
MA1710: Week 5

Introduction to using matrices in Matlab

5.1 Introduction to the week 5 session

A matrix is the default type in Matlab and the name Matlab is taken from the first 3 letters
of “Matrix Laboratory”. It is thus not too surprising that there are a lot of features of the
language connected with working with matrices. In this session we consider a few of these
and in a few places take as examples things that you do in MA1720 (Linear Algebra).

5.2 Constructing matrices with [and]
Row vectors and column vectors were introduced in session 3 and it was remarked then
that they are a special case of a matrix. In that session the use of [and] was described
to set-up vectors with all the entries given. We can do the same for a more general matrix
and to experiment with what is possible use the editor to create the file sess05a.m which
contains the following lines and run the file. (The numbers are from question 1 of your
week 4 MA1720 sheet.)

format compact
clear
A = [2 -3 1; 3 4 -5; 5 -1 -3]
b = [0; 2; 1]
C = [A, b]
whos

As there are no semi-colons at the end of each statement the output is as as follows.

Groups C and D, version 20151024151108 1

Week 5: Matrices Groups C and D 2

A =
2 -3 1
3 4 -5
5 -1 -3

b =
0
2
1

C =
2 -3 1 0
3 4 -5 2
5 -1 -3 1

Name Size Bytes Class Attributes

A 3x3 72 double
C 3x4 96 double
b 3x1 24 double

Here we have created a 3× 3 matrix called A, a 3× 1 column vector called b and a 3× 4
matrix called C. The entries in each row are separated by spaces (spaces or commas can be
used) and the semi-colon indicates the end of a row. As A and b both have the same number
of rows the blocks can be used to create C which contains all the numbers involved. The
creation of C involves a “row vector” with entries which are matrices.

5.3 Using part of a matrix and changing part of the
matrix

In the previous example the matrix C has 3 rows and 4 columns and we can refer to the 3, 2
entry by putting

C(3, 2)

Try this to check that you get -1. We can also refer to an entire row or column and to
illustrate this add the following lines to sess05a.m and save the file as sess05b.m .

y = C(2, :)
z = C(:, 3)

The output when you run it as result of the additional statements is as follows.

Week 5: Matrices Groups C and D 3

y =
3 4 -5 2

z =
1

-5
-3

When : is given for the row this means all rows and similarly when : is given for the column
then this means all columns. Thus y is everything on row 2 of C and z is everything in
column 3 of C.

As well as being able to refer to an entry or a rectangular block of entries we can also
change that part of the matrix with an assignment statement. To illustrate this try the
following to swap rows 2 and 3.

y = C(2, :);
C(2, :) = C(3, :);
C(3, :) = y;
C

The output shown for C should now be as follows.

C =
2 -3 1 0
5 -1 -3 1
3 4 -5 2

In fact the swapping operation can be done with just one statement although we first recover
the original matrix.

C = [A, b]
C([2, 3], :) = C([3, 2], :)

To understand this version try typing

C([3, 2], :)

This gives a 2×3 quantity involving row 3 followed by row 2, i.e. the list of rows is specified
by [3, 2]. The swapping is achieved by the assignment statement which saves these in the
rows [2, 3] of C.

5.4 Further comments about the shape of a matrix and
the storage of a matrix

In the examples given so far we have referred to the entries of a vector with 1 index value
and in the matrix examples of this session we have used two index values. It is not actually a

Week 5: Matrices Groups C and D 4

requirement that this is done as we only need to give something which is in the range of what
is stored and all quantities are actually stored in a ‘one dimensional way’. To illustrate what
this means for a matrix use the editor to create sess05c.m which contains the following
and run it

A = [2 -3 1; 3 4 -5; 5 -1 -3];
b = [0; 2; 1];
C = [A, b]
y = C(2, :)
y = y(:)
d = C(:)

This generates the following output.

C =
2 -3 1 0
3 4 -5 2
5 -1 -3 1

y =
3 4 -5 2

y =
3
4

-5
2

d =
2
3
5

-3
4

-1
1

-5
-3
0
2
1

The vector y is first set-up as a row vector and then the statement y=y(:) changes it to
a column vector. The second statement for y is actually quite useful as it is a means of
changing the shape to a column vector whatever the shape was originally. We similarly get a
column vector for d and it is all the entries of C in the order that they are stored and this is
column-by-column. This is mentioned here as it is valid to put

Week 5: Matrices Groups C and D 5

C(5)

which gives the 5th entry in how C is stored which in this case is the same as putting C(2, 2).

5.5 Entry-wise operations

As in the case of vectors you can do entry-wise operations which are denoted in Matlab by
.^, .* and ./ for the entry-wise power, multiplication and division respectively. To illustrate
this use the editor to create sess05d.m which contains the following and run it.

