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Exercises related to chapter 1: eigenvalues, eigenvec-

tors, matrix norms, plus some revision exercises based

on previous modules

1. Determine the eigenvalues and eigenvectors of the following matrices.(
1 −1
2 4

)
and

(
1 2
2 4

)
.

Solution

Let

A =

(
1 −1
2 4

)
.

The characteristic equation is

det(A−λI) =

∣∣∣∣1− λ −1
2 4− λ

∣∣∣∣ = (1−λ)(4−λ)+2 = λ2−5λ+6 = (λ−2)(λ−3) = 0.

The eigenvalues are λ1 = 2 and λ2 = 3.

For the eigenvector associated with λ1 consider the matrix

A− λ1I = A− 2I =

(
−1 −1
2 2

)
.

By design this is a singular matrix and for a non-trivial solution of (A − 2I)v = 0
we only need to consider one of the equations to get v1 + v2 = 0. Hence for the
eigenvector we can take the vector (

1
−1

)
.

For the eigenvector associated with λ2 consider the matrix

A− λ2I = A− 3I =

(
−2 −1
2 1

)
.

(A− 3I)v = 0 requires that 2v1 + v2 = 0 and we can take(
1
−2

)
as an eigenvector.

Consider now the other 2× 2 matrix which is symmetric and now let

A =

(
1 2
2 4

)
.
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The characteristic equation is

det(A− λI) =

∣∣∣∣1− λ 2
2 4− λ

∣∣∣∣ = (1− λ)(4− λ)− 4 = λ2 − 5λ = λ(λ− 5) = 0.

The eigenvalues are λ1 = 0 and λ2 = 5. For the eigenvector v associated with λ1 = 0
we need v1 + 2v2 = 0 and we can take(

2
−1

)
.

As A is symmetric the eigenvector associated with λ2 = 5 is orthogonal to this
vector and we can take (

1
2

)
.

2. Let

A =

0 1 1
1 0 1
1 1 0

 and let v =

1
1
1

 .

By first computing Av determine all the eigenvalues and eigenvectors of A.

By using your results about the eigenvalues and eigenvectors of matrix A determine
the eigenvalues and eigenvectors of the matrix

B =

4 1 1
1 4 1
1 1 4

 .

Solution

Av =

2
2
2

 = 2v

and hence 2 is an eigenvalue and v is an eigenvector.

As A is a 3×3 matrix the characteristic polynomial is a cubic and the above indicates
that (2 − λ) is a factor. To get the characteristic polynomial we do the following.
Expanding the determinant about row 1 gives

det(A− λI) =

∣∣∣∣∣∣
−λ 1 1
1 −λ 1
1 1 −λ

∣∣∣∣∣∣ = (−λ)

∣∣∣∣−λ 1
1 −λ

∣∣∣∣− ∣∣∣∣1 1
1 −λ

∣∣∣∣+

∣∣∣∣1 −λ
1 1

∣∣∣∣
= (−λ)(λ2 − 1)− (−λ− 1) + (1 + λ)

= −λ3 + λ+ 2(1 + λ) = −λ3 + 3λ+ 2.
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As 2− λ is a factor and by considering the constant term and the coefficient of λ3

we get a factorization of the form

det(A− λI) = −λ3 + 3λ+ 2 = (2− λ)(1 + αλ+ λ2).

The parameter α can be obtained by equating the coefficents of λ2 to give

0 = 2− α, i.e. α = 2.

Thus
det(A− λI) = (2− λ)(1 + 2λ+ λ2) = (2− λ)(1 + λ)2.

The other eigenvalues are −1 and −1 which is a repeated eigenvalue. As we have
a real symmetric matrix there is a complete set of eigenvectors and thus there is
a two-dimensional eigenspace associated with the eigenvalue −1 and all vectors in
this space are orthogonal to the vector v associated with the eigenvalue λ1 = 2. The
question does not ask for orthogonal vectors to be given and hence it is sufficient
here to note that

A− (−1)I =

1 1 1
1 1 1
1 1 1


and two linearly independent eigenvectors are

v2 =

 1
−1
0

 and v3 =

 1
0
−1

 .

If v3 is replaced by

v3 =

 1
1
−2


then v, v2 and v3 are orthogonal to each other.

3. Let

A =

(
α 1
0 α

)
.

Determine all the eigenvalues and eigenvectors of this matrix.

Prove by induction that

An =

(
αn nαn−1

0 αn

)
, n = 1, 2, . . .

Hence or otherwise determine limn→∞A
n when |α| < 1.

