MA1710: Key points in week 2 Matlab session

Start by experimenting with for-loops.
Create the following with the editor and run.

```
for k=1:5
    disp('What does this do?')
end
```

```
for i=2015:-1:2011
    disp('What does this do?')
end
```

The same output in both cases.

The for-loop syntax

```
for variable_name=list_of_values
    Instructions to do for each value in the list.
    The instructions typically use variable_name.
end
```

Use the variable in the loop and use fprintf Next you try the following

```
for k=1:5
    fprintf('k=%d\n', k)
end
```

```
for i=2015:-1:2011
    fprintf('i=%d\n', i)
end
```

These illustrate that the variable can be used

Examples to evaluate sums

To compute

$$
\sum_{n=1}^{1000} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{1000^{2}}
$$

we can use the following statements.

$\mathrm{s}=0$;

for $\mathrm{n}=1: 1000$
$\mathrm{s}=\mathrm{s}+1.0 /(\mathrm{n} * \mathrm{n})$;
end
s varies in the loop and at any intermediate stage is stores the sum of the terms considered so far.

Computing a product using a for-loop

$$
10!=1 \times 2 \times 3 \times \cdots \times 9 \times 10
$$

This can be compured with the following statements.

```
n=10;
p=1;
for r=2:n
    p=r*p;
end
```

The mechanism is similar to what is done to compute a sum. Here, at any intermediate stage, p is the product of the numbers considered so far.

The if-else construction

```
if logical_condition
    Statements to do if the condition is true.
else
    Statements to do if the condition is false.
end
```

As some of the statements to solve a quadratic you might have the following.

```
d=b*b-4*a*c;
if d>=0
    s=sqrt(d);
    x1=(-b-s)/(2*a);
    x2=(-b+s)/(2*a);
else
    fprintf('d=%e,', d);
    fprintf(' the quadratic has complex roots\n');
end
```


The if-statement

```
if logical_condition
    Statements to do if the condition is true.
end
```

As some of the statements to solve a quadratic you might have the following.

```
d=b*b-4*a*c;
```

if $d>=0$
disp('The quadratic has real roots')
end

Factorials and a break statement

You can leave a loop before the end with a break statement and usually this will involve a test which has the reason for leaving the loop. An example of using break is as follows.

```
for n=1:30
    v=factorial(n);
    fprintf('n=%2d, n!=% % 14d=%22.14e\n', n, v, v);
    if v>=1e12
        break;
    end
end
```

Here factorial is a Matlab function. In this case the break
statement is executed the first time that a factorial exceeds 10^{12}.

