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Exercises related to chapter 2: Gauss elimination, LU

factorizations · · ·
1. Suppose that we have the following factorization of a matrix A.

A =


1 0 0 0
−1 1 0 0
0 1 1 0
0 0 −1 1




1 1 0 0
0 2 2 0
0 0 3 3
0 0 0 4

 .

Use this factorization, or otherwise, to determine the 4th and 3rd columns of A−1.

Give det(A).

Solution

The 4th column of A−1 is described by x = A−1e4 where, as usual, e4 denotes the
4th column of the 4×4 identity matrix. Hence x is the solution to the linear system

Ax = e4.

As we have a factorization A = LU we have

Ax = L(Ux) = e4.

The method to obtain x is to first solve Ly = e4 by forward substitution and then
to solve Ux = y by backward substitution.

Solving Ly = e4 immediately gives y = e4. (The inverse of a unit lower triangular
matrix is also unit lower triangular and thus the last column of L and L−1 is always
the last base vector.)

Solving Ux = y = e4 involves the following.

4x4 = 1, x4 = 1/4.

3x3 = −3x4, x3 = −1/4.

2x2 = −2x3, x2 = +1/4.

x1 = −x2, x1 = −1/4.

Let now x denote the 3rd column of A−1, i.e.

x = A−1e3, which we re-write as Ax = L(Ux) = e3.

As earlier the technique is to solve Ly = e3 by forward substitution and then to
solve Ux = y by backward substitution.

To solve Ly = e3 we immediately have y1 = y2 = 0, y3 = 1. Using the last row of L
then gives y4 = 1. For the system involving U we have the following.

4x4 = 1, x4 = 1/4.

3x3 = 1− 3x4 = 1/4, x3 = 1/12.

2x2 = −2x3, x2 = −1/12.

x1 = −x2, x1 = 1/12.

From the properties of determinants we have

det(A) = det(L) det(U) = det(U) = 24

as the determinant of a triangular matrix is the product of the diagonal entries.
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2. This question was in the May 2019 MA2815 exam paper.

Let

L =


1 0 0 0
2 1 0 0
0 3 1 0
0 0 4 1

 .

Determine the first column of the inverse L−1 using the forward substitution tech-
nique.

Solution

Let e1 denote the first base vector and let x denote the first column of L−1 which is
described by

x = L−1e1, i.e. Lx = e1.


1 0 0 0
2 1 0 0
0 3 1 0
0 0 4 1



x1

x2

x3

x4

 =


1
0
0
0

 .

By forward substitution we have

x1 = 1,

2 + x2 = 0, gives x2 = −2,

3(−2) + x3 = 0, gives x3 = 6,

4(6) + x4 = 0, gives x4 = −24.

3. This question was in the May 2019 MA2815 exam paper.

Consider the following 3× 3 matrices.

A =

−2 1 3
4 1 −1
8 5 7

 , B =

 3 2 1
−3 −1 −3
−3 −3 1

 and C =

3 1 −4
9 3 0
2 0 −2

 .

In each case either determine the LU factorization involving a unit lower triangular
matrix L and an upper triangular matrix U or indicate that no such factorization
exists. If a factorization does not exist then you need to give a reason. For each
matrix which has an LU factorization give the determinant.

Solution

We use basic Gauss elimination to get the LU factorization.

A =

−2 1 3
4 1 −1
8 5 7

→
−2 1 3

0 3 5
0 9 19

→
−2 1 3

0 3 5
0 0 4

 = U

The vector of multipliers are

m1 =

 0
−2
−4

 , m2 =

0
0
3

 giving L =

 1 0 0
−2 1 0
−4 3 1

 .
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det(A) = det(U) = −24.

B =

 3 2 1
−3 −1 −3
−3 −3 1

→
3 2 1

0 1 −2
0 −1 2

→
3 2 1

0 1 −2
0 0 0

 = U.

The vector of multipliers are

m1 =

 0
−1
−1

 , m2 =

 0
0
−1

 giving L =

 1 0 0
−1 1 0
−1 −1 1

 .

det(A) = det(U) = 0.

C =

3 1 −4
9 3 0
2 0 −2

→
3 1 −4

0 0 12
0 −2/3 2/3


Basic Gauss elimination cannot continue as the 2, 2 entry is 0. The 2× 2 principal
submatrix is singular. The matrix C does not have a LU factorization.

4. This question was in the May 2018 MA2815 exam paper. Let

A1 =

 1 1 −1
1 1 −2
−1 −2 4

 , A2 =

−1 −2 4
1 1 −1
1 1 −2

 , A3 =

 1 1 −1
−1 −2 4
1 1 −2

 .

The matrices differ in the order of the rows. For each matrix either obtain the LU
factorization, where L is a unit lower triangular matrix and U is an upper triangular
matrix, or explain why the matrix does not have a LU factorization.

Solution

To have a LU factorization every principal sub-matrix needs to be non-singular. A1

does not have a LU factorization as the 2× 2 principal sub-matrix is singular.

When a LU factorization exists we can obtain it by using basic Gauss elimination.

