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Abstract

We extend the formulation and a priori error analysis given by Johnson (Dis-
continuous Galerkin finite element methods for second order hyperbolic prob-
lems, Comp. Meth. Appl. Mech. Eng., 107:117—129, 1993) from the acoustic
wave equation to a Voigt and Maxwell-Zener viscodynamic system incorporating
Rayleigh damping. The elastic term in the Rayleigh damping introduces a multi-
plicative 7/2 growth in the constant but otherwise the error bound is consistent
with that obtained by Johnson, with a constant that grows a priori with 7/2
and also with norms of the solution. Gronwall’s inequality is not used and so we
can expect that this bound is of high enough quality to afford confidence in long-
time integration. The viscoelasticity is modelled by internal variables that evolve
according to ordinary differential equations and so the system shares similarities
with dispersive Debye and Drude metamaterial models currently being studied
in electromagnetism, as well as to acoustic metamaterial systems. This appears
to be the first time an a priori error analysis has been given for DG-in-time
treatment of dispersive problems of this type.

Keywords: discontinuous Galerkin, finite element method, a priori error esti-
mate, duality, viscoelasticity, dispersion.
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1 Introduction

In [I2] Johnson formulated a space-time finite element method for the acoustic wave
equation using a continuous Galerkin (CG) discretization in space and a discontinuous
Galerkin (DG) discretization in time — DGCG-FEM. Both a priori and a posteriori
error estimates were derived using approximation-error estimates, error representation
through a discrete or continuous dual problem, and the associated strong stability of
the dual solutions.

Here we extend that formulation to the equations of linear elastodynamics with generic
Rayleigh damping, and also with viscoelastic damping provided by either or both of
a Voigt term and a Maxwell-Zener history integral with a (Prony series) kernel of
decaying exponentials. This Volterra integral is not itself included in the model but
is instead captured by internal variables that evolve according to a set of ordinary
differential equations.

We note that the Prony series model of viscoelasticity allows for an efficient numerical
scheme in so much as we can compute over NV time levels using O(N) operations. On the
other hand, alternative viscoelastic kernels based on the fractional calculus, or power
laws as in [5], require a quadrature summation over time levels 0, 1, ..., n for each time
level n = 1,..., N and, if implemented naively, will require O(N?) operations. This
and the associated computer memory requirements imply that long-time computations
in, say, 3D over moderate to long time scales are impractical without using a method
that mitigates this difficulty. For example the sparse method in [26] or the convolution
quadrature in [24], are available for finite difference time discretizations, and in [20]
McLean has proposed a fast method that is economical on storage for a DGFEM time
discretization of a subdiffusion equation. These methods are of great interest because,
in particular, the Prony series kernels used in viscoelastic models are sometimes felt
to decay too fast to be effective in modelling ‘real’ materials, and may not display the
correct frequency dependence (see e.g. [9]).

Nevertheless, the model described, analyzed and implemented below is of considerable
importance in modelling damping and frequency dependence in dispersive ‘soft’ media,
e.g. [10, [I1], and has very close analogies in dispersive (e.g. Debye, Drude or Lorentz)
electromagnetic metamaterial models, e.g. [106] [0, 15, 25]. Moreover, the emergence
of negative dynamic mass metamaterials, e.g [29], will also involve the elastodynamic
equations with the ‘meta-effects’ provided by companion evolution equations for, in
essence, internal variables. We intend that the extension of the material in [12] offered
here will provide a template for the subsequent DGCG-FEM computer modelling and
numerical analysis of dispersive media as modelled by internal variable systems.

This extension is not completely trivial which is why we present it here. Some care
has to be taken in how the internal variables are defined, see Remark 2.2] because
this impacts on the ease with which stability estimates for the dual problem can be
derived. It also affects the nature of the dual problem itself and while we do not claim
that the approach below is the only one that can be taken, it seems clear that it is
quite amenable to analysis and implementation. However, because this is an extension
of [12] we have focussed more on giving details for the new terms that arise in the
proofs rather than re-iterate the results in that existing work.



