indicate whether or not $g(x)$ is a continuous function.
Explain why the Fourier series for $f(x)$ is given by

$$
\frac{8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3^{3}}+\frac{\sin (5 x)}{5^{3}}+\cdots+\frac{\sin ((2 m-1) x)}{(2 m-1)^{3}}+\cdots\right) .
$$

You need to give intermediate workings to explain why the series has this form.
4. Consider the following symmetric 3×3 matrix.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Given that

$$
A=L U \quad \text { with } L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
0 & -2 / 3 & 1
\end{array}\right), \quad U=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 3 / 2 & -1 \\
0 & 0 & 4 / 3
\end{array}\right)
$$

determine the inverse matrices L^{-1} and A^{-1} using forwards and/or backward substitution, as appropriate, and determine $\left\|A^{-1}\right\|_{\infty}$. You need to show intermediate workings.
5. Let u be an infinitely differentiable function defined in a region which contains $[-2 h, 2 h]$, where $h>0$, and assume that the Maclaurin series expansion are valid at all points in this interval. Assuming that h is small, show that

$$
\frac{u(2 h)-4 u(h)+6 u(0)-4 u(-h)+u(-2 h)}{h^{4}}=u^{(4)}(0)+c_{2} h^{2} u^{(6)}(0)+\mathcal{O}\left(h^{4}\right)
$$

and determine the constant c_{2}. You need to show all the Maclaurin series that you use and you ned to show all other intermediate working.

