Exercises related to chapter 2: Gauss elimination, $L U$ factorizations ...

1. Suppose that we have the following factorization of a matrix A.

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 4
\end{array}\right) .
$$

Use this factorization, or otherwise, to determine the 4th and 3rd columns of A^{-1}. Give $\operatorname{det}(A)$.
2. This question was in the May 2019 MA2815 exam paper.

Let

$$
L=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 1
\end{array}\right)
$$

Determine the first column of the inverse L^{-1} using the forward substitution technique.
3. This question was in the May 2019 MA2815 exam paper.

Consider the following 3×3 matrices.

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 3 \\
4 & 1 & -1 \\
8 & 5 & 7
\end{array}\right), \quad B=\left(\begin{array}{ccc}
3 & 2 & 1 \\
-3 & -1 & -3 \\
-3 & -3 & 1
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ccc}
3 & 1 & -4 \\
9 & 3 & 0 \\
2 & 0 & -2
\end{array}\right) .
$$

In each case either determine the $L U$ factorization involving a unit lower triangular matrix L and an upper triangular matrix U or indicate that no such factorization exists. If a factorization does not exist then you need to give a reason. For each matrix which has an $L U$ factorization give the determinant.
4. This question was in the May 2018 MA2815 exam paper. Let

$$
A_{1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -2 \\
-1 & -2 & 4
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
-1 & -2 & 4 \\
1 & 1 & -1 \\
1 & 1 & -2
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
-1 & -2 & 4 \\
1 & 1 & -2
\end{array}\right) .
$$

The matrices differ in the order of the rows. For each matrix either obtain the $L U$ factorization, where L is a unit lower triangular matrix and U is an upper triangular matrix, or explain why the matrix does not have a $L U$ factorization.
5. This question was in the May 2017 MA2815 exam paper. Let

$$
A=\left(\begin{array}{ccc}
3 & -1 & -1 \\
-3 & 3 & -1 \\
-3 & -1 & 6
\end{array}\right)
$$

Determine the unit lower triangular matrix L and the upper triangular matrix U such that $A=L U$. Using this factorization find the second column of A^{-1}.
6. This question was in the May 2016 MA2815 exam paper.

Consider the following three 3×3 matrices which differ in the order of the rows.

$$
A_{1}=\left(\begin{array}{lll}
1 & 2 & 4 \\
3 & 6 & 1 \\
0 & 1 & 2
\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 4 \\
3 & 6 & 1
\end{array}\right) \quad \text { and } \quad A_{3}=\left(\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 2 \\
3 & 6 & 1
\end{array}\right) .
$$

Determine which of these matrices has a $L U$ factorization where L denotes a unit lower triangular matrix and U denotes an upper triangular matrix. If a matrix does not have a factorization then you must give a reason. If a matrix does have a factorization then you need to determine L and U.
Give the absolute value of the determinant of A_{2}, i.e. give $\left|\operatorname{det}\left(A_{2}\right)\right|$.
7. This question was in the May 2015 MA2815 exam paper.

Suppose that we have the following factorization of a matrix A.

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & -1 & -1 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

Use this factorization to find the third column of A^{-1}.
8. Solve the following linear systems $A \underline{x}=\underline{b}$ and determine a factorization of the form $P A=L U$ where P is a permutation matrix, L is unit lower triangular matrix and U is an upper triangular matrix. In your answer you need to state the matrix $P A$ as well as L and U.
(i) $A=\left(\begin{array}{ccc}0 & 3 & 1 \\ -2 & 1 & -1 \\ 1 & 10 & 3\end{array}\right), \underline{b}=\left(\begin{array}{c}-4 \\ -8 \\ -12\end{array}\right)$,
(ii) $\quad A=\left(\begin{array}{ccc}0 & -2 & 1 \\ 1 & 1 & 2 \\ 2 & -4 & -7\end{array}\right), \underline{b}=\left(\begin{array}{c}-5 \\ 1 \\ 1\end{array}\right)$.
9. (The following result is just stated in the notes.) Let

$$
M_{k}=I-\underline{m}_{k} \underline{e}_{k}^{T}, \quad \text { where } \underline{m}_{k}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
m_{k+1, k} \\
\vdots \\
m_{n k}
\end{array}\right)
$$

which is a Gauss transformation matrix of size $n \times n$. Prove by induction that

$$
M_{1}^{-1} \cdots M_{r}^{-1}=I+\underline{m}_{1} \underline{e}_{1}^{T}+\cdots+\underline{m}_{r} \underline{e}_{r}^{T}, \quad r=1, \ldots, n-1 .
$$

10. Let

$$
L=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0 & 0 \\
-1 & -1 & -1 & 1 & 0 \\
-1 & -1 & -1 & -1 & 1
\end{array}\right)
$$

i.e. L is a unit lower triangular matrix with each entry below the diagonal being equal to -1 . Determine the first column of L^{-1}. If you can spot the pattern in the answer to the previous part then give L^{-1} and further determine $\|L\|_{\infty}$ and $\left\|L^{-1}\right\|_{\infty}$.