A = [2 -3 1; 3 4 -5; 5 -1 -3];
b = [0; 2; 1];
C = [A, b]
C2 = C.^2
CC = C.*C

The output is as follows with each entry of C2 and CC being the square of the corresponding
entry of C.

C =
2 -3 1 0
3 4 -5 2
5 -1 -3 1

C2 =
4 9 1 0
9 16 25 4

25 1 9 1
CC =

4 9 1 0
9 16 25 4

25 1 9 1

Entry-wise operations involving matrices are useful for setting up data for plotting, for
example for surface plots, but we do not consider any examples here.

5.6 Matrix operations

You can multiply a matrix by a scalar, you can add a number to every entry and, as in the
case of vectors, if two matrices have the same shape then you can add or subtract them.
Matrices of compatible sizes can also be multiplied and this is what the operation * means
when the quantities are matrices. To illustrate this use the editor to create sess05e.m
which contains the following and run it.

Week 5: Matrices Groups C and D 6

A = [2 -3 1; 3 4 -5; 5 -1 -3]
B = 5+2*A
x = [1; 1; 1]
z = A*x
AB = A*B
BA = B*A

The output from the statements is as follows.

A =
2 -3 1
3 4 -5
5 -1 -3

B =
9 -1 7

11 13 -5
15 3 -1

x =
1
1
1

z =
0
2
1

AB =
0 -38 28

-4 34 6
-11 -27 43

BA =
50 -38 -7
36 24 -39
34 -32 3

To explain some of these note that as A has size 3× 3 and x has size 3× 1 this generates a
3× 1 matrix for z, i.e. z is a column vector. You might also note here that z is the same as b
used in the earlier exercises and hence x is a solution (actually the unique solution) of the
linear equations

Ax = b, when A=

2 −3 1
3 4 −5
5 −1 −3

and b =

0
2
1

.

The outputs for AB and BA demonstrate that matrix multiplication is not commutative, i.e. in
general the products AB and BA are different. If you wish to check by hand that the products

Week 5: Matrices Groups C and D 7

are correct then you can use Matlab to assist in individual computations. For example to get
the 3, 2 entry in the product AB we use the 3rd row of A and the 2nd column of B. In Matlab
this is the calculation

A(3, :)*B(:, 2)

Likewise the 3,2 entry in the product BA is given by

B(3, :)*A(:, 2)

In both these cases we take a complete row of one of the matrices and the complete column
of the other and a row times a column gives a 1×1 matrix, i.e. just a single number. Further,
try the following statements.

y = [1 2 3]’
y’*y
y*y’

The output is as follows.

y =
1
2
3

ans =
14

ans =
1 2 3
2 4 6
3 6 9

Here y’ is the transpose of y and thus as y is a column vector the transpose is a row vector.
The outputs demonstrate again that a 1× 3 vector times a 3× 1 vector gives a 1× 1 matrix
and that it also makes sense to multiply in the reverse order to create a 3× 3 matrix by
multiplying a 3× 1 vector with a 1× 3 vector.

5.7 Solving linear equations using \
In your linear algebra lectures and seminars you consider techniques to solve linear equations
Ax = b involving a square matrix A with the size of A being small (typically 3×3). In addition
you also consider cases when you have more equations than unknowns and also cases when
there are less equations than unknowns. Matlab can help you with these problems to the
extent of checking your final answer and we consider in this section the case when the
matrix A is a square matrix. If A is a n× n non-singular matrix (i.e. an invertible matrix)

Week 5: Matrices Groups C and D 8

and b is a n× 1 column vector then there exists a unique solution to

Ax = b.

If in Matlab notation A and b correspond to A and b respectively (we have only changed
the fonts used in the description with an italic type font used to display the mathematics
and with a typewriter font for the terms used in the programs) then we can obtain x by just
putting

x = A\b

To test this on the matrices given in section 5.2 and on other similar examples use the editor
to create the file sess05f.m which contains the following and run it.

A = [2 -3 1; 3 4 -5; 5 -1 -3]
b = [0; 2; 1]
x = A\b
d = b-A*x

A4 = [3 5 -1 2; 5 -1 2 3; 1 3 2 -2; 1 1 1 1]
b4 = [1 4 3 3]’
x4 = A4\b4
d4 = b4-A4*x4

The output is as follows.

Week 5: Matrices Groups C and D 9

A =
2 -3 1
3 4 -5
5 -1 -3

b =
0
2
1

x =
1.0000
1.0000
1.0000

d =
1.0e-15 *
-0.1110

0
0

A4 =
3 5 -1 2
5 -1 2 3
1 3 2 -2
1 1 1 1

b4 =
1
4
3
3

x4 =
-0.5000
0.5000
2.0000
1.0000

d4 =
1.0e-15 *
-0.4441

0
-0.8882
-0.8882

You may have expected d and d4 to both be zero vectors to confirm that respectively x and
x4 solve the systems. The reason this is not the case is that floating point arithmetic is used
and we get rounding errors and there are some division operations in the computations. The
entries in d and d4 are of course very small.

