Exercises on Fourier series

1. This question was in the May 2019 MA2815 exam.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a 2π-periodic function which is piecewise continuous. The Fourier series for this function is given by

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where the Fourier coefficients a_{n} and b_{n} are

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x .
$$

Let f_{1} and f_{2} be 2π-periodic function defined on $(-\pi, \pi]$ as follows.

$$
\begin{aligned}
& f_{1}(x)= \begin{cases}1, & \text { if }|x| \leq \pi / 2, \\
0, & \text { if }-\pi<x<-\pi / 2 \text { or } \pi / 2<x \leq \pi\end{cases} \\
& f_{2}(x)= \begin{cases}1, & \text { if } 0 \leq x \leq \pi / 2 \\
-1, & \text { if }-\pi / 2 \leq x<0 \\
0, & \text { if }-\pi<x<-\pi / 2 \text { or } \pi / 2<x \leq \pi\end{cases}
\end{aligned}
$$

(a) Sketch $f_{1}(x)$ on the interval $(-\pi, 3 \pi)$.
(b) Show that the Fourier series for $f_{1}(x)$ is

$$
\frac{1}{2}+\frac{2}{\pi}\left(\cos (x)-\frac{\cos (3 x)}{3}+\frac{\cos (5 x)}{5}+\cdots+(-1)^{m+1} \frac{\cos ((2 m-1) x)}{2 m-1}+\cdots\right) .
$$

(c) Determine the Fourier series for $f_{2}(x)$ giving the general formula for the a_{n} coefficients and giving the values of $b_{1}, b_{2}, b_{3}, b_{4}$ and b_{5}.
(d) State for what values of $x \in(-\pi, \pi)$ the Fourier series for $f_{1}(x)$ is the same as $f_{1}(x)$ and for what values, if any, they differ.
2. This question was in the May 2017 MA2815 exam.

Consider the function $f:[-\pi, \pi) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{aligned}
1, & \text { if }-\pi \leq x<-\frac{\pi}{3} \\
0, & \text { if }-\frac{\pi}{3} \leq x \leq \frac{\pi}{3} \\
-1, & \text { if } \frac{\pi}{3}<x<\pi
\end{aligned}\right.
$$

Denote by $g: \mathbb{R} \rightarrow \mathbb{R}$ the 2π-periodic extension of f to \mathbb{R}.
(a) Sketch $g(x)$ over the interval $x \in[-3 \pi, 3 \pi]$ indicating carefully the key values on both axes.
The Fourier series of f is given by

$$
S(x)=\lim _{N \rightarrow \infty} S_{N}(x) \quad \text { where } \quad S_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

with

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

(b) Give those values of x for which $S(x)=f(x)$ and those values of x for which $S(x) \neq f(x)$.
(c) Determine a_{0}, general expressions for every a_{n} and b_{n} and show that the Fourier series S of f is

$$
S(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}-\cos \left(\frac{n \pi}{3}\right)}{n} \sin (n x) .
$$

3. This question was in the May 2018 MA2815 exam.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ denote a 2π-periodic function which is piecewise continuous. The Fourier series for this function is given by

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
$$

where the Fourier coefficients a_{n} and b_{n} are

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \cos (n x) \mathrm{d} x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin (n x) \mathrm{d} x .
$$

Let $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ denote the 2π-periodic functions given on $(-\pi, \pi]$ by

$$
f_{1}(x)=\left\{\begin{array}{ll}
1, & -\pi<x \leq-\pi / 2, \\
0, & -\pi / 2<x<\pi / 2, \\
1, & \pi / 2 \leq x \leq \pi
\end{array} \quad \text { and } \quad f_{2}(x)=-\frac{x}{2}+\int_{0}^{x} f_{1}(t) \mathrm{d} t .\right.
$$

(a) Obtain the Fourier coefficients of f_{1} in their simplest form.
(b) Show that $f_{2}(x)$ can be written in the form

$$
f_{2}(x)= \begin{cases}\frac{x+\pi}{2}, & -\pi<x \leq-\pi / 2 \\ -\frac{x}{2}, & -\pi / 2<x<\pi / 2 \\ \frac{x-\pi}{2}, & \pi / 2 \leq x \leq \pi\end{cases}
$$

and sketch $f_{2}(x)$ on the interval $-\pi \leq x \leq \pi$.
(c) Obtain the Fourier coefficients of f_{2} in their simplest form.
(d) For each of f_{1} and f_{2} state the set of points, if any, where the value of the Fourier series is not the same as the value of the function it represents.
4. This question was in the May 2016 MA2815 exam.
(a) Consider the function $g:[0,2 \pi] \rightarrow \mathbb{R}$ defined by

$$
g(x)= \begin{cases}2, & \text { if } 0 \leq x<\frac{\pi}{2} \text { or } \frac{3 \pi}{2}<x \leq 2 \pi \\ 1, & \text { if } \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}\end{cases}
$$