Solution
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The eigenvalues of triangular matrices are the diagonal entries and hence α (repeated
twice) is the eigenvalue of A.

A− αI =

(
0 1
0 0

)
and (A− λI)v = 0 implies that v2 = 0. The only eigenvector of A has direction

v =

(
1
0

)
.

If we let n = 1 in the formula (
αn nαn−1

0 αn

)
we get the matrix A and hence the formula is true when n = 1.

The induction hypothesis to use here is to assume that the result is true for n =
m ≥ 1.

Now consider the case n = m+ 1. We do not know that the formula is true yet but
we do know that we can write

Am+1 = AAm

and we can use the hypothesis to replace the Am term. Hence

Am+1 =

(
α 1
0 α

)(
αm mαm−1

0 αm

)
=

(
αm+1 α(mαm−1) + αm

0 αm+1

)
=

(
αm+1 (m+ 1)αm

0 αm+1

)
.

The result is thus true when n = m+ 1 and by induction it it true for n = 1, 2, . . ..

For the limit as n → ∞ we have that the diagonal entries αn → 0 as |α| < 1. For
the 1, 2 entry it is a standard result that

nαn−1 → 0 as n→∞

when |α| < 1. This follows by letting an = nαn−1 and considering the ratios∣∣∣∣an+1

an

∣∣∣∣ = (1 + 1/n) |α| → |α| < 1 as n→∞.

For large n ratios are less than 1 and getting closer and closer to |α| and in particular
the sequence (an) is eventually converging to 0 faster than any sequence (βn) for all
β ∈ (|α|, 1).

All the entries are tending to 0 as n→∞ and hence An → zero matrix as n→∞.
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4. If A is a diagonalisable matrix and the spectral radius ρ(A) is less than 1 then
explain why limn→∞A

n = zero matrix.

The result that An → 0 as n→∞ if and only if the spectral radius is less than 1 is
actually true for all square matrices (i.e. not just diagonalisable matrices) but the
proof in the non-diagonalisable case is longer.

Solution

When A is a m×m diagonalisable matrix there are m linearly independent eigen-
vectors v1, . . . , vm and when we let V = (v1, . . . , vm) we have

AV = V D,

where D = diag {λ1, . . . , λm} with λi being the eigenvalue associated with vi. As
the columns of V are linearly independent the matrix is invertible and we have

A = V DV −1

and
An = V DnV −1, Dn = diag {λn1 , . . . , λnm} .

When ρ(A) < 1 we have |λi| < 1 and λni → 0 as n→∞. Thus Dn →zero matrix as
n→∞ and An →zero matrix as n→∞.

5. Let A be an invertible matrix and let x be such that ‖x‖ = 1. Show that for the
matrix norm induced by the vector norm we have

1

‖A−1‖
≤ ‖Ax‖ ≤ ‖A‖.

[Hint: For the lower bound consider vectors of the form A−1y with ‖y‖ = 1.]

Solution

The upper bound is a consequence of the definition of ‖A‖.
Let x have unit norm and let

y =
Ax

‖Ax‖
which also has unit norm. Thus

A−1y =
x

‖Ax‖
.

The vector x has the same direction as A−1y and as it is a unit vector we can write
is as

x =
A−1y

‖A−1y‖
.

The reason for all this detail here is just to confirm that for all unit vectors x there
is a corresponding unit vector y and for all unit vectors y there is a corresponding
unit vector x. Using this representation

‖Ax‖ =
1

‖A−1y‖
‖AA−1y‖ =

1

‖A−1y‖
‖y‖.
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As ‖y‖ = 1

‖Ax‖ =
1

‖A−1y‖
≥ 1

‖A−1‖

where the last inequality is a consequence of the definition of the norm of A−1.

6. This was a question in the MA2815 paper in May 2019 exam and was worth in
total 5 marks of the 100 marks on the 3 hour exam.

Let x = (xi) denote a real n× 1 column vector. Define ‖x‖∞.

Let A = (aij) be an n× n real matrix. The matrix norm induced by the ∞-vector
norm is given by

‖A‖∞ = max {‖Ax‖∞ : ‖x‖∞ = 1} = max
1≤i≤n

n∑
j=1

|aij|.

In the case of the 3× 3 matrix A given by

A =

−4 3 2
−1 −1 8
1 1 10


determine ‖A‖∞.

Give any vector x with ‖x‖∞ = 1 such that ‖Ax‖∞ = ‖A‖∞ and indicate whether
or not the vector x given is an eigenvector of the matrix A.

Solution

‖x‖∞ = max {|xi| : 1 ≤ i ≤ n} .