A2 =

−1 −2 4
1 1 −1
1 1 −2

→
−1 −2 4

0 −1 3
0 −1 2

→
−1 −2 4

0 −1 3
0 0 −1


with the multipliers being

m1 =

 0
−1
−1

 , m2 =

0
0
1

 .

A2 =

 1 0 0
−1 1 0
−1 1 1

−1 −2 4
0 −1 3
0 0 −1

 .

A3 =

 1 1 −1
−1 −2 4
1 1 −2

→
1 1 −1

0 −1 3
0 0 −1

 , with multipliers m1 =

 0
−1
1

 .

A3 =

 1 0 0
−1 1 0
1 0 1

1 1 −1
0 −1 3
0 0 −1

 .
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5. This question was in the May 2017 MA2815 exam paper. Let

A =

 3 −1 −1
−3 3 −1
−3 −1 6

 .

Determine the unit lower triangular matrix L and the upper triangular matrix U
such that A = LU . Using this factorization find the second column of A−1.

Solution

Basic Gauss elimination gives the LU factorization. The sequence of matrices is as
follows.  3 −1 −1

−3 3 −1
−3 −1 6

→
3 −1 −1

0 2 −2
0 −2 5

→
3 −1 −1

0 2 −2
0 0 3

 = U

with the multipliers being

m1 =

 0
−1
−1

 , m2 =

 0
0
−1

 so that L =

 1 0 0
−1 1 0
−1 −1 1

 .

The second column of the inverse is x = A−1e2 so that Ax = LUx = e2. Let
y = Ux. We solve Ly = e2 by forward substitution followed by Ux = y by backward
substitution.  1 0 0

−1 1 0
−1 −1 1

y1
y2
y3

 gives y1 = 0, y2 = 1, y3 = 1.

3 −1 −1
0 2 −2
0 0 3

x1

x2

x3

 =

0
1
1


gives

x3 = 1/3, x2 = (1 + 2/3)/2 = 5/6, x1 = (x2 + x3)/3 = 7/18.

6. This question was in the May 2016 MA2815 exam paper.

Consider the following three 3× 3 matrices which differ in the order of the rows.

A1 =

1 2 4
3 6 1
0 1 2

 , A2 =

0 1 2
1 2 4
3 6 1

 and A3 =

1 2 4
0 1 2
3 6 1

 .

Determine which of these matrices has a LU factorization where L denotes a unit
lower triangular matrix and U denotes an upper triangular matrix. If a matrix
does not have a factorization then you must give a reason. If a matrix does have a
factorization then you need to determine L and U .

Give the absolute value of the determinant of A2, i.e. give | det(A2)|.
Solution

An n × n matrix has a LU factorization if and only if the principal submatries of
order up to n− 1 are non-singular.
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The 2 × 2 principal sub-matrix of A1 has determinant of 0 and hence A1 does not
have a LU factorization.

The 1, 1 entry of A2 is 0 and hence A2 does not have a LU factorization.

We can attempt to get the LU factorization of A3 by using basic Gauss elimination.
The sequence of matrices are as follows.1 2 4

0 1 2
3 6 1

→
1 2 4

0 1 2
0 0 −11


with the vector of multipliers being

m1 =

0
0
3

 .

The matrix after one step is already in upper triangular form and thus

L =

1 0 0
0 1 0
3 0 1

 and U =

1 2 4
0 1 2
0 0 −11

 .

Swapping rows changes the sign of a determinant but not the magnitude and thus
the magnitude of the determinant all 3 matrices is the same. Thus by properties of
determinants

| det(A2)| = | det(A3)| = | det(U)| = 11.

7. This question was in the May 2015 MA2815 exam paper.

Suppose that we have the following factorization of a matrix A.

A =

1 0 0
1 1 0
1 1 1

3 −1 −1
0 2 −1
0 0 1


Use this factorization to find the third column of A−1.

Solution

The 3rd column of A−1 is

x = A−1e3, i.e. Ax = e3

where e3 is the usual base vector. As A = LU we can solve Ly = e3 followed by
Ux = y.

Ly =

0
0
1

 gives y =

0
0
1

 .

Ux =

3 −1 −1
0 2 −1
0 0 1

x1

x2

x3

 =

0
0
1

 .



2020:03:21:10:07:23 c© M. K. Warby MA2715 Advanced Calculus and Numerical Methods 6

This gives

x3 = 1,

2x2 = x3, x2 = 1/2,

3x1 = x2 + x3 = 3/2, x1 = 1/2.

8. Solve the following linear systems Ax = b and determine a factorization of the form
PA = LU where P is a permutation matrix, L is unit lower triangular matrix and
U is an upper triangular matrix. In your answer you need to state the matrix PA
as well as L and U .

(i) A =

 0 3 1
−2 1 −1
1 10 3

 , b =

 −4
−8
−12

 , (ii) A =

0 −2 1
1 1 2
2 −4 −7

 , b =

−5
1
1

 .