The plan of the paper is as follows. We outline the physical model and its main features
in Section 2 and then give the DGCG-FEM approximation in Section B We derive
an a priori error bound in Section (] by following a duality argument and using a
strong stability estimate for a discrete dual problem, (BI). This stability estimate,
Theorem [£.6] does not require Gronwall’s lemma and this in turn means that the
constant in the error bound does not grow exponentially in time, but only a prior: as
T'/? as found in [12], along with the growth stemming from norms of the exact solution.
There is also an additional multiplicative temporal growth of T7/2 of the constant that
is tied to the elastic term in the Rayleigh damping — but this growth does not appear
in the error estimate in Theorem [A.7] if this type of damping is not present. In either
case, the absence of an eI’ growth means that we can expect that this bound is of high
enough quality to afford confidence in long-time integration. We give some numerical
results in Section [l and finish with a discussion in Section [6l

The 1993 work by Johnson in [I2] appears to have been motivated by Hughes and
Hulbert’s work [7, 9] 8] in elastodynamics. At around the same time French in [3] gave
an alternative approach for a DG-in-time method, and French and Peterson [4] formu-
lated a continuous-in-time approximation. Both of these were for the wave equation as
a model problem. Later, Li and Wiberg in [17] gave some numerical demonstrations of
how effective Johnson’s scheme is for elastodynamics and those comments prompted
this study. Furthermore, although we restrict attention to approximations that are
piecewise linear in space and time, higher order approximations can be implemented
using the decoupling approach described in [28]. A disadvantage of this is that it leads
naturally to the challenge of solving complex symmetric systems, as in [14} [13], but
Richter, Springer and Vexler in [22] have recently outlined an iterative approach that
avoids complex arithmetic.

2 The continuum problem

To describe the problem and the constitutive relationship, let the spatial domain €2 be
a time-independent open bounded polytope in R? for d = 1,2 or 3, and let it represent
the interior of a homogeneous and isotropic linear viscoelastic compressible body with
constant mass density o. The boundary, 052, is partitioned into {T'p, 'y} (also time
independent) with Dirichlet boundary values given on the closed set I'p and Neumann
boundary values specified on the open (and possibly empty) set I'y. As usual we
require that I'p NT'y = @ and T'p Uy = 0 and we insist that measyo(I'p) > 0.
The unit outward normal vector to I'y will be written as n. To describe the time
dependence we set I := (0, 7] and will usually use overdots, as in v, or subscripts, as
in vy, to denote partial time differentiation.

The viscoelastic body is acted upon by a system of body forces, f := (f;(x,t))L,

x = (7;)L, € Qand t € I, and a system of surface tractions, g := (gl x, 1)L, for S
[y and ¢t € I, and we seek the displacement from equilibrium, w = (u;(z,t))L,

I — R? that results from these forces.

To describe the constitutive relationship we follow the standard literature (e.g. [3 2]),
assume that ¢ = 0 is a reference time such that w = 0 for all ¢ < 0, and introduce the



(symmetric) strain tensor,

=9\ oy T o

where in this and below we will usually suppress the explicit display of the & depen-
is then given (e.g. [5]) by either

(1)

dence. The (symmetric) stress tensor, @ = (0;){,_1,

of the following linear functionals of displacement,

t 8Dijkl(t — 8)

0ij(u; ) = Cijmen (w(t)) + Dijra(0)ep (u(t)) — / e (u(s))ds, (2)

0 0

= ijk;lgkl (U(t)) + Dz‘jkl(t)gkl (U(O)) + /Ot Dijkl(t — S)Z-Zkl (’U,(S)) ds (3)

where an integration by parts shows these to be formally equivalent. Here and below
summation is implied over repeated indices.

In this C and D(t) are fourth order tensors with the former related to Kelvin-Voigt
viscoelasticity and the latter to the Zener and Maxwell models. In fact D is essentially
a stress relaxation analogue of the Hooke tensor from linear elasticity and, with C' = 0,
this is linear elasticity with memory.

In general we assume that D(0) is positive definite so that v;;vu Dk (0) > 0 a.e. in ©
for all non-zero symmetric second order tensors v and also that (on physical grounds)
D satisfies the symmetries: D (t) = Dji(t) :_Diﬂk(t). In general D;jx(t) # Dyij(t)
except at t = 0 and at the limit ¢ — oo, but for isotropic materials this last symmetry
holds for all times (see e.g. [18, equations (1.10), (2.62)]).

A much simpler formulation entails if we assume that the material is synchronous. This
means that every component of D has the same time dependence and means that we
can replace D(t) with the factorization ¢(t)D. Now D is temporally constant and ¢ is
a stress relaxation function which in the material below we take as given by the Prony

series
Ny

P(t) = po+ Y paexp(—t/7,) (4)
q=1
where ¢, > 0 for ¢ € {0,1,..., Ny}, 7, > 0 for ¢ € {1,..., N,,} and we normalize so
that o + >, ¢, = 1. In [5], Golden and Graham observe that ¢y = 0 corresponds
to a (very slow moving) viscoelastic fluid whereas g > 0 gives a solid. We restrict
ourselves to synchronous solids below.

