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Exercises on Fourier series

1. This question was in the May 2019 MA2815 exam.

Let f : R → R denote a 2π-periodic function which is piecewise continuous. The
Fourier series for this function is given by

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where the Fourier coefficients an and bn are

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

Let f1 and f2 be 2π-periodic function defined on (−π, π] as follows.

f1(x) =

{
1, if |x| ≤ π/2,

0, if −π < x < −π/2 or π/2 < x ≤ π,

f2(x) =


1, if 0 ≤ x ≤ π/2,

−1, if −π/2 ≤ x < 0,

0, if −π < x < −π/2 or π/2 < x ≤ π.

(a) Sketch f1(x) on the interval (−π, 3π).

(b) Show that the Fourier series for f1(x) is

1

2
+

2

π

(
cos(x)− cos(3x)

3
+

cos(5x)

5
+ · · ·+ (−1)m+1 cos((2m− 1)x)

2m− 1
+ · · ·

)
.

(c) Determine the Fourier series for f2(x) giving the general formula for the an
coefficients and giving the values of b1, b2, b3, b4 and b5.

(d) State for what values of x ∈ (−π, π) the Fourier series for f1(x) is the same as
f1(x) and for what values, if any, they differ.

Solution

(a) (−π, 3π) has length 4π and is 2-periods. A sketch on this interval is as follows.

−π −π/2 0

1

π/2 3π/2 5π/2 3π
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(b) f1(x) is even on the interval (−π, π) and thus the Fourier series has no sine
terms. .

a0 =
1

π

∫ π

−π
f1(x) dx =

1

π

∫ π/2

−π/2
dx = 1 and hence

a0
2

=
1

2
.

For n ≥ 1 we have

an =
1

π

∫ π

−π
f1(x) cos(nx) dx =

1

π

∫ π/2

−π/2
cos(nx) dx =

2

π

∫ π/2

0

cos(nx) dx

=
2

π

[
sin(nx)

n

]π/2
0

=
2

π

sin(nπ/2)

n
.

When n is even sin(nπ/2) = 0. When n = 2m− 1, nπ/2 = mπ − π/2 and

sin(mπ − π/2) = − cos(mπ) = (−1)m+1.

Thus the Fourier series for f1(x) is the given expression.

(c) f2(x) is odd on the interval (−π, π) and thus the Fourier series has no cosine
terms and an = 0 for all n.

bn =
2

π

∫ π/2

0

sin(nx) dx =
2

π

[
− cos(nx)

n

]π/2
0

=
2

nπ
(− cos(nπ/2) + 1) .

cos(nπ/2) takes values 0, −1, 0, 1 and 0 as n = 1, . . . , 5. Thus

b1 =
2

π
, b2 =

4

2π
= b1, b3 =

2

3π
, b4 = 0, b5 =

2

5π
.

(d) f1(x) is the same as the Fourier series for f1(x) at the points of continuity and
it is not the same as the points of discontinuity which are the points ±π/2 in
the interval (−π, π).

2. This question was in the May 2017 MA2815 exam.

Consider the function f : [−π, π)→ R defined by

f(x) =


1, if − π ≤ x < −π3 ,
0, if − π

3 ≤ x ≤ π
3 ,

−1, if π3 < x < π.

Denote by g : R→ R the 2π-periodic extension of f to R.

(a) Sketch g(x) over the interval x ∈ [−3π, 3π] indicating carefully the key values
on both axes.

The Fourier series of f is given by

S(x) = lim
N→∞

SN(x) where SN(x) =
a0
2

+
N∑
n=1

(
an cos(nx) + bn sin(nx)

)
with

an =
1

π

∫ π

−π
f(x) cos(nx) dx and bn =

1

π

∫ π

−π
f(x) sin(nx) dx.
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(b) Give those values of x for which S(x) = f(x) and those values of x for which
S(x) 6= f(x).

