
MA1710: Week 3

Control statements and the creation of
vectors

3.1 Introduction to the week 3 session

We observed that there was more material in the week 2 session than most students could
do during the hour and thus we start this session with a quick revision of what most students
tried, there is further material on the control statements of for, if and break and then we
move on to vectors. There is a connection between the previous parts and the new material
in that with for loops the variable takes in turn each value in a list of values which is also
described as vector of values.

3.2 Revision from week 2

The for–loop syntax

for variable_name=list_of_values
Instructions to do for each value in the list.
The instructions typically use variable_name.

end

The if–else construction syntax

if logical_condition
Statements to do if the condition is true.

else
Statements to do if the condition is false.

end
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Example of computing a sum using a for–loop

s =
500
∑

n=1

1

(2n− 1)2
= 1+

1

32 +
1

52 + · · ·+
1

9992 .

One way to compute s is to use the colon notation and use an increment of 2.

s=0;
for n=1:2:999

s=s+1/(n*n);
end
fprintf(’s=%24.16e\n’, s);

3.3 The break statements in loops

In the for–loop examples presented in the week 2 notes the number of times the statements
in the loop was repeated was the number of entries in the list, e.g. 1:5 and 2015:-1:2011
both have 5 entries and n=1:1000 has 1000 entries. To leave a loop before all the entries
have been considered can be done using a break statement. We would usually do this after
some testing and this is illustrated in the following example.

Factorials and a break statement

The factorials are 0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, , . . . and these grow rapidly in
magnitude. If we wish to just show these numbers until you first exceed 1012 then we can
do the following.

for n=1:30
v=factorial(n);
fprintf(’n=%2d, n!=%14d=%22.14e\n’, n, v, v);
if v>=1e12

break;
end

end

Create a file which contains these lines called sess3_fact.m and run it and check that you
get the following output.
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n= 1, n!= 1= 1.00000000000000e+00
n= 2, n!= 2= 2.00000000000000e+00
n= 3, n!= 6= 6.00000000000000e+00
n= 4, n!= 24= 2.40000000000000e+01
n= 5, n!= 120= 1.20000000000000e+02
n= 6, n!= 720= 7.20000000000000e+02
n= 7, n!= 5040= 5.04000000000000e+03
n= 8, n!= 40320= 4.03200000000000e+04
n= 9, n!= 362880= 3.62880000000000e+05
n=10, n!= 3628800= 3.62880000000000e+06
n=11, n!= 39916800= 3.99168000000000e+07
n=12, n!= 479001600= 4.79001600000000e+08
n=13, n!= 6227020800= 6.22702080000000e+09
n=14, n!= 87178291200= 8.71782912000000e+10
n=15, n!= 1307674368000= 1.30767436800000e+12

As the output shows 15! > 1012 and the loop ends. Note that to write 1012 we use the
scientific notation 1e12. The fprintf instruction here is a bit more complicated than in the
week 2 examples with 3 format specifier in the string to get the alignment in the output. The
instructions %2d and %14d are for integers which are right justified in a width of 2 and 14
respectively (the d standards for decimal digits as in the week 2 examples). The instruction
%22.14e is for scientific notation with a width of 22 and with 14 digits shown as was used
in week 2 (the e is for the mantissa exponent way of representing numbers in a scientific
format).

3.4 Introduction to vectors

The basic type in Matlab is a matrix with every entry of the matrix being of type double
which means about 16 decimal digit accuracy for each entry. The variables used in previous
Matlab sessions are considered as 1× 1 matrices and are hence a special case of a matrix.
Vectors, which we consider next in this session, are also a special case of a matrix in that
there is just one row or just one column. In the following we consider various ways of
creating vectors and we discuss some operations with vectors.

Vectors will be used in a subsequent session as part of the process to create two-
dimensional plots when we plot a vector of x values against a vector of y values and
it will be used in your first project to store the history of values of various quantities.

3.5 Creating vectors using [ and ] notation

In the Matlab editor create a file called sess3a.m containing the following lines and run
the script file.
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clear
a=pi
b=[5.1, 4, 3.3, -2.42, 1]
c=[5; 4; 3]
d=[1, 2, 3, 4]’
whos

The output generated in the command window should be as follows.

a =
3.1416

b =
5.1000 4.0000 3.3000 -2.4200 1.0000

c =
5
4
3

d =
1
2
3
4

Name Size Bytes Class Attributes

a 1x1 8 double
b 1x5 40 double
c 3x1 24 double
d 4x1 32 double

The clear instruction clears the workspace and the whos instructions display information
about what is in the current workspace. Here a is just a variable with the whos command
indicating that the size is 1× 1. b is a row vector, (a matrix with just one row) and c and d
are column vectors (matrices with just one column). In these examples the entries are given
between the square brackets [ and ]. To separate entries on a row you use a comma and/or
one or more spaces. In the case of c the semi-colon means go to the next row and in the
case of d the character ’ at the end of the statement means transpose. In the case of d we
would have instead a row vector if the character ’ is removed.