Solution

(a) Basic Gauss elimination does not work here as the 1, 1 entry is 0 and to proceed
with Gauss elimination we need to swap row 1 with one of the other rows. For
the ease of the hand calculations we swap with row 3 and we do the workings
with the right hand side vector from the start. The Gauss elimination is then
as follows. 1 10 3 −12

−2 1 −1 −8
0 3 1 −4

→
1 10 3 −12

0 21 5 −32
0 3 1 −4

→
1 10 3 −12

0 21 5 −32
0 0 2/7 4/7

 .

The multipliers in these steps give the vectors

m1 =

 0
−2
0

 , m2 =

 0
0

1/7

 .

To get x we use backward substitution to give

x3 = 2.

21x2 = −32− 5x3 = −42, x2 = −2.

x1 = −12− 10x2 − 3x3 = −12 + 20− 6 = 2.

For the factorization

PA =

 1 10 3
−2 1 −1
0 3 1

 =

 1 0 0
−2 1 0
0 1/7 1

1 10 3
0 21 5
0 0 2/7

 = LU.

(b) Basic Gauss elimination does not work here as the 1, 1 entry is 0 and to proceed
with Gauss elimination we need to swap row 1 with one of the other rows. For
the ease of the hand calculations we swap with row 2 and we do the workings
with the right hand side vector from the start. The Gauss elimination is then
as follows.1 1 2 1

0 −2 1 −5
2 −4 −7 1

→
1 1 2 1

0 −2 1 −5
0 −6 −11 −1

→
1 1 2 1

0 −2 1 −5
0 0 −14 14

 .
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The multipliers in these steps give the vectors

m1 =

0
0
2

 , m2 =

0
0
3

 .

To get x we use backward substitution to give

−14x3 = 14, x3 = −1.

−2x2 = −5− x3 = −4, x2 = 2.

x1 = 1− x2 − 2x3 = 1.

For the factorization

PA =

1 1 2
0 −2 1
2 −4 −7

 =

1 0 0
0 1 0
2 3 1

1 1 2
0 −2 1
0 0 −14

 = LU.

9. (The following result is just stated in the notes.) Let

Mk = I −mke
T
k , where mk =



0
...
0

mk+1,k
...

mnk


which is a Gauss transformation matrix of size n× n. Prove by induction that

M−1
1 · · ·M−1

r = I + m1e
T
1 + · · ·+ mre

T
r , r = 1, . . . , n− 1.

Solution

Before the induction proof is started we note the identity

(I −mke
T
k )(I + mke

T
k ) = I −mk(eTkmk)eTk = I

because the eTkmk is the kth entry of mk and this is 0. Thus

M−1
k = I + mke

T
k .

The base case in the induction proof is when the number of terms in the product is
just one and as indicated above M1 = I +m1e

T
1 . Thus the result is true in the base

case.

The induction hypothesis is that we suppose that

M−1
1 · · ·M−1

r = I + m1e
T
1 + · · ·+ mre

T
r

for some 1 ≤ r ≤ n− 2.

To complete the proof we need to show that the result is true when we have k = r+1
terms. We write the product of this number of terms as

(M−1
1 · · ·M−1

r )M−1
r+1 = (I + m1e

T
1 + · · ·+ mre

T
r )(I + mr+1e

T
r+1),
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where we have used the induction hypothesis to replace the first part and the ex-
pression for M−1

r+1 for the last part.

M−1
1 · · ·M−1

r+1 = (I + m1e
T
1 + · · ·+ mre

T
r ) + (m1e

T
1 + · · ·+ mre

T
r )mr+1e

T
r+1.

The result follows because the first r + 1 entries of mr+1 are zero which implies in
particular that

eT1mr+1 = · · · = eTr mr+1 = 0.

10. Let

L =


1 0 0 0 0
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1

 ,

i.e. L is a unit lower triangular matrix with each entry below the diagonal being
equal to −1. Determine the first column of L−1. If you can spot the pattern in the
answer to the previous part then give L−1 and further determine ‖L‖∞ and ‖L−1‖∞.

Solution

The first column of L−1 is x = L−1e1 so that Lx = e1 and in full this linear system
is as follows. 

1 0 0 0 0
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1



x1

x2

x3

x4

x5

 =


1
0
0
0
0

 .

Forward substitution starts with x1 = 1. As the right hand side is 0 after the first
position we have

xi+1 = x1 + x2 + · · ·+ xi, i = 1, 2, 3, 4

i.e. each entry is the sum of the previous entries. Hence x2 = 1, x3 = 2, x4 = 4 and
x5 = 8.

It can be shown that the inverse of a unit lower triangular matrix is also unit lower
triangular and hence if now x = L−1ei we get xi = 1 and then the entries xi+1, . . . , xn

are 1, 2, . . . 2n−i−1. The inverse matrix is

L−1 =


1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
4 2 1 1 0
8 4 2 1 1

 .

The ∞-norm is the maximum row sum of absolute values and in the case of both L
and L−1 the maximum occurs on the last row to give

‖L‖∞ = 5, ‖L−1‖∞ = 16 = 24.

This can be generalised to the n × n case (i.e. with all entries below the diagonal
being −1) giving

‖L‖∞ = n, ‖L−1‖∞ = 2n−1.

Thus we have an example of a sequence of square matrices of larger and larger size
with the condition number growing rapidly but with each matrix having determinant
equal to 1.


