Exercises related to chapters 4: Finite differences and the 2-pt BVP

1. This question was in the May 2019 MA2815 exam.

Let $u(x)$ denote an infinitely continuously differentiable function on an interval containing $[0,3 h]$, where $h>0$ is small for all the Taylor expansions that you use to be valid. By using appropriate Taylor expansions determine constants b_{1}, b_{2}, b_{3}, c_{1}, c_{2} and c_{3} in the following.

$$
\begin{aligned}
\frac{u(h)-u(0)}{h} & =b_{1} u^{\prime}(0)+b_{2} h u^{\prime \prime}(0)+b_{3} h^{2} u^{\prime \prime \prime}(0)+\cdots \\
\frac{-u(3 h)+9 u(h)-8 u(0)}{6 h} & =c_{1} u^{\prime}(0)+c_{2} h u^{\prime \prime}(0)+c_{3} h^{2} u^{\prime \prime \prime}(0)+\cdots
\end{aligned}
$$

2. This question was in the May 2018 MA2815 exam.

Let $h>0$ be small and let $u(x)$ denote an infinitely differentiable continuous function defined on an interval which contains $[-2 h, 2 h]$ and assume that the Maclaurin expansion of $u(x)$ converges in this domain. Show that

$$
u(h)-u(-h)=2 h u^{\prime}(0)+\frac{h^{3}}{3} u^{\prime \prime \prime}(0)+\frac{h^{5}}{60} u^{(5)}(0)+\mathcal{O}\left(h^{7}\right)
$$

and determine c_{1}, c_{3}, c_{5} in the following expressions.

$$
\begin{aligned}
-u(2 h)+8 u(h)-8 u(-h)+u(-2 h)=c_{1} h u^{\prime}(0) & +c_{3} h^{3} u^{\prime \prime \prime}(0)+ \\
& +c_{5} h^{5} u^{(5)}(0)+\mathcal{O}\left(h^{7}\right) .
\end{aligned}
$$

3. This question was in the May 2015 MA2815 exam.

Let $u(x)$ denote a 4 times continuously differentiable function on an interval containing $[0,2 h]$ where $h>0$. The left hand sides in the following are finite difference approximations to $u^{\prime}(0)$ using $u(2 h), u(h / 2)$ and $u(0)$. Assuming that h is small determine the constants b_{2}, b_{3}, c_{2} and c_{3} in these expressions.

$$
\begin{aligned}
\frac{2(u(h / 2)-u(0))}{h} & =u^{\prime}(0)+b_{2} h u^{\prime \prime}(0)+b_{3} h^{2} u^{\prime \prime \prime}(0)+\mathcal{O}\left(h^{3}\right) \\
\frac{-u(2 h)+16 u(h / 2)-15 u(0)}{6 h} & =u^{\prime}(0)+c_{2} h u^{\prime \prime}(0)+c_{3} h^{2} u^{\prime \prime \prime}(0)+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

4. This question was in the May 2016 MA2815 exam.

Let $u(x)$ denote a 4 times continuously differentiable function on an interval containing $[0,2 h]$ where $h>0$. The left hand side in the following are finite difference approximations to $u^{\prime}(0)$ using $u(2 h), u(h)$ and $u(0)$. Assuming that h is small determine the constants b_{2}, b_{3}, c_{2} and c_{3} in the following expressions:

$$
\begin{aligned}
\frac{u(h)-u(0))}{h} & =u^{\prime}(0)+b_{2} h u^{\prime \prime}(0)+b_{3} h^{2} u^{\prime \prime \prime}(0)+\mathcal{O}\left(h^{3}\right), \\
\frac{-u(2 h)+4 u(h)-3 u(0)}{2 h} & =u^{\prime}(0)+c_{2} h u^{\prime \prime}(0)+c_{3} h^{2} u^{\prime \prime \prime}(0)+\mathcal{O}\left(h^{3}\right) .
\end{aligned}
$$