(c) Determine a0, general expressions for every an and bn and show that the Fourier
series S of f is

S(x) =
2

π

∞∑
n=1

(−1)n − cos(nπ
3

)

n
sin(nx) .

Solution

(a) A sketch of the piecewise constant function is shown below.

1

−1

0 π/3 π 5π/3 7π/3 3π−π/3−π−5π/3−7π/3−3π

(b) S(x) = f(x) at all the points of continuity, i.e. it holds in −π < x < −π
3
, in

−π
3
< x < π

3
, and in π

3
< x < π.

S(x) 6= f(x) at the points of discontinuity which in [−π, π] are at −π, −π
3
, π

3

and π.

(c) f(x) is an odd function, therefore a0 = 0 and an = 0 and only sine terms are
involved.

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

2

π

∫ π

0

f(x) sin(nx) dx

=
2

π

∫ π

π
3

(−1) sin(nx) dx

=
2

π
(−1)

[
− cos(nx)

n

]π
π
3

=
2

π

1

n

(
cos(nπ)− cos(n

π

3
)
)

=
2

π

1

n

(
(−1)n − cos(n

π

3
)
)

3. This question was in the May 2018 MA2815 exam.

Let g : R → R denote a 2π-periodic function which is piecewise continuous. The
Fourier series for this function is given by

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where the Fourier coefficients an and bn are

an =
1

π

∫ π

−π
g(x) cos(nx) dx , bn =

1

π

∫ π

−π
g(x) sin(nx) dx .
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Let f1 : R → R and f2 : R → R denote the 2π-periodic functions given on (−π, π]
by

f1(x) =


1 , −π < x ≤ −π/2 ,
0 , −π/2 < x < π/2 ,

1 , π/2 ≤ x ≤ π ,

and f2(x) = −x
2

+

∫ x

0

f1(t) dt .

(a) Obtain the Fourier coefficients of f1 in their simplest form.

(b) Show that f2(x) can be written in the form

f2(x) =


x+ π

2 , −π < x ≤ −π/2 ,

−x2 , −π/2 < x < π/2 ,

x− π
2 , π/2 ≤ x ≤ π .

and sketch f2(x) on the interval −π ≤ x ≤ π.

(c) Obtain the Fourier coefficients of f2 in their simplest form.

(d) For each of f1 and f2 state the set of points, if any, where the value of the
Fourier series is not the same as the value of the function it represents.

Solution

(a) At all the points of continuity of f1(x) we have f1(−x) = f1(x) and thus the
Fourier series only involves cosine terms, i.e. bn = 0 for all n.

πa0 = 2

∫ π

0

dx = 2

∫ π

π/2

dx = π, a0 = 1.

For n ≥ 1,

πan = 2

∫ π

π/2

cos(nx) dx =
2

n
[sin(nx)]ππ/2 = − 2

n
sin(nπ/2).

The values of sin(nπ/2) are respectively 1, 0, −1, 0, 1 etc. Thus a2m = 0 and

a2m−1 =
2(−1)m

π(2m− 1)
.

(b) For |x| < π/2, f2(x) = −x/2.

For x ≥ π/2,

f2(x) = −x
2

+

∫ x

π/2

dt = −x
2

+ x− π/2 =
x− π

2
.

For x ≤ −π/2,

f2(x) = −x
2

+

∫ x

−π/2
dt = −x

2
+ x− (−π/2) =

x+ π

2
.

f2(−π) = 0, f2(−π/2) = π/4, f2(π/2) = −π/4 and f2(π) = 0. A sketch of
f2(x) on [−π, π] is given below.
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−π −π/2 π/2 π

π/4

−π/4

(c) We can obtain the Fourier coefficients of f2 from f1 by term-by-term integration
of the series for f1.

