MA1710: Key points in week 3 Matlab session

Factorials and a break statement

You can leave a loop before the end with a break statement and usually this will involve a test which has the reason for leaving the loop. An example of using break is as follows.

```
for n=1:30
    v=factorial(n);
    fprintf('n=%2d, n!=%14d=%22.14e\n', n, v, v);
    if v>=1e12
        break;
    end
end
```

Here factorial is a Matlab function. In this case the break statement is executed the first time that a factorial exceeds 10^{12}.

Using [and] to create vectors

$$
\begin{aligned}
& a=p i \\
& b=[5.1,4,3.3,-2.42,1] \\
& c=[5 ; 4 ; 3] \\
& d=[1,2,3,4]
\end{aligned}
$$

a is a variable (a 1×1 matrix).
b is a row vector.
c and d are column vectors.

Using : and using linspace

```
e=0:0.5:pi
e2=0:pi/6:pi
e3=linspace(0, pi, 7)
```

All generate row vectors. The last entry in e is 3 with pi just being a bound.

Using the entries

We can refer to individual entries and we can change individual entries.

```
x=0:0.2:1
x(3)
x(6)=x(6)+0.5
x(end)
```


Adding vectors, multiplying by a scalar ...

$$
\begin{aligned}
& x=\text { ones }(1,6) \\
& y=2: 7 \\
& z=x+y \\
& x 3=3 * x \\
& v=y-0.5
\end{aligned}
$$

Consider evaluating the following at points in $[0,3]$.

$$
y=x^{2}-3 x+2=(x-2)(x-1)
$$

Using a for loop

```
x=0:0.25:3;
m=length(x);
y=zeros(1, m);
for k=1:m
    y(k)=x(k)^2-3*x(k)+2;
end
[x; y]'
```


Evaluating a function at x_{1}, \ldots, x_{n}

Consider evaluating the following at points in $[0,3]$.

$$
y=x^{2}-3 x+2=(x-2)(x-1)
$$

A vectorised version

$$
\begin{aligned}
& \mathrm{x}=0: 0.25: 3 ; \\
& \mathrm{y}=\mathrm{x} \cdot{ }^{\wedge} 2-3 * \mathrm{x}+2 ; \\
& {[\mathrm{x} ; \mathrm{y}]^{\prime}}
\end{aligned}
$$

Evaluating a function at x_{1}, \ldots, x_{n}

Consider evaluating the following at points in $[0,3]$.

$$
y=x^{2}-3 x+2=(x-2)(x-1)
$$

Another vectorised version

$\mathrm{x}=0: 0.25: 3$;
$\mathrm{y}=(\mathrm{x}-2) \cdot *(\mathrm{x}-1)$;
[x; y]'

