Exercises related to chapter 2: Gauss elimination, $L U$ factorizations ...

1. Suppose that we have the following factorization of a matrix A.

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

Use this factorization, or otherwise, to determine the 4th and 3rd columns of A^{-1}. Give $\operatorname{det}(A)$.

Solution

The 4th column of A^{-1} is described by $\underline{x}=A^{-1} \underline{e}_{4}$ where, as usual, \underline{e}_{4} denotes the 4th column of the 4×4 identity matrix. Hence \underline{x} is the solution to the linear system

$$
A \underline{x}=\underline{e}_{4} .
$$

As we have a factorization $A=L U$ we have

$$
A \underline{x}=L(U \underline{x})=\underline{e}_{4} .
$$

The method to obtain \underline{x} is to first solve $L \underline{y}=\underline{e}_{4}$ by forward substitution and then to solve $U \underline{x}=\underline{y}$ by backward substitution.
Solving $L y=\underline{e}_{4}$ immediately gives $y=\underline{e}_{4}$. (The inverse of a unit lower triangular matrix is also unit lower triangular and thus the last column of L and L^{-1} is always the last base vector.)
Solving $U \underline{x}=\underline{y}=\underline{e}_{4}$ involves the following.

$$
\begin{aligned}
4 x_{4} & =1, \quad x_{4}=1 / 4 \\
3 x_{3} & =-3 x_{4}, \quad x_{3}=-1 / 4 \\
2 x_{2} & =-2 x_{3}, \quad x_{2}=+1 / 4 \\
x_{1} & =-x_{2}, \quad x_{1}=-1 / 4
\end{aligned}
$$

Let now \underline{x} denote the 3 rd column of A^{-1}, i.e.

$$
\underline{x}=A^{-1} \underline{e}_{3}, \quad \text { which we re-write as } \quad A \underline{x}=L(U \underline{x})=\underline{e}_{3} .
$$

As earlier the technique is to solve $L \underline{y}=\underline{e}_{3}$ by forward substitution and then to solve $U \underline{x}=\underline{y}$ by backward substitution.
To solve $L \underline{y}=\underline{e}_{3}$ we immediately have $y_{1}=y_{2}=0, y_{3}=1$. Using the last row of L then gives $y_{4}=1$. For the system involving U we have the following.

$$
\begin{aligned}
4 x_{4} & =1, \quad x_{4}=1 / 4 . \\
3 x_{3} & =1-3 x_{4}=1 / 4, \quad x_{3}=1 / 12 \\
2 x_{2} & =-2 x_{3}, \quad x_{2}=-1 / 12 \\
x_{1} & =-x_{2}, \quad x_{1}=1 / 12
\end{aligned}
$$

From the properties of determinants we have

$$
\operatorname{det}(A)=\operatorname{det}(L) \operatorname{det}(U)=\operatorname{det}(U)=24
$$

2. This question was in the May 2019 MA2815 exam paper.

Let

$$
L=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right)
$$

Determine the first column of the inverse L^{-1} using the forward substitution technique.

Solution

Let \underline{e}_{1} denote the first base vector and let \underline{x} denote the first column of L^{-1} which is described by

$$
\begin{gathered}
\underline{x}=L^{-1} \underline{e}_{1} \text {, i.e. } L \underline{x}=\underline{e}_{1} . \\
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) .
\end{gathered}
$$

By forward substitution we have

$$
\begin{aligned}
& x_{1}=1 \\
& 2+x_{2}=0, \quad \text { gives } x_{2}=-2 \\
& 3(-2)+x_{3}=0, \quad \text { gives } x_{3}=6 \\
& 4(6)+x_{4}=0, \quad \text { gives } x_{4}=-24
\end{aligned}
$$

3. This question was in the May 2019 MA2815 exam paper.

Consider the following 3×3 matrices.

