MA1710: Key points in week 5 Matlab session

Creating matrices with [and]

In mathematical notation consider the following.

$$
A=\left(\begin{array}{ccc}
2 & -3 & 1 \\
3 & 4 & -5 \\
5 & -1 & -3
\end{array}\right), \quad \underline{b}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad C=\left(\begin{array}{cccc}
2 & -3 & 1 & 0 \\
3 & 4 & -5 & 2 \\
5 & -1 & -3 & 1
\end{array}\right)
$$

In Matlab these can be created with the following statements.

$$
\begin{aligned}
& \mathrm{A}=[2-31 ; 34-5 ; 5-1-3] \\
& \mathrm{b}=[0 ; 2 ; 1] \\
& \mathrm{C}=[\mathrm{A}, \mathrm{~b}]
\end{aligned}
$$

Referring to entries and blocks of entries

$$
C=\left(\begin{array}{cccc}
2 & -3 & 1 & 0 \\
3 & 4 & -5 & 2 \\
5 & -1 & -3 & 1
\end{array}\right)
$$

In the Matlab version you can have the following.

$$
\begin{array}{ll}
v=C(3,2) & \% 3,2 \text { entry } \\
y=C(2,:) & \% \text { 2nd row } \\
z=C(: 3) & \% \text { 3rd column }
\end{array}
$$

Creating a column of all the entries

$$
C=\left(\begin{array}{cccc}
2 & -3 & 1 & 0 \\
3 & 4 & -5 & 2 \\
5 & -1 & -3 & 1
\end{array}\right)
$$

Consider the following statements.

$$
\begin{aligned}
& y=C(2,:) \\
& y=y(:)
\end{aligned}
$$

The second statement creates a column vector of all the entries.

Basic operations including the matrix product

We can multiply matrices by scalars, we can add them and the operator $*$ means matrix multiplication. As examples you can do the following.
$A=[2-31 ; 34-5 ; 5-1-3]$
$B=5+2 * A$
$\mathrm{x}=[1 ; 1 ; 1]$
$z=A * x$

The matrix product continued

In the following we create A and B and we create the matrix products $A B$ and $B A$.
$A=[2-31 ; 34-5 ; 5-1-3]$
$B=5+2 * A$
$A B=A * B$
$B A=B * A$

Solving linear equations using \backslash

When A is a $n \times n$ matrix and \underline{b} is a $n \times 1$ matrix we often wish to attempt to solve the linear equations

$$
A \underline{x}=\underline{b} .
$$

In Matlab this can be done with the following statement.
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$

The following Matlab statements
$Z=\operatorname{zeros}(3,5)$
$0=\operatorname{ones}(3)$
$I 3=\operatorname{eye}(3)$
create the following output.
Z =

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0 =

I3 = | 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

In your linear algebra lectures you learn about the matrix inverse and the reduced row echelon form. Matlab has functions for these which can be used as follows.

$$
\begin{aligned}
& \mathrm{A} 3=\mathrm{C}(:, 1: 3) \\
& \text { A3I }=\operatorname{inv}(A 3) \\
& r \mathrm{C}=\operatorname{rref}(\mathrm{C}) \\
& \text { A3 }= \\
& \text { A3I = }
\end{aligned}
$$

