MA1710: Key points in week 6 Matlab session

Anonymous or one line functions

Suppose that we have the following functions.

$$
\begin{aligned}
f_{1}(x) & =\sin (x / 6)-1 / 2 \\
f_{2}(x) & =\tan (x / 4)-1 \\
f_{3}(x) & =\cos (x / 3)-1 / 2
\end{aligned}
$$

In Matlab we can set these up and plot them with the following statements which uses anonymous functions

$$
\begin{aligned}
& f 1=@(x) \sin (x / 6)-0.5 \\
& f 2=@(x) \tan (x / 4)-1
\end{aligned}
$$

$$
f 3=@(x) \cos (x / 3)-0.5
$$

$$
\mathrm{x}=\mathrm{linspace}(2 * \mathrm{pi} / 3,4 * \mathrm{pi} / 3,201) \text {; }
$$

figure(2)

$$
\operatorname{plot}\left(x, f 1(x),{ }^{\prime}--, x, f 2(x), x, f 3(x),,^{\prime}\right)
$$

A function \mathbf{m}-file solving $z^{n}=\zeta$

All the solutions to

$$
z^{n}=\zeta=\rho(\cos (\alpha)+i \sin (\alpha))
$$

are given by
$z_{k}=\rho^{1 / n}\left(\cos \left(\frac{\alpha}{n}+\frac{2 k \pi}{n}\right)+i \sin \left(\frac{\alpha}{n}+\frac{2 k \pi}{n}\right)\right), \quad k=0,1, \ldots, n-1$.
A function to implement this in the file all_nth_roots.m can be as follows.

```
function z = all_nth_roots(zeta, n)
r = abs(zeta);
t = angle(zeta);
s = t+2*pi*(0:(n-1));
s = s/n;
z = r^(1/n)*(cos(s)+1i*\operatorname{sin}(\textrm{s}));
```

A function \boldsymbol{m}-file for $\tan (x / 4)-1$
$\mathrm{f} 2=\mathbb{(x)} \tan (\mathrm{x} / 4)-1$;

A function file version of $f 2$ is to have a file called $f 4 . m$ which contains the following 2 lines.

```
function y = f4(x)
```

$y=\tan (x / 4)-1$;

A function m-file solving a quadratic equation

$$
a x^{2}+b x+c=0, \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

A function m-file in the file solve_quadratic.m can be as follows.

```
function [x1, x2] = solve_quadratic(a, b, c)
d = b*b-4*a*c;
s = sqrt(d);
x1 = (-b-s)/(2*a);
x2 = (-b+s)/(2*a);
```


Adding help comment lines

```
function [x1, x2] = solve_quadratic(a, b, c)
%% [x1, x2] = solve_quadratic(a, b, c)
% Given a~=0, b and c the function generates the
% roots x1 and x2 of the quadratic a*x^2+b*x*c
d = b*b-4*a*c
s = sqrt(d);
x1 = (-b-s)/(2*a);
x2 = (-b+s)/(2*a);
```

The comments are displayed when we type
help solve_quadratic

Solving $f(x)=0$ by the bisection method Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a) f(b)<0$. This implies that there exists $x \in(a, b)$ such that $f(x)=0$.
We want a function which we can use as follows.

```
f1 =@(x) sin(x/6)-0.5;
f2 =@(x) tan(x/4)-1;
f3 =@(x) cos(x/3)-0.5;
[a1, b1] = bisec_meth(f1, 2, 4)
[a2, b2] = bisec_meth(f2, 2, 4)
[a4, b4] = bisec_meth(@f4, 2, 4)
[a3, b3] = bisec_meth(f3, 2, 4)
```

The function header syntax
The first executable line in myfun.m has the following form.
function $[y 1, \ldots, y N]=$ myfun(x1,, xM)

1. Communication with other parts of a program are through the input and output arguments. All other quantities are local to the function.
2. We use the function with a statement of the form $[b 1, \ldots, b N]=\operatorname{myfun}(a 1, \ldots, a M)$
3. With only one function per file the statements are executed until a return statement is reached or until the end of the file is reached.

A function implementing the bisection method A candidate function file called bisec_meth.m is as follows.
function [a, b]=bisec_meth(f, a, b)

```
fa=f(a);
fb=f(b);
for k=1:200
    c=0.5* (a+b);
    fc=f(c);
    if fa*fc<=0
        b=c;
        fb=fc;
    else
        a=c;
        fa=fc;
    end
```

end