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 3 \\
4 & 1 & -1 \\
8 & 5 & 7
\end{array}\right), \quad B=\left(\begin{array}{ccc}
3 & 2 & 1 \\
-3 & -1 & -3 \\
-3 & -3 & 1
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ccc}
3 & 1 & -4 \\
9 & 3 & 0 \\
2 & 0 & -2
\end{array}\right)
$$

In each case either determine the $L U$ factorization involving a unit lower triangular matrix L and an upper triangular matrix U or indicate that no such factorization exists. If a factorization does not exist then you need to give a reason. For each matrix which has an $L U$ factorization give the determinant.

Solution

We use basic Gauss elimination to get the $L U$ factorization.

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 3 \\
4 & 1 & -1 \\
8 & 5 & 7
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-2 & 1 & 3 \\
0 & 3 & 5 \\
0 & 9 & 19
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-2 & 1 & 3 \\
0 & 3 & 5 \\
0 & 0 & 4
\end{array}\right)=U
$$

The vector of multipliers are

$$
\underline{m}_{1}=\left(\begin{array}{c}
0 \\
-2 \\
-4
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) \quad \text { giving } L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right) .
$$

$\operatorname{det}(A)=\operatorname{det}(U)=-24$.

$$
B=\left(\begin{array}{ccc}
3 & 2 & 1 \\
-3 & -1 & -3 \\
-3 & -3 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
3 & 2 & 1 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
3 & 2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)=U .
$$

The vector of multipliers are

$$
\underline{m}_{1}=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \quad \text { giving } L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right) .
$$

$\operatorname{det}(A)=\operatorname{det}(U)=0$.

$$
C=\left(\begin{array}{ccc}
3 & 1 & -4 \\
9 & 3 & 0 \\
2 & 0 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
3 & 1 & -4 \\
0 & 0 & 12 \\
0 & -2 / 3 & 2 / 3
\end{array}\right)
$$

Basic Gauss elimination cannot continue as the 2,2 entry is 0 . The 2×2 principal submatrix is singular. The matrix C does not have a $L U$ factorization.
4. This question was in the May 2018 MA2815 exam paper. Let

$$
A_{1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 4
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
-1 & -2 & 4 \\
1 & 1 & -1 \\
1 & 1 & -2
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & -2 & 4 \\
1 & 1 & -2
\end{array}\right)
$$

The matrices differ in the order of the rows. For each matrix either obtain the $L U$ factorization, where L is a unit lower triangular matrix and U is an upper triangular matrix, or explain why the matrix does not have a $L U$ factorization.

Solution

To have a $L U$ factorization every principal sub-matrix needs to be non-singular. A_{1} does not have a $L U$ factorization as the 2×2 principal sub-matrix is singular.
When a $L U$ factorization exists we can obtain it by using basic Gauss elimination.

$$
A_{2}=\left(\begin{array}{ccc}
-1 & -2 & 4 \\
1 & 1 & -1 \\
1 & 1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-1 & -2 & 4 \\
0 & -1 & 3 \\
0 & -1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
-1 & -2 & 4 \\
0 & -1 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

with the multipliers being

$$
\begin{aligned}
& \underline{m}_{1}=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) . \\
& A_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & -2 & 4 \\
0 & -1 & 3 \\
0 & 0 & -1
\end{array}\right) . \\
& A_{3}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & -2 & 4 \\
1 & 1 & -2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 3 \\
0 & 0 & -1
\end{array}\right), \quad \text { with multipliers } \underline{m}_{1}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) . \\
& A_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 3 \\
0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

5. This question was in the May 2017 MA2815 exam paper. Let

$$
A=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-3 & 3 & -1 \\
-3 & -1 & 6
\end{array}\right)
$$

Determine the unit lower triangular matrix L and the upper triangular matrix U such that $A=L U$. Using this factorization find the second column of A^{-1}.