At most points

f1(x)− 1

2
=

2

π

∞∑
m=1

(−1)m

2m− 1
cos(2m− 1)x.

f2(x) =

∫ x

0

f1(t) dt− x

2
=

2

π

∞∑
m=1

(−1)m

(2m− 1)2
[sin(2m− 1)t]x0

=
2

π

∞∑
m=1

(−1)m

(2m− 1)2
sin(2m− 1)x.

(d) There are no points where the Fourier series for f2 differs from that of f2.

The Fourier series for f1(x) differs from f1(x) at the points of discontinuity
which are ±π/2.
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4. This question was in the May 2016 MA2815 exam.

(a) Consider the function g : [0, 2π]→ R defined by

g(x) =


2, if 0 ≤ x <

π

2
or

3π

2
< x ≤ 2π,

1, if
π

2
≤ x ≤ 3π

2
.

Denote by f : R→ R the 2π-periodic extension of g over R.
Sketch f(x) over the interval x ∈ [−2π, 2π] indicating carefully the key values
on the axis.

(b) The Fourier series of f is given by

S(x) = lim
N→∞

SN(x)

where SN(x) =
a0
2

+
N∑
n=1

(
an cos(nx) + bn sin(nx)

)
with

an =
1

π

∫ π

−π
f(x) cos(nx) dx and bn =

1

π

∫ π

−π
f(x) sin(nx) dx.

Determine a0, general expressions for every an and bn, and show that the
Fourier series S of f is

S(x) =
3

2
+

2

π

(
∞∑
n=0

(−1)n
cos((2n+ 1)x)

2n+ 1

)
.

(c) For what values of x do we have S(x) 6= f(x) on [−π, π]?

(d) Explain why the Fourier series suggests that,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=1

(−1)n+1

2n− 1

and use the Leibniz alternating series test to test this series for convergence.

Before 2017/8 the study block MA2730 also contributed to the MA2815 May exam.
The use the Leibniz alternating series test would not be a MA2815 paper now.

Solution

(a) For a sketch of y = f(x) you can have the following,

−2π 2π−3π/2 3π/2−π/2 π/2

y = 2

y = 1
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(b) The function f(x) is even and hence the Fourier series S(x) only involves cosine
terms is given by

S(x) =
a0
2

+
∞∑
n=1

an cos(nx) with an =
2

π

∫ π

0

f(x) cos(nx) dx.

f(x) is defined differently on [0, π/2) and [π/2, π] and thus we have

πan
2

=

∫ π/2

0

2 cos(nx) dx+

∫ π

π/2

cos(nx) dx.

When n = 0 we have

πa0
2

= π +
π

2
giving

a0
2

=
3

2
.

When n ≥ 1 we have

πan
2

=

[
2

sin(nx)

n

]π/2
0

+

[
sin(nx)

n

]π
π/2

=
1

n
(2 sin(nπ/2)− sin(nπ/2)) =

1

n
sin(nπ/2).

If n is even then we have an = 0. If n = 2m+ 1, with m = 0, 1, 2, . . ., then

sin((2m+ 1)π/2) = sin((m+ 1/2)π) = cos(mπ) = (−1)m.

Hence
πa2m+1

2
=

(−1)m

2m+ 1

which re-arranges to

a2m+1 =

(
2

π

)
(−1)m

2m+ 1
.

(c) The function f(x) is piecewise continuously differentiable and agrees with S(x)
at the points of continuity. There are two points of dis-continuity in [−π, π]
and these are at ±π/2. At these points the Fourier series S(x) is 3/2 which is
not the same as f(x) as f(±π/2) = 1.

As S(0) = f(0) we have

2 =
3

2
+

2

π

∞∑
m=0

(−1)m

2m+ 1

which rearranges to
π

4
=

∞∑
m=0

(−1)m

2m+ 1
.

If we have the substitution n = m+ 1 so that m = n− 1 then we have

π

4
=
∞∑
n=1

(−1)n−1

2n− 1
.

As
(−1)n−1 = (−1)n+1

we get the result in the form given in the question.
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(d) The coefficients in the series for n = 1, 2, . . . are of the form

(−1)n+1cn, where cn =
1

2n− 1
.