The column with the header Bytes in the output from whos gives the number of bytes used
to store each quantity and for vector and matrices it is just 8 times the number of entries.
One byte is 8 bits and thus one item of type double involves 64 bits with these bits used as
follows. 52 bits are used for the mantissa of the number, 11 bits are used for the exponent and
1 bit is used for the sign of the number. As 2−52 ≈ 2.2×10−16 we get close to 16 decimal digit
accuracy. In Matlab the variable eps stores 2−52 and this is referred to as machine precision.



Week 3: Control statements . . . Groups C and D 5

3.6 Creating vectors with equally spaced entries

We usually use [ and ], as above, to create vectors which do not have too many entries with
larger vectors generated by other means dependent on the task being considered and there
are many cases when we want a vector of equally spaced values. This can be done using
the colon notation (as was used in for–loops in session 2) and with the Matlab function
linspace and we discuss the use of both of these in this section.

Use the editor to create a script file called sess3b.m which contains the lines indicated
below and run the script file.

a=0:9
b=9:-1:3
c=(2015:2018)’

d=0:0.2:1
d2=linspace(0, 1, 6)

e=0:0.5:pi
e2=0:pi/6:pi
e3=linspace(0, pi, 7)

You should get the following output in the command window.

a =
0 1 2 3 4 5 6 7 8 9

b =
9 8 7 6 5 4 3

c =
2015
2016
2017
2018

d =
0 0.2000 0.4000 0.6000 0.8000 1.0000

d2 =
0 0.2000 0.4000 0.6000 0.8000 1.0000

e =
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000

e2 =
0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

e3 =
0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

As in the for–loop examples when just two numbers are involved separated by a colon the
step is 1 which is the case with a=0:9 which generates a row vector of length 10. A step of 1
is also the case with the creation of c and the use of the round brackets and the character ’
gives the column vector.
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When 3 values are given the middle value is the increment and some care is often needed
to ensure that the outcome is what is wanted. In the case of b the increment is −1 and we
get a row vector of length 7. Note that d and d2 are the same and we have two convenient
ways of creating the vector. If we only want to think about the number of points used then
the linspace version is easier to use whereas if we wish to think more in terms of the
spacing then the colon version would be the preferred version. Please note however that the
increment has to be compatible with the ‘start’ and ‘end’ values to ensure that the ‘end’ value
is one of the entries. This is illustrated in the examples for e, e2 and e3 with both e and e2
containing the last value but the 7 entries in e do not including the end number of pi.

To summarise the syntax of using the colon notation or using linspace we have the
following.

a:b A row vector starting at a with an increment of 1. b is the upper
bound.

a:h:b A row vector starting at a with an increment of h. b is the
bound (an upper bound if h> 0 or a lower bound if h< 0).

linspace(a, b, n) A row vector starting at a and ending at b with in total n values.
The spacing is thus (b− a)/(n− 1).

linspace(a, b) A row vector starting at a and ending at b with in total 100
values.

3.7 Using the entries of a vector

If x is a vector of length n then we can refer to the entries by putting x(1) for the first
entry, by putting x(2) for the second entry, . . ., by putting x(n) for the nth entry, We can
also change individual entries. To illustrate this create a script file called sess3c.m which
contains the following and run the script file.

x=0:0.2:1
x(3)
x(6)=x(6)+0.5
x(end)

The following output is generated in the command window.
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x =
0 0.2000 0.4000 0.6000 0.8000 1.0000

ans =
0.4000

x =
0 0.2000 0.4000 0.6000 0.8000 1.5000

ans =
1.5000

In this example the entry x(3) is displayed, the entry x(6) is changed with the entire
contents of the modified x displayed and in the last statement the index of end refers to the
last entry of the vector.

An error is shown if an invalid index is used. This is the case with the last two statements
in the following.

x=0:0.2:1.2;
x(0)
x(3.4)

The message generated is the following.

Subscript indices must either be real positive integers or logicals.

3.8 Adding vectors, multiplying by a scalar and adding a
scalar

In this section and the next we describe some of the manipulations that can be done with
vectors.

Create the file sess3d.m containing the following and run the script file.

x=ones(1, 6)
y=2:7
z=x+y
x3=3*x
v=y-0.5

This generates the following output.
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x =
1 1 1 1 1 1

y =
2 3 4 5 6 7

z =
3 4 5 6 7 8

x3 =
3 3 3 3 3 3

v =
1.5000 2.5000 3.5000 4.5000 5.5000 6.5000

The function ones is a built-in function which creates a matrix of the shape given with every
entry being 1 and this is used to create x. x and y have the same shape. We can add two
vectors of the same dimensions (the statement z=x+y), we can multiply every entry by a
scalar (the statement x3=3*x) and we can add or subtract a scalar from every entry (the
statement v=y-0.5). The statement which creates v is an exception to the usual case of
requiring the vectors involved to have the same size and is equivalent to putting

v=y-0.5*ones(1, 6)

3.9 Entry-wise operations and vectorised functions

We next consider what are known as entry-wise operations and do this by an example of
evaluating the following quadratic at several different points. Let

y = x2− 3x + 2= (x − 2)(x − 1).