Moreover, due to the body being homogeneous and isotropic the tensor D can be
described by just two Lamé coefficients, A = vE/((1 + v)(1 — 2v)) and p = 2G =
E/(1+ v), where E > 0 is Young’s modulus, G > 0 is the shear modulus and v €
(—1,1/2) is Poisson’s ratio. The case v < 0 allows for auxetic meta-materials, but we
can expect that v > 0 for most (if not all) naturally occurring materials. The action
of D is now given by D;jmer(u) = AV - ud;j + pe;j(u). We assume for simplicity that
A and p are constant in space and time.

The form of C'is not so clear cut but in Rayleigh damping (see e.g. Li and Wiberg [17])
we add a term proportional to (%) (a ‘stiffness matrix’ term) and a term proportional
to @ (a ‘mass matrix’ term) to the momentum balance. To incorporate the stiffness part
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of this into our model we choose C' = vgD where v (in units of sec) is a non-negative
constant.

Introducing initial data @ and w, the resulting problem is, for each i € {1,...,d}, find
u such that,

ow; + oYmw; — 055 = fi in Qx1I, (5)

w = 1, u(0) = u, w(0) =w (6)

u=0onTpxT and oijn; =g on 'y x [ (7)

where the 7, term is the ‘mass matrix’ contribution to the Rayleigh damping, for v,
(in units of sec™!) a non-negative constant.

We could work with the memory integrals, (2)) or (@), for the constitutive time de-
pendence, but when the stress relaxation function is given by () we can capture the
history with internal variables. For this we set 3, := (¢,7,)"/? and note that

e+ [ ol —se(us) ds

=€ (go(t)u+/0 wou(s) ds+z i P u(s)e” )/ ds)

Ny t 1/2
. ((so(t) it o)+ 30 [ (22) " aeor ds) ,
= (p(t) — wo)e(@) + poe(u(t) + Y Bue(z,(t)),

H@] where the internal variables are defined as,

2(t) = /0 t (ﬁ> 7 () g (8)

Tq
or, equivalently, recalling that w := ,
z(t) + (1) = Baw(t),  with 2,(0) = 0 (9)

for g =1,2,..., N,. With this the constitutive law (B) can be written as,

o(u;t) = Ce(w(t) + D (so(t)§(ﬁ) + [ et = e (wis) ds) ,

= ypDe(w(t)) + D ((@(t) — ¢o)e(w) + poe(u(t)) + i 5q€(zq(t))) (10)
1Short Version:

P(0)z() + [t = s)e(@ls) ds = (p(0) ~ o)e@) + posu(®) + 3 Bue(z(t),

J0



RlEj

To give a weak formulation of (&) with (I]III)H}H] we first recall the product Hilbert
spaces, H*(Q) := H*(Q)?, for s = 0,1,2,..., with inner products given for all w
v € H°(Q) by (w,v)s := Zle(wi,vi)HS(Q). These spaces have the natural norms
| |ls .= +/(-,*)s and, of course, Ly(Q) = H°(Q). We use (-,-) to denote the inner
product on both Ly(€2) and L9(2) and will introduce additional notation as and when
necessary below. In particular, the natural energy space for this problem is given by

X = {veﬂl(ﬂ);vZOOn FD}, (12)
and we also define the symmetric bilinear forms a, b: X x X — R by

(9.) = [ Diueu®)zy(v) (13)

b(9,v) := v (09, v) + yra(VP, v) (14)

for all ¥, v € X.

It is easy to see that a(-,-) and b(-,-) are continuous on H'(£2), but not so easy to
see that for a positive constant ¢ we also have a(v,v) > c||'v||fql(9) for all v € X.
This coercivity of a(-,-) follows from our requirement that measso(I'p) > 0 in (1),
and is a consequence of Korn-type inequalities. If I'p = 9 this coercivity is easily
established but in the more general case a non-trivial technical argument is needed to
show that the coercivity results from excluding the possibility of rigid-body translations
and rotations. The details of both of these coercivity results are given in, for example,
[2T, Thm. 3.1; Def. 3.1 and Thm. 3.5], and from them it follows that (X, a(-,-)) is a
Hilbert space equivalent to (H'(2), (+,-)1) and with topological dual X’. We will use
the induced energy norm ||v||x := \/a(v, v) extensively below.