The sequence of magnitudes cn decrease to 0 and we satisfy the conditions of
the alternating series test and hence the series

∞∑
n=1

(−1)n+1cn

converges.

5. This question was in the May 2014 MA2815 exam.

Sketch the graph of the periodic function

f(x) =

{
−2x2, −π/2 ≤ x < 0,

2x2, 0 ≤ x < π/2,
f(x+ π) = f(x),

find its full-range Fourier series on [−π/2, π/2] and the sine Fourier series on [0, π/2].

Solution

On [−π/2, π/2] the function is defined in two parts and it is an odd function. The
two points join at 0 and the slope at the join is also continuous and is 0 (i.e. the
derivative at 0 is 0). The π-periodic extension of f(x) is not continuous at ±π/2.
For a sketch we can have the following.
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Note that the period is π in this questions and thus if you consider the general case
of a function with period 2L then L = π/2 and in the formulas π/L = 2. As it is an
odd function the series only involves sine terms and the Fourier series S(x) is given
by

S(x) =
∞∑
n=1

bn sin(2nx),

where

bn =
2

L

∫ L

0

f(x) sin
(nxπ
L

)
dx =

4

π

∫ π/2

0

2x2 sin(2nx) dx.

Two integration by parts steps are needed and the first integration by parts gives

πbn = 8

∫ π/2

0

x2 sin(2nx) dx =

[
−8x2

(
cos(2nx)

2n

)]π/2
0

+

∫ π/2

0

16x
cos(2nx)

2n
dx

= −8(π/2)2
(

cos(nπ)

2n

)
+

∫ π/2

0

16x
cos(2nx)

2n
dx

= π2 (−1)n+1

n
+

∫ π/2

0

16x
cos(2nx)

2n
dx.

The next integration by parts gives

πbn = π2 (−1)n+1

n
+

[
16x

(
sin(2nx)

(2n)2

)]π/2
0

−
∫ π/2

0

16

(
sin(2nx)

(2n)2

)
dx

= π2 (−1)n+1

n
+

[
16

(
cos(2nx)

(2n)3

)]π/2
0

= π2 (−1)n+1

n
+ 2

(
(−1)n − 1

n3

)
.

Finally

bn = π
(−1)n+1

n
+

2

π

(
(−1)n − 1

n3

)
.

As f(x) is an odd function the full range Fourier series just found on (−π/2, π/2)
is also the sine Fourier series on (0, π/2).

6. Let f(x) denote the 2π-periodic function defined on (−π, π] by

f(x) =

{
x, |x| < π/2,

0, x ∈ (−π,−π/2) ∪ (π/2, π].

Construct the Fourier series representation.
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Solution

The function is an odd function on (−π, π) which means that the Fourier series only
involves sine terms. Also the function has discontinuities at ±π/2.

The Fourier series is

S(x) =
∞∑
n=1

bn sin(nx), where bn =
2

π

∫ π

0

f(x) sin(nx) dx.

In this case by using f(x) = 0 on (−π/2, π] and integration by parts we have

πbn
2

=

∫ π/2

0

x sin(nx) dx

=

[
−xcos(nx)

n

]π/2
0

+

∫ π/2

0

cos(nx)

n
dx.

Now [
−xcos(nx)

n

]π/2
0

= −π
2

(
cos(nπ/2)

n

)
.

This is 0 when n is odd. For the other term to consider we have∫ π/2

0

cos(nx)

n
dx =

[
sin(nx)

n2

]π/2
0

=
sin(nπ/2)

n2 .

This is 0 when n is even. Putting all parts together we have the following. When
n = 2m− 1, m = 1, 2, . . . (i.e. n is odd)

b2m−1 =
2

π

(
sin((2m− 1)π/2)

(2m− 1)2

)
=

2

π

(
sin((2m− 1)π/2)

(2m− 1)2

)
= =

2

π

(
− cos(mπ)

(2m− 1)2

)
=

2

π

(−1)m+1

(2m− 1)2
.