The row sums of the absolute values are respectively 9, 10 and 12 and hence ‖A‖∞ =
12.

The largest row sum of absolute values occurs on row 3 and by considering the signs
of the 3 entries we take x = (1, 1, 1)T to give

Ax =

−4 3 2
−1 −1 8
1 1 10

1
1
1

 =

 1
6
12

 .

‖Ax‖∞ = 12 but Ax does not have the same direction as x and hence x is not an
eigenvector.
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7. This was a question in the MA2815 paper in May 2018 exam and was worth in
total 2 marks of the 70 marks on the 3 hour exam.

Let D be the following 3× 3 matrix.

D =

−3 0 0
0 2 0
0 0 −5

 .

If x is a 3 × 1 vector then give the components of Dx and D−1x and give the
∞-matrix norms ‖D‖∞ and ‖D−1‖∞.

Solution

D−1 =

−1/3 0 0
0 1/2 0
0 0 −1/5

 , Dx =

−3x1
2x2
−5x3

 and D−1x =

−x1/3x2/2
−x3/5

 .

‖D‖∞ = 5 and ‖D−1‖∞ = 1/2.

8. This was a question in the MA2815 paper in May 2017 exam and was worth in
total 4 marks of the 70 marks on the 3 hour exam.

Let x = (xi) denote a n× 1 real column vector. Define the 1-norm ‖x‖1.
Let A = (aij) denote a n×n real matrix. The matrix 1-norm induced by the vector
1-norm is given by

‖A‖1 = max {‖Ax‖1 : ‖x‖1 = 1} = max
1≤j≤n

n∑
i=1

|aij|.

Determine ‖A‖1 in the case of the 3× 3 matrix A given by

A =

−4 1 1
2 −5 0
1 3 −4

 .

For this 3× 3 matrix give any vector x with ‖x‖1 = 1 such that ‖Ax‖1 = ‖A‖1.
Solution

The vector 1-norm is
‖x‖1 = |x1|+ · · ·+ |xn|.

The column sums of absolute values are 7, 9 and 5. Hence

‖A‖1 = 9.

If we take the base vector x = e2, i.e. the 2nd column of the identity matrix I, then

Ae2 = 2nd column of A =

 1
−5
3

 .

The 1-norm of this vector is 9.
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9. This was a question in the MA2815 paper in April/May 2015 exam and was worth
in total 5 marks of the 70 marks on the 3 hour exam.

Let x = (xi) denote a real n× 1 column vector. Define ‖x‖∞.

Let A = (aij) be an n× n real matrix. The matrix norm induced by the ∞-vector
norm is given by

‖A‖∞ = max {‖Ax‖∞ : ‖x‖∞ = 1} = max
1≤i≤n

n∑
j=1

|aij|.

In the case of the 3× 3 matrix A given by

A =

2 1 3
1 −5 1
4 1 1


determine ‖A‖∞.

For this matrix give a vector x with ‖x‖∞ = 1 such that ‖Ax‖∞ = ‖A‖∞.

Solution

‖x‖∞ = max {|xi| : 1 ≤ i ≤ n} .

The row sums of absoulte values are 6, 7 and 6. Thus ‖A‖∞ = 7.

The largest row sum of absolute values occurs on the 2nd row.

(Ax)2 = (2nd row of A)

x1x2
x3

 = x1 − 5x2 + x3.

This quantity is ‖A‖∞ = 7 with x1 = 1, x2 = −1 and x3 = 1 and this vector x is
such that ‖x‖∞ = 1.

10. The ∞ vector norm of x ∈ Rn is defined by

‖x‖∞ = max {|xi| : 1 ≤ i ≤ n} .

Let A = (aij) denote a n × n matrix and let x denote a n × 1 real column vector.
Show that if ‖x‖∞ = 1 then

|(Ax)i| ≤
n∑
j=1

|aij|.

Further determine any vector x such that

|(Ax)i| =
n∑
j=1

|aij|.
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Hence prove the result

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| = maximum row sum of absolute values.

Solution

If ‖x‖∞ = 1 then |xi| ≤ 1 and at least one of the components has magnitude 1.
Using this propery and the triangle inequality gives

|(Ax)i| =

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ ≤
n∑
j=1

|aijxj| ≤
n∑
j=1

|aij|.

For

(Ax)i =
n∑
j=1

aijxj =
n∑
j=1

|aij|

we need
aijxj = |aij|, for j = 1, . . . , n.

Thus for x = (xj) we can take

xj =

1, if aij = 0,
|aij|
aij , otherwise.