Denote by $f: \mathbb{R} \rightarrow \mathbb{R}$ the 2π-periodic extension of g over \mathbb{R}.
Sketch $f(x)$ over the interval $x \in[-2 \pi, 2 \pi]$ indicating carefully the key values on the axis.
(b) The Fourier series of f is given by

$$
\begin{aligned}
S(x) & =\lim _{N \rightarrow \infty} S_{N}(x) \\
\text { where } \quad S_{N}(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{N}\left(a_{n} \cos (n x)+b_{n} \sin (n x)\right)
\end{aligned}
$$

with

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) \mathrm{d} x \quad \text { and } \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) \mathrm{d} x .
$$

Determine a_{0}, general expressions for every a_{n} and b_{n}, and show that the Fourier series S of f is

$$
S(x)=\frac{3}{2}+\frac{2}{\pi}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{\cos ((2 n+1) x)}{2 n+1}\right)
$$

(c) For what values of x do we have $S(x) \neq f(x)$ on $[-\pi, \pi]$?
(d) Explain why the Fourier series suggests that,

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2 n-1}
$$

and use the Leibniz alternating series test to test this series for convergence.
Before 2017/8 the study block MA2730 also contributed to the MA2815 May exam. The use the Leibniz alternating series test would not be a MA2815 paper now.
5. This question was in the May 2014 MA2815 exam.

Sketch the graph of the periodic function

$$
f(x)=\left\{\begin{array}{ll}
-2 x^{2}, & -\pi / 2 \leq x<0, \\
2 x^{2}, & 0 \leq x<\pi / 2,
\end{array} \quad f(x+\pi)=f(x)\right.
$$

find its full-range Fourier series on $[-\pi / 2, \pi / 2]$ and the sine Fourier series on $[0, \pi / 2]$.
6. Let $f(x)$ denote the 2π-periodic function defined on $(-\pi, \pi]$ by

$$
f(x)= \begin{cases}x, & |x|<\pi / 2 \\ 0, & x \in(-\pi,-\pi / 2) \cup(\pi / 2, \pi] .\end{cases}
$$

7. Let $f_{1}(x)=|x|$ and $f_{2}(x)=3 x^{2}$. Show that for $|x| \leq \pi$ we have

$$
\begin{aligned}
& f_{1}(x)=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos (x)+\frac{\cos (3 x)}{3^{2}}+\cdots+\frac{\cos ((2 n+1) x)}{(2 n+1)^{2}}+\cdots\right) \\
& f_{2}(x)=\pi^{2}+12 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos (n x) .
\end{aligned}
$$

By appropriately integrating these expressions show that for $0 \leq x \leq \pi$

$$
\begin{aligned}
x(\pi-x) & =\frac{8}{\pi}\left(\sin (x)+\frac{\sin (3 x)}{3^{3}}+\frac{\sin ((2 n+1) x)}{(2 n+1)^{3}}+\cdots\right) \\
x(\pi-x)(\pi+x) & =12\left(\sin (x)-\frac{\sin (2 x)}{2^{3}}+\cdots+(-1)^{n+1} \frac{\sin (n x)}{n^{3}}+\cdots\right)
\end{aligned}
$$

which are valid for $0 \leq x \leq \pi$.
By making use of the appropriate results above show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

and

$$
\left(1+\frac{1}{3^{3}}\right)-\left(\frac{1}{5^{3}}+\frac{1}{7^{3}}\right)+\left(\frac{1}{9^{3}}+\frac{1}{11^{3}}\right)-\left(\frac{1}{13^{3}}+\frac{1}{15^{3}}\right)+\cdots=\frac{3 \pi^{3} \sqrt{2}}{128}
$$

8. Show that

$$
\begin{aligned}
x \sin (x)=1- & \frac{1}{2} \cos (x) \\
& -2\left(\frac{\cos (2 x)}{2^{2}-1}-\frac{\cos (3 x)}{3^{2}-1}+\cdots+\frac{(-1)^{n} \cos (n x)}{n^{2}-1}+\cdots\right)
\end{aligned}
$$

which is valid for $|x| \leq \pi$.
By using the above result, or otherwise, show that

$$
\begin{aligned}
x \cos (x)=-\frac{1}{2} & \sin (x) \\
& +2\left(\frac{2 \sin (2 x)}{2^{2}-1}-\frac{3 \sin (3 x)}{3^{2}-1}+\cdots+\frac{(-1)^{n} n \sin (n x)}{n^{2}-1}+\cdots\right)
\end{aligned}
$$

which is valid for $|x|<\pi$.
9. Obtain the half range cosine series valid on $(0, \pi)$ for the function

$$
f(x)=\frac{x^{2}-2 \pi x+2 \pi^{2} / 3}{4} .
$$

Hence give the function whose Fourier series on $(-\pi, \pi)$ is

$$
\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}
$$