When n = 2m, m = 1, 2, . . . (i.e. n is even)

b2m = −cos(mπ)

2m
=

(−1)m−1

2m
.

7. Let f1(x) = |x| and f2(x) = 3x2. Show that for |x| ≤ π we have

f1(x) =
π

2
− 4

π

(
cos(x) +

cos(3x)

32 + · · ·+ cos((2n+ 1)x)

(2n+ 1)2
+ · · ·

)
,

f2(x) = π2 + 12
∞∑
n=1

(−1)n

n2 cos(nx).

By appropriately integrating these expressions show that for 0 ≤ x ≤ π

x(π − x) =
8

π

(
sin(x) +

sin(3x)

33 +
sin((2n+ 1)x)

(2n+ 1)3
+ · · ·

)
,

x(π − x)(π + x) = 12

(
sin(x)− sin(2x)

23 + · · ·+ (−1)n+1 sin(nx)

n3 + · · ·
)
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which are valid for 0 ≤ x ≤ π.

By making use of the appropriate results above show that

∞∑
n=1

1

n2 =
π2

6

and (
1 +

1

33

)
−
(

1

53 +
1

73

)
+

(
1

93 +
1

113

)
−
(

1

133 +
1

153

)
+ · · · = 3π3

√
2

128
.

Solution

Both functions f1 and f2 are even and hence the Fourier series for both functions
only involve cosine terms. In both cases integration by parts is needed to get the
entries in the series. The 2π-periodic extensions of both functions are continuous and
the functions are piecewise continuously differentiable which is sufficient conditions
for the Fourier series to be the same as the functions for all points in [−π, π].

The series for f1.

The series is

f1(x) =
a0
2

+
∞∑
n=1

an cos(nx)

with

an =
2

π

∫ π

0

f1(x) cos(nx)dx =
2

π

∫ π

0

x cos(nx)dx.

When n = 0 we have

a0 =
2

π

π2

2
= π and thus

a0
2

=
π

2
.

For n ≥ 1 we use integration by parts to give

anπ

2
=

[
x

sin(nx)

n

]π
0

−
∫ π

0

sin(nx)

n
dx

= −
∫ π

0

sin(nx)

n
dx

=

[
cos(nx)

n2

]π
0

=

[
cos(nπ)− 1

n2

]
=
−1 + (−1)n

n2 .

When n is even an = 0 and when n = 2m+ 1, m ≥ 0 we have

a2m+1π

2
= − 2

(2m+ 1)2
giving a2m+1 = − 4

π(2m+ 1)2
.

The series for f2.
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The series is

f2(x) =
a0
2

+
∞∑
n=1

an cos(nx)

with

an =
2

π

∫ π

0

f2(x) cos(nx)dx =
2

π

∫ π

0

3x2 cos(nx)dx.

When n = 0 we have

a0 =
2

π
π3 = 2π2 and thus

a0
2

= π2.

For n ≥ 1 we use integration by parts to give

anπ

2
=

[
3x2

sin(nx)

n

]π
0

−
∫ π

0

6x
sin(nx)

n
dx

= −
∫ π

0

6x
sin(nx)

n
dx.

Integration by parts again gives

anπ

2
=

[
6x

cos(nx)

n2

]π
0

+

∫ π

0

6
cos(nx)

n2 dx

=
6π(−1)n

n2 giving an = 12
(−1)n

n2 .

The next part of the questions mentions integrating the Fourier series for f1 and f2
and for his note that for n ≥ 1∫ x

0

cos(nt) dt =
sin(x)

n
.

and for the constant term in the series we have∫ x

0

a0
2

dt =
a0x

2
.

Integrating the series for f1.