Solution

Basic Gauss elimination gives the $L U$ factorization. The sequence of matrices is as follows.

$$
\left(\begin{array}{ccc}
3 & -1 & -1 \\
-3 & 3 & -1 \\
-3 & -1 & 6
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -2 \\
0 & -2 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -2 \\
0 & 0 & 3
\end{array}\right)=U
$$

with the multipliers being

$$
\underline{m}_{1}=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right) \quad \text { so that } L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right) .
$$

The second column of the inverse is $\underline{x}=A^{-1} \underline{e}_{2}$ so that $A \underline{x}=L U \underline{x}=\underline{e}_{2}$. Let $\underline{y}=U \underline{x}$. We solve $L \underline{y}=\underline{e}_{2}$ by forward substitution followed by $U \underline{x}=\underline{y}$ by backward substitution.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \text { gives } y_{1}=0, y_{2}=1, y_{3}=1 . \\
& \left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -2 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

gives

$$
x_{3}=1 / 3, \quad x_{2}=(1+2 / 3) / 2=5 / 6, \quad x_{1}=\left(x_{2}+x_{3}\right) / 3=7 / 18 .
$$

6. This question was in the May 2016 MA2815 exam paper.

Consider the following three 3×3 matrices which differ in the order of the rows.

$$
A_{1}=\left(\begin{array}{lll}
1 & 2 & 4 \\
3 & 6 & 1 \\
0 & 1 & 2
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 4 \\
3 & 6 & 1
\end{array}\right) \quad \text { and } \quad A_{3}=\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 2 \\
3 & 6 & 1
\end{array}\right) .
$$

Determine which of these matrices has a $L U$ factorization where L denotes a unit lower triangular matrix and U denotes an upper triangular matrix. If a matrix does not have a factorization then you must give a reason. If a matrix does have a factorization then you need to determine L and U.
Give the absolute value of the determinant of A_{2}, i.e. give $\left|\operatorname{det}\left(A_{2}\right)\right|$.

Solution

An $n \times n$ matrix has a $L U$ factorization if and only if the principal submatries of order up to $n-1$ are non-singular.

The 2×2 principal sub-matrix of A_{1} has determinant of 0 and hence A_{1} does not have a $L U$ factorization.

The 1,1 entry of A_{2} is 0 and hence A_{2} does not have a $L U$ factorization.
We can attempt to get the $L U$ factorization of A_{3} by using basic Gauss elimination. The sequence of matrices are as follows.

$$
\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 2 \\
3 & 6 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 2 \\
0 & 0 & -11
\end{array}\right)
$$

with the vector of multipliers being

$$
\underline{m}_{1}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)
$$

The matrix after one step is already in upper triangular form and thus

$$
L=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 2 \\
0 & 0 & -11
\end{array}\right)
$$

Swapping rows changes the sign of a determinant but not the magnitude and thus the magnitude of the determinant all 3 matrices is the same. Thus by properties of determinants

$$
\left|\operatorname{det}\left(A_{2}\right)\right|=\left|\operatorname{det}\left(A_{3}\right)\right|=|\operatorname{det}(U)|=11 .
$$

7. This question was in the May 2015 MA2815 exam paper.

Suppose that we have the following factorization of a matrix A.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Use this factorization to find the third column of A^{-1}.

Solution

The 3rd column of A^{-1} is

$$
\underline{x}=A^{-1} \underline{e}_{3}, \quad \text { i.e. } A \underline{x}=\underline{e}_{3}
$$

where \underline{e}_{3} is the usual base vector. As $A=L U$ we can solve $L \underline{y}=\underline{e}_{3}$ followed by $U \underline{x}=\underline{y}$.

$$
\begin{gathered}
L \underline{y}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { gives } \underline{y}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) . \\
U \underline{x}=\left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
\end{gathered}
$$

This gives

$$
\begin{aligned}
x_{3} & =1 \\
2 x_{2} & =x_{3}, \quad x_{2}=1 / 2 \\
3 x_{1} & =x_{2}+x_{3}=3 / 2, \quad x_{1}=1 / 2
\end{aligned}
$$

