Nodes, adjacency matrix, out degrees

N nodes in the network.
Adjacency matrix $A=\left(a_{i j}\right)$. It has size $N \times N$ and contains entries of 0 or 1 .

$$
a_{i j}=1 \quad \text { indicates a link from node } j \text { to node } i .
$$

The sum of the entries in column j is

$$
d_{j}=\sum_{i=1}^{n} a_{i j}=\text { out degree of node } j
$$

To cope with out degrees which are 0 let

$$
\tilde{d}_{j}= \begin{cases}d_{j}, & \text { if } d_{j}>0 \\ 1, & \text { if } d_{j}=0\end{cases}
$$

Let

$$
D=\operatorname{diag}\left\{\frac{1}{\tilde{d}_{1}}, \ldots, \frac{1}{\tilde{d}_{N}}\right\}
$$

MA2715, 2015/6 Week 24, Page 1 of 16

Problems with the previous model

- If the out degree $d_{j}=0$ then you if you reach node j then you stay at node j.
- If the network contains a closed loop then you stay in the loop.

The modified model (implemented in cmat2.m)

$$
\underline{p}^{(k+1)}=C \underline{p}^{(k)}
$$

with

$$
C=(1-\alpha) C_{0}+\frac{1}{N-1}\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 & 0
\end{array}\right) \hat{D}
$$

where $\alpha \in[0,1]$ and

$$
\hat{D}=\operatorname{diag}\left(\hat{d}_{i}\right), \quad \hat{d}_{i}= \begin{cases}\alpha, & \text { if } d_{i}>0 \\ 1, & \text { if } d_{i}=0\end{cases}
$$

A method to determine p

The long term probabilities

It can be proved that the sequence of vectors $\underline{p}^{(0)}, p^{(1)}, p^{(2)}, \ldots$ converges and if \underline{p} denotes the limit then probability vector \underline{p} satisfies

$$
C \underline{p}=\underline{p} .
$$

Thus $\underline{p}=\left(p_{i}\right)$ is an eigenvector of C with eigenvalue 1 and as it is also a probability vector the components satisfy

$$
0 \leq p_{i} \leq 1, \quad p_{1}+p_{2}+\cdots+p_{N}=1 .
$$

```
function \(C=m k w \_\)cmat2 \((A, a l p h a)\)
\([\mathrm{N}, \mathrm{M}]=\operatorname{size}(\mathrm{A})\);
\% get the out-degrees \(d\), i.e. the sum of each column
\(d=\operatorname{sum}(A)\)
\% allocate space for C
\(\mathrm{C}=\operatorname{zeros}(\mathrm{N}, \mathrm{N})\);
\% set the entries column-by-column
for \(j=1\) :N
    \(\%\) deal with \(d(j)==0\) case and \(d(j)>0\) case
    if \(d(j)==0\)
        \(C(:, j)=1 /(N-1)\)
    else
        \(C(:, j)=a l p h a /(N-1)+(1-a l p h a) * A(:, j) / d(j) ;\)
    end
    \(C(j, j)=0\)
end
```

direct1.m and mkw_direct1.m use the following.

$$
\begin{aligned}
(C-I) \underline{p} & =\underline{0}, \\
\underline{e}^{T} \underline{p} & =1,
\end{aligned}
$$

where $\underline{e}=(1,1, \ldots, 1)^{T}$ is $N \times 1$ vector with each entry equal to 1 . In Matlab this can be done with the following 3 statements.

```
M = [ C - eye(N, N);
    ones(1, N) ];
b = [ zeros(N, 1);
```

 1];
 $p=M \backslash b$

The Matlab operator \backslash in this case involves the least squares solution of the over-determined system of $N+1$ equations in N unknowns and in this case it also exactly solves the equations.

MA2715, 2015/6 Week 24, Page 6 of 16

The script file mkw_direct1.m
fprintf('Adjacency matrix for network 7 follows \backslash ')
$A=\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right.$
0000 ;
1100 ;
$\left.\begin{array}{llll}1 & 1 & 1\end{array}\right]$

```
alpha = 0.3;
```

fprintf('probability matrix C when alpha=\%f follows $\backslash n$ ', alpha);
C = mkw_cmat2 (A, alpha)
$N=\operatorname{size}(A, 2) ;$
$M=[C-\operatorname{eye}(N, N) ;$
ones(1, N)];
$\mathrm{b}=[\operatorname{zeros}(\mathrm{N}, 1)$;
1];
\% use \ to get p and show p
fprintf('probability vector p follows $\backslash n$ ')
$p=M \backslash b$

Comments about better methods to determine p
If you search the internet for information about the PageRank algorithm then better techniques are given which are not too much more complicated. When N is large you can only use these better techniques and the key is not to create the full matrix C given by

$$
C=(1-\alpha) A D+\frac{1}{N-1}\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 & 0
\end{array}\right) \hat{D}
$$

This can be written as

$$
C=(1-\alpha) A D+\left(\frac{1}{N-1}\right)\left(\underline{e}^{T}-l\right) \hat{D}
$$

You only need to store A, the diagonal entries of D and \hat{D} and the parameter α in the better approaches.

MA2715, 2015/6 Week 24, Page 9 of 16

A Matlab implementation

If the adjacency matrix, which may be large and sparse, is already given then a complete solution is as follows.

```
d=sum(A); d=d(:)
i0=find(d==0);
d(i0)=1;
D=spdiags(1./d, 0, N, N);
% set up the terms in the matrix
C0=(1-alpha)*A*D;
e=ones(N, 1);
dhat=alpha*e;
dhat(i0)=1;
Dhat=spdiags(dhat, O, N, N);
I=speye(N,N);
% solve with the sparse matrix for p
y=( I+(1/(N-1)*Dhat-C0 ))\e;
p=y/sum(y);
```


Setting up mixed data

Consider the following set-up in Matlab. The countries are in alphabetical order. The statement which assigns p just contains the numbers.

```
pop={...
'Bangladesh', 162221000,...
'Brazil', 192540000,...
'China', 1336070000,...
'India', 1177592000,...
'Indonesia', 231369500,...
'Japan', 127430000,...
'Mexico', 107550697,...
'Nigeria', 154729000,..
'Pakistan', 168840500,...
'Russia', 141927297,...
'USA', 308765000};
p=cell2mat( pop(2:2:end) );
N=length(p);
```


Sorting the data

With the previous set-up you can sort the data and put in size order instead of alphabetical order as follows.

```
[a, o]=sort(p, 'descend');
for i=1:N
    j=o(i);
    fprintf(%%12d %s\n', p(j), pop{2*j-1});
end
Part of the output is as follows.
    1336070000 China
    1177592000 India
    308765000 USA
    127430000 Japan
    107550697 Mexico
```


All the deliverables

1. A one A3-page poster. (This can be printed on 2 A4 pages.) Submit to JNCK 101 by 15:30 on Mon 14th March.
2. A version of the script direct1.m must be sent by email to me. I will let you know whether or not it runs.
3. Any m-files associated with plotting $\underline{p}=\underline{p}(\alpha), 0 \leq \alpha \leq 1$ should also be sent by email.

The interview

This is scheduled for 14:00-15:00 on Tue 15th March 2016. There will be a group component and an individual component.

The mark obtained will depend on the poster, the m-files submitted and the individual part of the interview.