Now for x ≥ 0 ∫ x

0

f1(t) dt =
x2

2

Equating this with the term-by-term integration of the Fourier series gives for x ≥ 0

x2

2
=
πx

2
− 4

π

∞∑
n=0

sin((2n+ 1)x)

(2n+ 1)3
.

By multiplying by −1 we have

πx− x2

2
=

4

π

∞∑
n=0

sin((2n+ 1)x)

(2n+ 1)3
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and further re-arrangement gives

x(π − x) =
8

π

∞∑
n=0

sin((2n+ 1)x)

(2n+ 1)3
.

This establishes the result in the question. As a comment as to what changes if we
wish to consider x ∈ [−π, 0] the first thing to note is that the right hand side is an
odd function and we have ∫ x

0

f1(t) dt = −x
2

2

leading to

x(π + x) =
8

π

∞∑
n=0

sin((2n+ 1)x)

(2n+ 1)3
.

The function

g1(x) =

{
x(π − x), if x ≥ 0,

x(π + x), if x < 0

is continuously differentiable at x = 0 with g1(0) = 0 and g′(0) = π but the second
derivative is not continuous at x = 0.

Integrating the series for f2.

∫ x

0

f2(t) dt =

∫ x

0

3t2 dt = x3.

Thus

x3 = π2x+ 12
∞∑
n=1

(−1)n

n3 sin(nx).

Now
π2x− x3 = x(π2 − x2) = x(π − x)(π + x).

Hence

x(π − x)(π + x) = 12
∞∑
n=1

(−1)n+1

n3 sin(nx).

As the series for f2(x) is valid for all x ∈ [−π, π] we can substitute x = π in the
expression. Now

f2(π) = 3π2

and by using the Fourier series we must have

3π2 = π2 + 12
∞∑
n=1

(−1)n

n2 cos(nπ) = π2 + 12
∞∑
n=1

1

n2 .

Re-arranging gives
∞∑
n=1

1

n2 =
π2

6
.
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It is a little harder to immediately decide what to do for the final part although it
does involve choosing an appropriate value of x in the formula

x(π − x) =
8

π

(
sin(x) +

sin(3x)

33 +
sin((2n+ 1)x)

(2n+ 1)3
+ · · ·

)
.

As there is a
√

2 in the answer this suggests that we try x = π/4 as

sin(π/4) =
1√
2
, sin(3π/4) =

1√
2
, sin(5π/4) = − 1√

2
, sin(7π/4) = − 1√

2
.

Now on the left hand side x(π − x) gives

π

4
π − π

4
=

3π2

16
.

Hence

3π2

16
=

(
8

π

)(
1√
2

)((
1 +

1

33

)
−
(

1

53 +
1

73

)
+

(
1

93 +
1

113

)
−
(

1

133 +
1

153

)
+ · · ·

)
which re-arranges to give the expression in the question.

8. Show that

x sin(x) = 1− 1

2
cos(x)

−2

(
cos(2x)

22 − 1
− cos(3x)

32 − 1
+ · · ·+ (−1)n cos(nx)

n2 − 1
+ · · ·

)
which is valid for |x| ≤ π.

By using the above result, or otherwise, show that

x cos(x) = −1

2
sin(x)

+2

(
2 sin(2x)

22 − 1
− 3 sin(3x)

32 − 1
+ · · ·+ (−1)nn sin(nx)

n2 − 1
+ · · ·

)
which is valid for |x| < π.

Solution

The function f(x) = x sin(x) is even and the 2π-periodic extension of f(x) defined
on [−π, π] is a continuous function which is piecewise continuously differentiable.
This is a sufficient condition for the Fourier series to be the same as f(x) on [−π, π].

As the function is even the Fourier series only involves cosine terms and it is of the
form

f(x) =
a0
2

+
∞∑
1

an cos(nx), an =
2

π

∫ π

0

f(x) cos(nx) dx.