As there are roots at 1 and 2 and the function has a minimum at x = 3/2 a suitable range
for x is the interval [0, 3]. To create a vector of x–values and a vector of the corresponding
y–values based on what has been taught so far can be achieved with statements such as the
following which you should create in a file with the name sess3e.m.

clear
x=0:0.25:3;
y=zeros(1, 13);
for k=1:13

y(k)=x(k)^2-3*x(k)+2;
end
[x; y]’

The part zeros(1, 13) creates a row vector of length 13 with every entry set to 0 and its
purpose here is to allocate space for the y entries which are set in the statements that follow.
The script will still work if this was not done but it would be inefficient as the size of y will
increase as each new value of k is considered. The part [x; y] creates a quantity with two
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rows and the transpose symbol then converts this to a quantity with two columns so that the
output generated is as follows.

ans =
0 2.0000

0.2500 1.3125
0.5000 0.7500
0.7500 0.3125
1.0000 0
1.2500 -0.1875
1.5000 -0.2500
1.7500 -0.1875
2.0000 0
2.2500 0.3125
2.5000 0.7500
2.7500 1.3125
3.0000 2.0000

In the form given several things are quite specific to having 13 entries for both x and y. To
make it easier to consider a different vector it helps to change it to the following.

x=0:0.25:3;
m=length(x);
y=zeros(1, m);
for k=1:m

y(k)=x(k)^2-3*x(k)+2;
end
[x; y]’

Matlab has a much shorter way of generating the vector y which avoids completely the
need for the for–loop and in this example we can shorten the script file to the following
which you should create as the file sess3f.m.

x=0:0.25:3;
y=x.^2-3*x+2;
[x; y]’

Try this and check that you get the same output as before.
In Matlab the notation x.^2 means create a vector of the same shape as x with every

entry squared and it is an example of an entry-wise operation. As we know the roots of the
quadratic an alternative script file is to have the following.

x=0:0.25:3;
y=(x-2).*(x-1);
[x; y]’
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With this way of writing the expression x-2 and x-1 are both vectors of the same length
and .* is the entry-wise operation of multiplying together the corresponding entries for the
creation of y. Try this and check that you get the same output as before.

Similar to the entry-wise operations of .^ and .* the built-in standard functions such
as sin, cos, exp etc. act in a vectorised way, i.e. if the argument is a vector then they act
individually on each entry to create an output of the same shape as the input. To test this
create files sess3g.m and and sess3gv.m as follows. The file sess3g.m should contain
the statements below containing a for–loop.

x=0:pi/6:pi;
m=length(x);
y=zeros(1, m);
for k=1:m

y(k)=sin(x(k));
end
[x; y]’

The file sess3gv.m should contain the vectorised version.

x=0:pi/6:pi;
y=sin(x);
[x; y]’

Try both of these and check that you get the following output in the command window.

0 0
0.5236 0.5000
1.0472 0.8660
1.5708 1.0000
2.0944 0.8660
2.6180 0.5000
3.1416 0.0000

3.10 Summary

In this session there has been a quick recap of for-loops, the if–else syntax and the use
of the statement break to leave a loop early. You have then been introduced to a number of
different ways of creating vectors and we summarize here a few of the key points.

• Use the brackets [ and ] to create a vector with all the entries given explicitly.

• For equally spaced entries the colon notation can be used or linspace can be used.
The colon notation is likely to be better when all the entries are integers. When we do
not have integers linspace ensures that the ‘start’ and ’end’ values are in the list.
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• The colon notation and linspace both create row vectors.

• Use ’ to transpose a vector.

• You refer to individual entries with round brackets, e.g. x(3).

• If you need to create a vector entry–by–entry then it is advisable to pre-allocate the
size first and typically this is done using the zeros function.

• Examples have been given of using the entry-wise operations and the vectorised
version of one of the standard functions.

3.11 Further exercises

Exercise 3.11.1
The normal distribution function in the case of a mean of 0 and a variance of 1 is given by

y =
1
p

2π
e−x2/2.

By any means create and display a vectors of 21 equally spaces x values in [−3, 3] together
with the corresponding y values.

Exercise 3.11.2
Create the following script file and run it.

t=0:15:360;
x=pi*t/180;

disp(’Radian version’)
[sin(x); cos(x); tan(x)]’

disp(’Degrees version’)
[sind(t); cosd(t); tand(t)]’

Why do you think the display in the radians version is different from the display in the
degrees version?
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Exercise 3.11.3
If r > 0 denotes the interest rate on savings over a period of time and interest is applied

discretely then after 1 unit of time the starting amount has increased by the factor (1+ r)
and after m units of time the starting amount has increased by the factor (1+ r)m. Now as

1+ r <
�

1+
r

2

�2

= 1+ r +
r2

4

it follows that if we replace r by r/2 and we replace m by 2m then the amount is greater. To
investigate this difference consider the case r = 0.1 and m = 10 and write statements to
compute and display

�

1+
r

n

�nm

, n= 1, 2,22, . . . , 210.

The numbers in your output should correspond to the following.

1 2.593742460100
2 2.653297705144

... ..............
1024 2.718149111732
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