The google PageRank algorithm, session 2

Adjacency matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

The out-degrees are the column sums and these are $2,3,1$ and 1 .

Out-degree and In-degree

Let A be the adjacency matrix in a Matlab program.
All the entries in column j are given by $A(:, j)$.
All the entries in row i are given by $\mathrm{A}(\mathrm{i},:$).
The out-degree of node j is the number of nodes that you can go to directly from node j. It is the sum of the entries in column j.
In Matlab all the out-degrees are generated by the statement
outdeg=sum (A)

The in-degree of node i is the number of nodes that go to directly to node i. It is the sum of the entries in row i.
In Matlab all the in-degrees are generated by the statement
indeg=sum(A')

The probability matrix C

Adjacency matrix.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

The out-degrees are the column sums and these are $2,3,1$ and 1 . The probability matrix C is

$$
C=\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 \\
1 / 2 & 1 / 3 & 1 & 0
\end{array}\right)
$$

The entries in each column have been divided by the out-degree associated with the column. With this matrix this is okay as all the out-degrees are greater than 0 .

A version of a function m-file to get the probability matrix C from a valid adjacency matrix A can be as follows.
function C = cmat1_no_checks(A)
\% function C = cmat1_no_checks(A) determines the
\% probability matrix C from an adjacency matrix A
\% get the dimensions, it needs to be a square matrix n=size(A, 1);
\% get the out degrees which are the column sums outdeg=sum(A);
\% set C column-by-column
C = zeros (n, n);
for from=1:n
C(:, from) = A(:, from)/outdeg(from);
end

Let $\underline{p}^{(k)}$ be a 4×1 vector with each entry giving the probability to be at that node at step k. If we start at node 2 then

$$
\underline{p}^{(0)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) .
$$

Assuming that we can move to each of the other nodes with equal probability we get for the next step that

$$
\underline{p}^{(1)}=\left(\begin{array}{c}
1 / 3 \\
0 \\
1 / 3 \\
1 / 3
\end{array}\right) .
$$

How do we get $\underline{p}^{(2)}, \underline{p}^{(3)}, \ldots$ in a systematic way with the computer generating the vectors?

Getting $\underline{p}^{(2)}$

To get to node 1 we must have to have previously been at node 2 or 4 . At this stage this means we must have previously been at node 4 . From the start the route was $2 \rightarrow 4 \rightarrow 1$ with probability

$$
\left(\frac{1}{3}\right) 1=\frac{1}{3} .
$$

There is no route to node 2 .
The only route to node 3 at this stage is $2 \rightarrow 1 \rightarrow 3$ and the probability of this is

$$
\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)=\frac{1}{6} .
$$

There are 2 routes to node 4 and correspond to $2 \rightarrow 1 \rightarrow 4$ and $2 \rightarrow 3 \rightarrow 4$. Overall the probability is

$$
\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right) 1=\frac{1}{2} .
$$

Generalise

If we forget the specific numbers are just consider all possibilities then the probability to be at node i given what the probabilities were at the previous stage is

$$
\begin{gathered}
\operatorname{Pr}(i \mid 1)\left(\underline{p}^{(1)}\right)_{1}+\operatorname{Pr}(i \mid 2)\left(\underline{p}^{(1)}\right)_{2}+\operatorname{Pr}(i \mid 3)\left(\underline{p}^{(1)}\right)_{3}+\operatorname{Pr}(i \mid 4)\left(\underline{p}^{(1)}\right)_{4} \\
=(\text { ith row of } C) \underline{p}^{(1)} .
\end{gathered}
$$

We get all the probabilities by multiplying the vector $\underline{p}^{(1)}$ by C, i.e.

$$
\underline{p}^{(2)}=C \underline{p}^{(1)}=C\left(C \underline{p}^{(0)}\right)=C^{2} \underline{p}^{(0)} .
$$

In general

$$
\underline{p}^{(k)}=C \underline{p}^{(k-1)}=\cdots=C^{k} \underline{p}^{(0)}, \quad k=1,2, \ldots
$$

Is there a limit as $k \rightarrow \infty$?

$$
C=\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 \\
1 / 2 & 1 / 3 & 1 & 0
\end{array}\right)
$$

Whatever we take for $\underline{p}^{(0)}$ the sequence of vectors converge to

$$
\underline{p}=\left(\begin{array}{c}
2 / 5 \\
0 \\
1 / 5 \\
2 / 5
\end{array}\right)
$$

The program can verify this.
\underline{p} is such that

$$
C \underline{p}=\underline{p}
$$

which will be a topic of the next sessions. \underline{p} is an eigenvector of C with eigenvalue 1.

What if an out-degree is 0 ?

Suppose we replace

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

by

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

The out-degree of node 3 is 0 as all entries in column 3 are 0 . We cannot construct C in this case as we did before.

Instead of only following links the enhanced model introduces a parameter $\alpha, 0 \leq \alpha \leq 1$ such that the probability of following the links is $1-\alpha$ and the probability of randomly going to another node is α. In this version when all out-degrees are greater than 0 the probability matrix changes to

$$
C=(1-\alpha) C_{o l d v}+\frac{\alpha}{n-1}\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
\vdots & 1 & \ddots & 1 & \vdots \\
\vdots & \vdots & \vdots & \ddots & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right)
$$

If $C_{\text {oldv }}$ has a column of zeros then in the enhanced model this column of C has entries of $1 /(n-1)$ for every entry except the diagonal entry.
When there is a link between nodes there are two parts to consider. The probability is $(1-\alpha)$ times the previous value plus $\alpha /(n-1)$ as we also may move between the nodes by not following the links.

Group homework - task 1

This is the adjacency matrix for network 8 on page 14.

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Compute the matrix C in the enhanced version when $\alpha=0.3$.

Group homework - task 2

This is the adjacency matrix for network 8 on page 14 .

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Compute the matrix C in the enhanced version for a general value of α, i.e. apart from the diagonal entries the entries will now depend on α.

Group homework - task 3

Modify the Matlab function to a version which generates C in the enhanced model. The function should have two arguments which are A and alpha.