From the earlier part we have

‖A‖∞ = max {|(Ax)i| : 1 ≤ i ≤ n} ≤ max
1≤i≤n

n∑
j=1

|aij|.

For each row we have shown that we can construct a vector which gives the row sum
of the absolute values. Thus in particular we can do this for any row which gives
the maximum of the row sums and hence there exists a vector x with ‖x‖∞ = 1 and

‖Ax‖∞ = max
1≤i≤n

n∑
j=1

|aij|.

11. Let λ be an eigenvalue of an n× n matrix A and let ‖A‖ denote any matrix norm
induced by a vector norm. Show that

|λ| ≤ ‖A‖.

By using the results ‖A‖1 = ‖AT‖∞ and ‖A‖22 = ρ(ATA) show that

‖A‖22 ≤ ‖A‖1‖A‖∞.
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Solution

A vector v 6= 0 is an eigenvector of A with corresponding eigenvalue λ if Av = λv.
If we take v to have unit norm, i.e. ‖v‖ = 1, then

|λ| = ‖λv‖ = ‖Av‖.

Now for the matrix norm induced by the vector norm we have

‖A‖ = max {‖Ax‖ : ‖x‖ = 1} .

Thus as ‖v‖ = 1 we have

|λ| = ‖λv‖ = ‖Av‖ ≤ ‖A‖.

The above result holds for all the eigenvalues and in the case of using the ∞-norm
we have

‖A‖22 = ρ(ATA) ≤ ‖ATA‖∞.
The multiplicative property of the norm gives

‖ATA‖∞ ≤ ‖AT‖∞‖A‖∞.

The results follows as ‖A‖1 = ‖AT‖∞.

12. When the finite difference method is considered later in the module the explana-
tion of the method will involve Taylor expansions about various points. Based on
what you have done already about Maclaurin expansions determine the Maclaurin
expansions of the following giving all non-zero terms up to the one involving x6 in
your answer.

(a) 2(cosh(x)− 1).

(b) sinh(x).

(c) 32(cosh(x)− 1)− 2(cosh(2x)− 1).

(d) 8 sinh(x)− sinh(2x).

Please note that

cosh(x) =
ex + e−x

2
and sinh(x) =

ex − e−x

2
.

Solution

First note the standard series for ex and e−x which are

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+ · · ·

e−x = 1− x+
x2

2
− x3

6
+
x4

24
− x5

120
+

x6

720
+ · · ·
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Thus

2 cosh(x)− 2 = ex + e−x − 2 = x2 +
x4

12
+

x6

360
+ · · ·

By replacing x by 2x we get

2 cosh(2x)− 2 = (2x)2 +
(2x)4

12
+

(2x)6

360
+ · · ·

By combining the last two expansions we have

32(cosh(x)− 1)− 2(cosh(2x)− 1) = 12x2 − 48

360
x6 + · · · = 12x2 − 2

15
x6 + · · ·

In the case of sinh(x) we have

sinh(x) =
hex − e−x

2
= x+

x3

6
+

x5

120
+ · · ·

By replacing x by 2x we get

sinh(2x) = (2x) +
(2x)3

6
+

(2x)5

120
+ · · ·

By combining the last two expansions we have

8 sinh(x)− sinh(2x) = 6x− 24

120
x5 + · · · = 6x− x5

15
+ · · ·

13. When Fourier series is covered later in the module one of the things that will be
done is to determine Fourier coefficients and in many examples this will involve
integration by parts. As a practice question now show that when n is a non-zero
integer we have the following.∫ π

0

x cos(nx) dx =

{−2
n2 , if n is odd,

0, if n is even.∫ π

0

x sin(nx) dx =
(−1)n+1π

n
.

Solution

In the integration by parts the term in the product that we choose to differentiate
is the one which becomes simpler, i.e. we choose x which differentiates tot 1. Thus
for the integrand involving cos(nx) we have∫ π

0

x cos(nx) dx =

[
x

sin(nx)

n

]π
0

−
∫ π

0

sin(nx)

n
dx

=

[
cos(nx)

n2

]π
0

=
1

n2 ((−1)n − 1).
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When n is even (−1)n = 1 and the integral is 0 and when n is odd (−1)n = −1 and
the integral is −2/n2.

For the integrand involving sin(nx) we have∫ π

0

x sin(nx) dx =

[
x
− cos(nx)

n

]π
0

+

∫ π

0

cos(nx)

n
dx

= −π (−1)n

n
+

1

n2 [sin(nx)]π0 =
(−1)n+1π

n
.