Unlike earlier examples we need integration by parts to get all the coefficients, i.e.
in the case of a0 as well as an for n ≥ 1. In the case of a0 we have

π

2
a0 =

∫ π

0

x sin(x) dx = [−x cos(x)]π0 +

∫ π

0

cos(x) dx

= −π cos(π) = π giving
a0
2

= 1.
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For n ≥ 1,
π

2
an =

∫ π

0

x sin(x) cos(nx) dx.

As in an earlier question we use trig. identities to re-express sin(x) cos(nx). We
have

sin((n+ 1)x)− sin((n− 1)x) = 2 cos(nx) sin(x)

and thus
π

2
an =

∫ π

0

x

(
sin((n+ 1)x)− sin((n− 1)x)

2

)
dx,

i.e.

πan =

∫ π

0

x (sin((n+ 1)x)− sin((n− 1)x)) dx,

It helps here to first get an expression for the following.∫ π

0

x sin(mx) dx =

[
−xcos(mx)

m

]π
0

+

∫ π

0

cos(mx)

m
dx

= −π cos(mπ)

m
= π

(−1)m+1

m
.

If we return the problem of obtaining an note that we should consider separately
the case n = 1 when we have

πa1 =
π

1 + 1
, i.e. a1 =

1

2
.

For n ≥ 2 we have

πan = π

(
(−1)n+2

n+ 1
− (−1)n

n− 1

)
= −(−1)nπ

(
1

n− 1
− 1

n+ 1

)
= −(−1)nπ

(
2

n2 − 1

)
and thus

an =
−2(−1)n

n2 − 1
.

As f(−π) = f(π) it is valid to differentiate term-by-term to get the Fourier series
for f ′(x) in this example which is valid in |x| < π. Now

f ′(x) = x cos(x) + sin(x).

If we compare with the term-by-term differentiation of the series we have

x cos(x) + sin(x) = 1 +
1

2
sin(x)−

∞∑
n=2

nan sin(nx)

and hence

x cos(x) = 1− 1

2
sin(x)−

∞∑
n=2

nan sin(nx).
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9. Obtain the half range cosine series valid on (0, π) for the function

f(x) =
x2 − 2πx+ 2π2/3

4
.

Hence give the function whose Fourier series on (−π, π) is

∞∑
n=1

sin(nx)

n
.

Solution

The coefficients in the half range series are given by

an =
2

π

∫ π

0

f(x) dx.

a0 =
2

π

(
1

4

)(
π3

3
− 2π

π2

2
+

2π3

3

)
= 0.

For n ≥ 1 integration by parts two times gives

πan
2

=

∫ π

0

f(x) cos(nx) dx =

[
f(x)

sin(nx)

n

]π
0

−
∫ π

0

f ′(x)
sin(nx)

n
dx

= −
∫ π

0

f ′(x)
sin(nx)

n
dx

=

[
f ′(x)

cos(nx)

n2

]π
0

−
∫ π

0

f ′′(x)
cos(nx)

n2 dx.

Now f ′(x) = x/2 − π/2 so that f ′(0) = −π/2 and f ′(π) = 0 and f ′′(x) = 1/2 is
constant. ∫ π

0

cos(nx) dx =

[
sin(nx)

n

]π
0

= 0

and
f ′(π) cos(nπ)− f ′(0) =

π

2
.

Thus
πan
2

=
π

2n2 and an =
1

n2 .

The half range function extended to (−π, π) is

f(x) =
x2 − 2π|x|+ 2π2/3

4
=
∞∑
1

cos(nx)

n2 .

We get the same limit as we approach π as we do when we approach π and hence
the 2π periodic extension is a continuous function of R.

It is valid to differentiate term-by-term to give

f ′(x) = −
∞∑
1

sin(nx)

n
=

{
2x− 2π

4 , if 0 < x < π,
2x+ 2π

4 , if −π < x < 0
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(Note that the derivative is not defined at x = 0.)

From the above it follows that

∞∑
1

sin(nx)

n
= −f ′(x).