5. This question was in the May 2017 MA2815 exam.

Let $u(x)$ denote a four times continuously differentiable function on an interval containing $-h, 0$ and $2 h$ where $h>0$ is small for all the Taylor expansions that you use to be valid. By using appropriate Taylor expansions determine constants c_{1}, c_{2} and c_{3} in the following.

$$
2 u(-h)-3 u(0)+u(2 h)=c_{1} h u^{\prime}(0)+c_{2} h^{2} u^{\prime \prime}(0)+c_{3} h^{3} u^{\prime \prime \prime}(0)+\cdots
$$

By using this relation, or otherwise, give a suitable finite difference approximation for $u^{\prime \prime}(0)$ using the values $u(-h), u(0)$ and $u(2 h)$.
6. The following is about the local truncation error with Numerov's method wheich is one of the schemes in the MA2895 assignment.
Consider the following two-point boundary value problem

$$
u^{\prime \prime}(x)=q(x) u(x)+r(x), \quad a<x<b, \quad u(a)=g_{1}, \quad u(b)=g_{2},
$$

where $q(x)$ and $r(x)$ are functions defined in $[a, b], q(x) \geq 0$ on $[a, b]$ and these functions are such that $u(x)$ is at least 6 -times continuously differentiable.
Given an integer $N>1$, let $h=(b-a) / N$ and let

$$
x_{i}=a+i h, \quad i=0,1, \ldots, N
$$

denote mesh point in a uniform mesh. Further let $u_{i}=u\left(x_{i}\right), q_{i}=q\left(x_{i}\right)$ and $r_{i}=r\left(x_{i}\right)$ for $i=0,1, \ldots, N$ and define

$$
L_{i}=\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}-\frac{\left(q_{i-1} u_{i-1}+r_{i-1}\right)+10\left(q_{i} u_{i}+r_{i}\right)+\left(q_{i+1} u_{i+1}+r_{i+1}\right)}{12} .
$$

Given that u satisfies the differential equation show that

$$
L_{i}=\mathcal{O}\left(h^{4}\right)
$$

7. As in the previous question let $a=x_{0}<x_{1}<\cdots<x_{N}=b$ be points in a uniform mesh with mesh spacing $h=(b-a) / N$ and let $u_{i}=u\left(x_{i}\right)$ for $i=0,1, \ldots, N$. Also assume that $u(x)$ has as many continuous derivatives as is needed in Taylor series expansions. Let $2 \leq i \leq N-2$. By considering the expansions about x_{i} of $u_{i+2}-2 u_{i}+u_{i-2}$ and $u_{i+1}-2 u_{i}+u_{i-1}$ show that we have a representation of the form

$$
\frac{-u_{i+2}+16 u_{i+1}-30 u_{i}+16 u_{i-1}-u_{i-2}}{12 h^{2}}=u^{\prime \prime}\left(x_{i}\right)+\operatorname{ch}^{4} u^{(6)}\left(x_{i}\right)+\mathcal{O}\left(h^{6}\right)
$$

and give the constant c.
8. In the lectures the 3-point central difference approximation to the second derivative is given involving equally spaced points. This question involves a 3 -point approximation using points which are not equally spaced. Let $h_{1}>0$ and $h_{2}>0$ be sufficiently small that the Taylor expansions of a function $u(x)$ about $x=a$ are valid. Show that

$$
\begin{aligned}
& \frac{2 u\left(a+h_{1}\right)}{h_{1}\left(h_{1}+h_{2}\right)}-\frac{2 u(a)}{h_{1} h_{2}}+\frac{2 u\left(a-h_{2}\right)}{h_{2}\left(h_{1}+h_{2}\right)} \\
& \quad=u^{\prime \prime}(a)+\left(h_{1}-h_{2}\right) \frac{u^{\prime \prime \prime}(a)}{3}+\left(\frac{h_{1}^{3}+h_{2}^{3}}{h_{1}+h_{2}}\right) \frac{u^{\prime \prime \prime \prime}(a)}{12}+\cdots .
\end{aligned}
$$