Week 5: Matrices Groups C and D 10

5.8 Some special matrices: zeros, ones and eye
There are several functions in Matlab which generate matrices and we just consider three
of these here. To illustrate what these generate create the file sess05g.m containing the
following and run it.

Z = zeros(3, 5)
Z3 = zeros(3)
O = ones(3)
I3 = eye(3)
I4 = eye(4, 4)

This generates the following output.

Z =
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Z3 =
0 0 0
0 0 0
0 0 0

O =
1 1 1
1 1 1
1 1 1

I3 =
1 0 0
0 1 0
0 0 1

I4 =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

In the case of Z and I4 the shape is specified by the arguments. In the case of Z3, O and I3
we get a square matrix and not a row or column vector. The function eye gives the identity
matrix and in your linear algebra module you will we usually write this as I .

5.9 Some matrix functions: size, det, inv and rref
For the last part of this session (before some exercises) we illustrate a few functions which
relate to things that you do in the first part of your linear algebra module. Use the editor to
create sess05h.m which contains the following and run it.

Week 5: Matrices Groups C and D 11

C = [2 -3 1 -1; 3 4 -5 -4; 5 -1 -3 -6]
s3 = size(C)
A3 = C(:, 1:3)
d3 = det(A3)
A3I = inv(A3)
A3j = d3*A3I
rC = rref(C)
E = A3*A3I-eye(size(A3))

The output generated is shown below.

C =
2 -3 1 -1
3 4 -5 -4
5 -1 -3 -6

s3 =
3 4

A3 =
2 -3 1
3 4 -5
5 -1 -3

d3 =
-9.0000

A3I =
1.8889 1.1111 -1.2222
1.7778 1.2222 -1.4444
2.5556 1.4444 -1.8889

A3j =
-17.0000 -10.0000 11.0000
-16.0000 -11.0000 13.0000
-23.0000 -13.0000 17.0000

rC =
1 0 0 1
0 1 0 2
0 0 1 3

E =
1.0e-15 *
-0.4441 -0.2220 0

0 0 0
0.8882 0 0.8882

The output shows that the function size gives a row vector containing the number of
rows and the number of columns. This is used in the statement for E so that we get an
identity matrix of the same size as A3. The function det gives the determinant of the matrix.

Week 5: Matrices Groups C and D 12

The function inv gives the inverse of the matrix and the statement for A3j is one way to
generate the adjoint matrix. The function rref generates the reduced row echelon form
and in this case the last column is the unique solution to the linear system with A3 as the
matrix and C(:, 4) as the right hand side vector. To confirm this add the following two
lines.

b3 = C(:, 4)
x3 = A3\b3

To just solve a linear system when there is a unique solution you only need to use \ as
described in section 5.7 and this is the recommended thing to do in Matlab. When the
problem does not have a unique solution then the output from rref helps describes the
answer.

5.10 Exercises

Exercise 5.10.1
Use Matlab to get the solution of the following equations.

2 −3 1
3 4 −5
5 1 4

x1

x2

x3

=

0
2
1

.

To show the output in rational number format you should type the following statement.

format rat

and later to return to the more usual format for showing the output you need to put

format short

Exercise 5.10.2
Use the function rref to determine if the following systems have a solution and when

there is a solution describe all possible solutions.

(a)

2 −3 1
3 4 −5
5 1 −4

x1

x2

x3

=

0
2
2

.

(b)

3 5 −1 2
5 −1 2 3
1 11 −4 1

x1

x2

x3

x4

=

1
4
2

.

Week 5: Matrices Groups C and D 13

Exercise 5.10.3
Matrix multiplication is associative, i.e. provided matrices A, B and C have compatible

sizes for the matrix products to exists then

A(BC) = (AB)C

and we we can just write ABC . The outcome is independent of which matrix multiplication
we do first. Try the following to verify that this is true for a few randomly generated matrices
with entries which are integers.

rand(’seed’, 1)
for k = 1:3

fprintf(’\n...test when k = %d\n’, k);
A = randi([1, 4], 3, 3)
B = randi([1, 4], 3, 3)
C = randi([1, 4], 3, 3)
M1 = A*(B*C)
M2 = (A*B)*C
dif = M1-M2

end

Here the line which contains seed is so that we get the same matrices each time the script
is run. The statements with randi generate 3× 3 matrices (the last 2 arguments) with the
entries being integers between 1 and 4.

	Introduction to using matrices in Matlab
	Introduction to the week 5 session
	Constructing matrices with [and]
	Using part of a matrix and changing part of the matrix
	Further comments about the shape of a matrix and the storage of a matrix
	Entry-wise operations
	Matrix operations
	Solving linear equations using '134
	Some special matrices: zeros, ones and eye
	Some matrix functions: size, det, inv and rref
	Exercises

