
The google PageRank algorithm, session 2
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Adjacency matrix.

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 1 0

 .

The out-degrees are the column sums and these are 2, 3, 1 and 1.
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Out-degree and In-degree
Let A be the adjacency matrix in a Matlab program.

All the entries in column j are given by A(:, j).

All the entries in row i are given by A(i, :).

The out-degree of node j is the number of nodes that you can go
to directly from node j . It is the sum of the entries in column j .

In Matlab all the out-degrees are generated by the statement

outdeg=sum(A)

The in-degree of node i is the number of nodes that go to directly
to node i . It is the sum of the entries in row i .

In Matlab all the in-degrees are generated by the statement

indeg=sum(A’)
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The probability matrix C
Adjacency matrix.

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 1 0

 .

The out-degrees are the column sums and these are 2, 3, 1 and 1.
The probability matrix C is

C =


0 1/3 0 1
0 0 0 0

1/2 1/3 0 0
1/2 1/3 1 0


The entries in each column have been divided by the out-degree
associated with the column. With this matrix this is okay as all the
out-degrees are greater than 0.
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A function file to get C given A
A version of a function m-file to get the probability matrix C from
a valid adjacency matrix A can be as follows.

function C = cmat1_no_checks(A)

% function C = cmat1_no_checks(A) determines the

% probability matrix C from an adjacency matrix A

% get the dimensions, it needs to be a square matrix

n=size(A, 1);

% get the out degrees which are the column sums

outdeg=sum(A);

% set C column-by-column

C = zeros(n, n);

for from=1:n

C(:, from) = A(:, from)/outdeg(from);

end
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Probability vector at each step
Let p(k) be a 4× 1 vector with each entry giving the probability to
be at that node at step k. If we start at node 2 then

p(0) =


0
1
0
0

 .

Assuming that we can move to each of the other nodes with equal
probability we get for the next step that

p(1) =


1/3

0
1/3
1/3

 .

How do we get p(2), p(3), . . . in a systematic way with the
computer generating the vectors?
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Getting p(2)

To get to node 1 we must have to have previously been at
node 2 or 4. At this stage this means we must have previously
been at node 4. From the start the route was 2→ 4→ 1 with
probability (

1

3

)
1 =

1

3
.

There is no route to node 2.

The only route to node 3 at this stage is 2→ 1→ 3 and the
probability of this is (

1

3

)(
1

2

)
=

1

6
.

There are 2 routes to node 4 and correspond to 2→ 1→ 4 and
2→ 3→ 4. Overall the probability is(

1

3

)(
1

2

)
+

(
1

3

)
1 =

1

2
.
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Generalise
If we forget the specific numbers are just consider all possibilities
then the probability to be at node i given what the probabilities
were at the previous stage is

Pr(i |1)(p(1))1 + Pr(i |2)(p(1))2 + Pr(i |3)(p(1))3 + Pr(i |4)(p(1))4

= (ith row of C )p(1).

We get all the probabilities by multiplying the vector p(1) by C , i.e.

p(2) = Cp(1) = C (Cp(0) = C 2p(0).

In general

p(k) = Cp(k−1) = · · · = C kp(0), k = 1, 2, . . . .
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Is there a limit as k →∞?

C =


0 1/3 0 1
0 0 0 0

1/2 1/3 0 0
1/2 1/3 1 0


Whatever we take for p(0) the sequence of vectors converge to

p =


2/5

0
1/5
2/5

 .

The program can verify this.

p is such that
Cp = p

which will be a topic of the next sessions. p is an eigenvector of C
with eigenvalue 1.
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What if an out-degree is 0?
Suppose we replace

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 1 0


by

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 0 0

 .

The out-degree of node 3 is 0 as all entries in column 3 are 0.

We cannot construct C in this case as we did before.
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Group homework – enhancing the model
Instead of only following links the enhanced model introduces a
parameter α, 0 ≤ α ≤ 1 such that the probability of following the
links is 1− α and the probability of randomly going to another
node is α. In this version when all out-degrees are greater than 0
the probability matrix changes to

C = (1− α)Coldv +
α

n − 1


0 1 1 · · · 1
1 0 1 · · · 1
... 1

. . . 1
...

...
...

...
. . . 1

1 1 · · · 1 0

 .

If Coldv has a column of zeros then in the enhanced model this
column of C has entries of 1/(n − 1) for every entry except the
diagonal entry.

When there is a link between nodes there are two parts to consider.
The probability is (1− α) times the previous value plus α/(n − 1)
as we also may move between the nodes by not following the links.
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Group homework – task 1
This is the adjacency matrix for network 8 on page 14.

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 0 0

 .

Compute the matrix C in the enhanced version when α = 0.3.
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Group homework – task 2
This is the adjacency matrix for network 8 on page 14.

A =


0 1 0 1
0 0 0 0
1 1 0 0
1 1 0 0

 .

Compute the matrix C in the enhanced version for a general value
of α, i.e. apart from the diagonal entries the entries will now
depend on α.

Group homework – task 3
Modify the Matlab function to a version which generates C in the
enhanced model. The function should have two arguments which
are A and alpha.
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