8. Solve the following linear systems $A \underline{x}=\underline{b}$ and determine a factorization of the form $P A=L U$ where P is a permutation matrix, L is unit lower triangular matrix and U is an upper triangular matrix. In your answer you need to state the matrix $P A$ as well as L and U.
(i) $A=\left(\begin{array}{ccc}0 & 3 & 1 \\ -2 & 1 & -1 \\ 1 & 10 & 3\end{array}\right), \underline{b}=\left(\begin{array}{c}-4 \\ -8 \\ -12\end{array}\right)$,
(ii) $\quad A=\left(\begin{array}{ccc}0 & -2 & 1 \\ 1 & 1 & 2 \\ 2 & -4 & -7\end{array}\right), \underline{b}=\left(\begin{array}{c}-5 \\ 1 \\ 1\end{array}\right)$.

Solution

(a) Basic Gauss elimination does not work here as the 1,1 entry is 0 and to proceed with Gauss elimination we need to swap row 1 with one of the other rows. For the ease of the hand calculations we swap with row 3 and we do the workings with the right hand side vector from the start. The Gauss elimination is then as follows.

$$
\left(\begin{array}{cccc}
1 & 10 & 3 & -12 \\
-2 & 1 & -1 & -8 \\
0 & 3 & 1 & -4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 10 & 3 & -12 \\
0 & 21 & 5 & -32 \\
0 & 3 & 1 & -4
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 10 & 3 & -12 \\
0 & 21 & 5 & -32 \\
0 & 0 & 2 / 7 & 4 / 7
\end{array}\right)
$$

The multipliers in these steps give the vectors

$$
\underline{m}_{1}=\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{c}
0 \\
0 \\
1 / 7
\end{array}\right) .
$$

To get \underline{x} we use backward substitution to give

$$
\begin{aligned}
x_{3} & =2 \\
21 x_{2} & =-32-5 x_{3}=-42, \quad x_{2}=-2 \\
x_{1} & =-12-10 x_{2}-3 x_{3}=-12+20-6=2
\end{aligned}
$$

For the factorization

$$
P A=\left(\begin{array}{ccc}
1 & 10 & 3 \\
-2 & 1 & -1 \\
0 & 3 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 1 / 7 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 10 & 3 \\
0 & 21 & 5 \\
0 & 0 & 2 / 7
\end{array}\right)=L U
$$

(b) Basic Gauss elimination does not work here as the 1,1 entry is 0 and to proceed with Gauss elimination we need to swap row 1 with one of the other rows. For the ease of the hand calculations we swap with row 2 and we do the workings with the right hand side vector from the start. The Gauss elimination is then as follows.

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -2 & 1 & -5 \\
2 & -4 & -7 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -2 & 1 & -5 \\
0 & -6 & -11 & -1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -2 & 1 & -5 \\
0 & 0 & -14 & 14
\end{array}\right)
$$

The multipliers in these steps give the vectors

$$
\underline{m}_{1}=\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right), \quad \underline{m}_{2}=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) .
$$

To get \underline{x} we use backward substitution to give

$$
\begin{aligned}
-14 x_{3} & =14, \quad x_{3}=-1 \\
-2 x_{2} & =-5-x_{3}=-4, \quad x_{2}=2 \\
x_{1} & =1-x_{2}-2 x_{3}=1
\end{aligned}
$$

For the factorization

$$
P A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & -2 & 1 \\
2 & -4 & -7
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & -2 & 1 \\
0 & 0 & -14
\end{array}\right)=L U .
$$

9. (The following result is just stated in the notes.) Let

$$
M_{k}=I-\underline{m}_{k} \underline{e}_{k}^{T}, \quad \text { where } \underline{m}_{k}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
m_{k+1, k} \\
\vdots \\
m_{n k}
\end{array}\right)
$$

which is a Gauss transformation matrix of size $n \times n$. Prove by induction that

$$
M_{1}^{-1} \cdots M_{r}^{-1}=I+\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{e}_{r}^{T}, \quad r=1, \ldots, n-1 .
$$

