The google PageRank algorithm, session 3

Adjacency matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

The out-degrees are the column sums and these are 2, 3, 1 and 1 .
The out-degrees are used when constructing the conditional probabilty matrix C.

The conditional probability matrix C

Adjacency matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

The out-degrees are the column sums and these are $2,3,1$ and 1 . The probability matrix C is

$$
C=\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 \\
1 / 2 & 1 / 3 & 1 & 0
\end{array}\right)
$$

The entries in each column have been divided by the out-degree associated with the column. With this matrix this is okay as all the out-degrees are greater than 0 .

A version of a function m-file to get the probability matrix C from a valid adjacency matrix A can be as follows.
function C = cmat1_no_checks(A)
\% function C = cmat1_no_checks(A) determines the
\% probability matrix C from an adjacency matrix A
\% get the dimensions, it needs to be a square matrix n=size(A, 1);
\% get the out degrees which are the column sums outdeg=sum (A);
\% set C column-by-column
C = zeros (n, n);
for from=1:n
C(:, from) = A(:, from)/outdeg(from);
end

```
function C = cmat1(A)
N = size(A, 1);
% get a column vector of the out-degrees
outdeg=zeros(N, 1);
for i=1:N
    % sum of elements in column i
    outdeg(i) = sum(A(:, i));
end
C = zeros(N, N);
% loop through the columns and each entry in each column
for from=1:N
    for to=1:N
        C(to, from) = A(to, from)/outdeg(from);
    end
end
```

```
function \(C=\) cmat2_mkw (A, alpha)
\(N=\operatorname{size}(A, 1) ;\)
outdeg=sum (A);
\(\mathrm{C}=\operatorname{zeros}(\mathrm{N}, \mathrm{N})\);
for from=1:N
    if outdeg (from)==0
        C(: from)=1/(N-1);
    else
        \(C(:\), from \()=(1-a l p h a) * A(:\), from \() / o u t d e g(f r o m)+\ldots\)
                        alpha/( \(\mathrm{N}-1\) );
    end
    C(from, from) \(=0\);
end
```

```
function C = cmat2(A, alpha)
N = size(A, 1);
outdeg=zeros(N, 1);
for i=1:N
    outdeg(i) = sum(A(:, i));
end
C = zeros(N, N);
for from=1:N
    for to=1:N
        if from==to
                C(to, from) = 0;
            elseif outdeg(from)>0
            C(to, from) = alpha/(N-1)
                +(1-alpha)*A(to, from)/outdeg(from);
            else
            C(to, from) = 1/(N-1);
            end
    end
end

\section*{Plotting the paths - getting started}
```

% adjacency matrix for Network 6(a)
A = [0 1 0 1 ;
0 0 0 0 ;
1 0 0 ;
1 1 1 0];
% matrix C is computed by the function cmat2
C = cmat2(A, 0.0)
% set num of iters and starting prob vector
iter = 30;
p = [1 0 0 0]';
% ...more statements

```
```

figure(11);
clf
hold on;

```
\% create the points and show something
for i=1:iter
\% 1. plot each component of the probabilities vector plot(i, p(1), '‘r', i, p(2), 'ok', i, p(3), '+b', ... i, \(\mathrm{p}(4)\), '*k', 'MarkerSize', 6);
\% 2. update to the next state
p = C*p;
end
legend('P1', 'P2', 'P3', 'P4');
xlabel('iteration');
hold off;

\section*{Saving the points and then plotting curves}
```

% ..earlier statements not shown
n=size(A, 1);
pp=zeros(n, iter);
pp(:, 1)=p;
% create the points and show something
for i=2:iter
pp(:, i) = C*pp(:, i-1);
end
figure(12);
x=1:iter;
plot(x, pp(1, :), x, pp(2, :), x, pp(3, :), x, pp(4, :));
legend('P1', 'P2', 'P3', 'P4');
xlabel('iteration');

```
```

% ..earlier statements not shown
n=size(A, 1);
pp=zeros(n, iter);
pp(:, 1)=p;
% create the points and show something
for i=2:iter
pp(:, i) = C*pp(:, i-1);
end
figure(14);
x=1:iter;
plot(x, pp(1, :), '^r', x, pp(2, :), 'ok', ...
x, pp(3, :), '+b', x, p(4, :), '*k', ...
'MarkerSize', 6);
legend('P1', 'P2', 'P3', 'P4');
xlabel('iteration');

```

\section*{Saving the points and using hold}
\% ..statements as before
figure(15);
clf
hold on
\(\mathrm{x}=1\) :iter;
plot(x, pp(1, :), '‘r', 'MarkerSize', 6);
plot(x, pp(2, :), 'ok', 'MarkerSize', 6);
plot(x, pp(3, :), '+b', 'MarkerSize', 6);
plot(x, pp(4, :), '*k', 'MarkerSize', 6);
legend('P1', 'P2', 'P3', 'P4');
xlabel('iteration');
hold off

\section*{figure, clf, hold on, hold off mechanism}
figure(15);
clf
hold on
\% .. plotting statements
hold off
With this set-up several plots are put on top of each other.
clf ensures that the figure window is clear at the start.
Remember to have a hold on if you have used a hold off.

\section*{The steady state - an eigenvector}

Mathematically we get each new probability by multiplying by \(C\) and in the Matlab program we have
\(\mathrm{p}=\mathrm{C} * \mathrm{p}\);
We overwrite the old \(p\) with the next \(p\).
The examples suggest that there is a limit as the number of iterations tends to \(\infty\). Mathematically this vector is such that
\[
C \underline{p}=\underline{p}
\]
with \(\underline{p}=\left(p_{i}\right), p_{i} \geq 0\) and
\[
p_{1}+p_{2}+\cdots+p_{n}=1
\]
\(\underline{p}\) is an eigenvector of \(C\) with eigenvalue 1 normalised in the above way.

\section*{Other ways of writing things}
\[
C \underline{p}=\underline{p} \quad \text { is } \quad(C-l) \underline{p}=\underline{0} .
\]

The last case is a homogeneous system with a non-trivial solution.
Once way to getting the specific solution that we want is to construct the augmented system.
\[
\left(\begin{array}{cccc}
-1 & c_{12} & \cdots & c_{1 N} \\
c_{21} & -1 & \cdots & c_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & -1 \\
1 & 1 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
p_{1} \\
p_{2} \\
\vdots \\
p_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
\]

The augmented matrix has size \((N+1) \times N\). Although there are more equations than unknowns it can be shown that there is a unique solution.

\section*{Group homework}

Network 10 has 3 nodes and the following is the adjacency matrix.
\[
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\]
1. Construct the matrix \(C\) in the basic model.
2. Write down the homogeneous system
\[
(C-I) \underline{p}=\underline{0} .
\]
3. Check that
\[
\operatorname{det}(C-I)=? ?
\]

What is ??

\section*{Group homework continued}
4. Get the general solution to
\[
(C-I) \underline{x}=\underline{0} .
\]
5. If the general solution is written as \(\underline{x}=\underline{x}(t)\) for a free parameter \(t\) then what value of \(t\) is such that \(\underline{x}(t)=\underline{p}\) where \(\underline{p}\) is the probability vector?
6. Replace one of the 3 equations in
\[
(C-I) \underline{p}=\underline{0} .
\]
with
\[
p_{1}+p_{2}+p_{3}=1
\]

Check that the solution is unchanged.```

