Exercises related to chapter 3: $\underline{u}^{\prime}=A \underline{u}, \underline{u}(0)=\underline{u}_{0}$.

1. This was in the May 2019 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=$ $u_{i}(x)$. Find the solution of the following system of ordinary differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
5 & -2 \\
3 & -2
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=-1, \quad u_{2}(0)=7 .
$$

Suppose the 2×2 matrix above is replaced by

$$
\left(\begin{array}{cc}
-2 & \alpha \\
\alpha & -2
\end{array}\right)
$$

where $\alpha \geq 0$. For what values of α will the solution $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$ for all starting vectors $\underline{u}(0)$?
2. This was in the May 2018 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=$ $u_{i}(x)$. Find the solution of the following system of ordinary differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=6, \quad u_{2}(0)=-8
$$

3. This was in the May 2017 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=$ $u_{i}(x)$. Find the solution of the following system of ordinary differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
3 & 7 \\
5 & 5
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=14, \quad u_{2}(0)=-10
$$

4. This was in the May 2016 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=u_{i}(x)$. Find the solution of the following system of ordinary differential equations with the given initial conditions:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-8 & 3 \\
-18 & 7
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=6, \quad u_{2}(0)=-7 .
$$

Suppose that the same ordinary differential equations are considered with the initial conditions replaced by $u_{1}(0)=\alpha$ and $u_{2}(0)=-7$. Determine the value of α such that the solution $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$.
5. This was in the May 2015 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=u_{i}(x)$. Find the solution of the following system of ordinary differential equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-17 & 4 \\
-6 & -3
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=10, \quad u_{2}(0)=15
$$

6. This was in the May 2014 MA2815 exam paper

In the following $\underline{u}=\left(u_{i}\right)$ is a column vector of length 2 with each component $u_{i}=u_{i}(x)$. Find the solution of the following system of ordinary differential equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
2 & 3 \\
4 & -2
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=7, \quad u_{2}(0)=2 .
$$

7. Consider the following system of differential equations.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{u_{1}}{u_{2}}=\left(\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right)\binom{u_{1}}{u_{2}}, \quad u_{1}(0)=0, \quad u_{2}(0)=2 .
$$

Show that the solution is $u_{1}(x)=2 \mathrm{e}^{-x} \sin (2 x), u_{2}(x)=2 \mathrm{e}^{-x} \cos (2 x)$.
8. Let A denote a $n \times n$ matrix with linearly independent eigenvectors $\underline{v}_{1}, \ldots, \underline{v}_{n}$ with $A \underline{v}_{i}=\lambda_{i} \underline{v}_{i}$, let $V=\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$ and let $D=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. Explain why the expression for the exponential matrix

$$
\exp (x A)=V \exp (x D) V^{-1}
$$

is unchanged if V is replaced by the matrix

$$
\widetilde{V}=\left(\alpha_{1} \underline{v}_{1}, \ldots, \alpha_{n} \underline{v}_{n}\right)
$$

for all non-zero values of $\alpha_{1}, \ldots, \alpha_{n}$.
9. Let the matrix A be as in question 8 and let $\underline{u}=\underline{u}(x)$ denote the solution to the system

$$
\underline{u}^{\prime}=A \underline{u}, \quad \underline{u}(0)=\underline{u}_{0} .
$$

What properties must A have to ensure that $\underline{u}(x) \rightarrow \underline{0}$ as $x \rightarrow \infty$ for all initial values \underline{u}_{0} ?