Solution

Before the induction proof is started we note the identity

$$
\left(I-\underline{m}_{k} \underline{e}_{k}^{T}\right)\left(I+\underline{m}_{k} \underline{e}_{k}^{T}\right)=I-\underline{m}_{k}\left(\underline{e}_{k}^{T} \underline{m}_{k}\right) \underline{e}_{k}^{T}=I
$$

because the $\underline{e}_{k}^{T} \underline{m}_{k}$ is the k th entry of \underline{m}_{k} and this is 0 . Thus

$$
M_{k}^{-1}=I+\underline{m}_{k} \underline{e}_{k}^{T} .
$$

The base case in the induction proof is when the number of terms in the product is just one and as indicated above $M_{1}=I+\underline{m}_{1} \underline{e}_{1}^{T}$. Thus the result is true in the base case.
The induction hypothesis is that we suppose that

$$
M_{1}^{-1} \cdots M_{r}^{-1}=I+\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{e}_{r}^{T}
$$

for some $1 \leq r \leq n-2$.
To complete the proof we need to show that the result is true when we have $k=r+1$ terms. We write the product of this number of terms as

$$
\left(M_{1}^{-1} \cdots M_{r}^{-1}\right) M_{r+1}^{-1}=\left(I+\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{e}_{r}^{T}\right)\left(I+\underline{m}_{r+1} \underline{e}_{r+1}^{T}\right),
$$

where we have used the induction hypothesis to replace the first part and the expression for M_{r+1}^{-1} for the last part.

$$
M_{1}^{-1} \cdots M_{r+1}^{-1}=\left(I+\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{\underline{r}}_{r}^{T}\right)+\left(\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{e}_{r}^{T}\right) \underline{m}_{r+1} \underline{e}_{r+1}^{T}
$$

The result follows because the first $r+1$ entries of \underline{m}_{r+1} are zero which implies in particular that

$$
\underline{e}_{1}^{T} \underline{m}_{r+1}=\cdots=\underline{e}_{r}^{T} \underline{m}_{r+1}=0
$$

10. Let

$$
L=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)
$$

i.e. L is a unit lower triangular matrix with each entry below the diagonal being equal to -1 . Determine the first column of L^{-1}. If you can spot the pattern in the answer to the previous part then give L^{-1} and further determine $\|L\|_{\infty}$ and $\left\|L^{-1}\right\|_{\infty}$.

Solution

The first column of L^{-1} is $\underline{x}=L^{-1} \underline{e}_{1}$ so that $L \underline{x}=\underline{e}_{1}$ and in full this linear system is as follows.

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Forward substitution starts with $x_{1}=1$. As the right hand side is 0 after the first position we have

$$
x_{i+1}=x_{1}+x_{2}+\cdots+x_{i}, \quad i=1,2,3,4
$$

i.e. each entry is the sum of the previous entries. Hence $x_{2}=1, x_{3}=2, x_{4}=4$ and $x_{5}=8$.
It can be shown that the inverse of a unit lower triangular matrix is also unit lower triangular and hence if now $\underline{x}=L^{-1} \underline{e}_{i}$ we get $x_{i}=1$ and then the entries x_{i+1}, \ldots, x_{n} are $1,2, \ldots 2^{n-i-1}$. The inverse matrix is

$$
L^{-1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
4 & 2 & 1 & 1 & 0 \\
8 & 4 & 2 & 1 & 1
\end{array}\right) .
$$

The ∞-norm is the maximum row sum of absolute values and in the case of both L and L^{-1} the maximum occurs on the last row to give

$$
\|L\|_{\infty}=5, \quad\left\|L^{-1}\right\|_{\infty}=16=2^{4}
$$

This can be generalised to the $n \times n$ case (i.e. with all entries below the diagonal being -1) giving

$$
\|L\|_{\infty}=n, \quad\left\|L^{-1}\right\|_{\infty}=2^{n-1} .
$$

Thus we have an example of a sequence of square matrices of larger and larger size with the condition number growing rapidly but with each matrix having determinant equal to 1 .