Testing ([)), integrating by parts, using (DIII)H}H], and imposing w = w and each of
the internal variable evolution equations, (@), individually in the energy inner product

a(-,-) we arrive at the weak problem: find w,w, 2y,...,2y,: I = X such that,
(ow(t), v) + a(u(t), pov) + b(w +Z a(z4(t), Bgv) = (L(t),v),  (15)
a(zy(t) + 1,2,(t) — Byw(t),v) =0 for each ¢ =1,..., N, (16)
a(u(t), pov) = a(w(t), pov) (17)

where each in turn holds for all v € X, with u(0) = @, @(0) = w, z,(0) = 0 for each
¢, and where L: I — X' is the time dependent linear form defined by,

(L(t),v) := /Q'v - f(t)dQ —1—74 v-g(t)dl + (@0 — ¢(t))a(u,v) Vo e X.

'y

2Short Version:

o(u;t) = ygDe(w(t)) + D ((s@(f) — ¢o)e() + poe(u(t)) + ~?(1§(z(1(t))) : (11)

3Short Version: ()
4Short Version: ([I])



Our first (unsurprising) result confirms the dissipativity introduced by the viscoelastic

damping terms.

Theorem 2.1 (energy balance, dissipation) We have

lo"*w(t)l[f + llpo*ult ||X+Z||Tl/2zq()||X+2/ b(w(s), w(s)) ds

q=1
Ny t 1/2
+2) [zl 7u00%) =2/0 (L(s),w(s)) ds + [[0"*w||§ + lpo  ull%
q=1

for every t € 1. Moreover,

Ne
lo"w (B)] + —!\901/2 D% + D Iz (0)lIx

Ny

t
+2Abmmmw@»@+2§]uﬂawx)
q=1
) 1/2 o —1/2 —1/2
< 2o+ et % + 32005 LI, oy + 16105 L 0

also for everyt € I.

Proof. Choose v = 2w in (1)), v = 2z, for each ¢ in (I6), v = 2u in (7)), and then
add the results together and note that the terms involving > a(w, 5,z,) cancel out.

This gives,
1/2
n@ﬂ ®)12 + |w/ Hx+§j H#” )%

+ 2b(w +2Z!|Zq (OI% = 2(L(t), w(t)).
Next, integrating by parts and using three Young inequalities with ¢ = 8 in each gives,

2/0 (L(s), w(s)) ds = 2(L(t), u(t)) — 2(L(0), &) —2/0 (L(s),u(s)) ds

—~1/2

/2.
<2llep " LHLooOtX’ 0l 03 + 2100 Ll 057 |20 e x

+2||<P0 LHL1(0tX’ ||<P0 u||Loo(0,t;X)>

—1/2 1/2 —1/2 1/2 o
< 8llog PLI3 onxry + rw/umwmm+8m9/Lmmey+uw/|u
—1/2 1/2
+ 8]0y 2 LI 0nix) + Hw/ ull? _osx):
_ A2 16 71/2[1 3 71/2L 1/2 12
= ”‘P al% + 16]|¢; ”Loo(OtX’ + 8ll¢g ”L1 0,6:X") ”‘P w7 0.6:x)



and, therefore, noting that

No

t
1/2
o w03 + el + 3 I 2o +2 | blao(s) w(s) s

q=1
- 1/2 ¢
+ 22 124172 0,3) < 20102 ®1F + 2llp @k

—1/2

1/2 —1/2
+2(—H90/UHX+16II<P LI o + 8l LI 0 exn + 5 L2 ||%w(0,t;X))

then completes the proof. [ﬁ}ﬁ] OO

Remark 2.2 (the choice of internal variable definition) The result just given in
Theorem [21] did not require Gronwall’s lemma and so is in some sense sharp. In fact
the cancellation of the Zq a(w, Byz,) terms rendered the proof almost trivial, and this
is why we used ([B)) rather than ([2) to define the internal variables in ). In fact we
could define internal variables using ([2)), as in [23], and arrive at ODE’s similar to
those in ([@). On a physical level the approaches are equivalent but, in the latter case,
the analogue to ([I6) will contain w and not w and the cancellation used above will
not occur. Similarly high quality stability estimates can still be derived in that case
but with considerably more effort, and in the space-time Galerkin framework set forth
below, this additional effort seems not to bring additional rewards. On the contrary, it
will make the definition of a discrete dual problem, as later in ([B1), more obscure and
impede the duality argument used in the derivation of a priori error bounds.

In the next section we give a space-time finite element approximation of this problem
using a continuous Galerkin scheme in space and a discontinuous Galerkin scheme in
time (DGCG-FEM).

3 The discrete scheme

The finite element spatial discretization is performed in a standard way by generating
a family of boundary conforming quasi-uniform meshes indexed by an element-size
parameter h, and then constructing a corresponding family of standard conforming
nodal (Lagrange) finite element spaces, X" C X, of piecewise polynomials of degree
p = 1. We assume that these spaces have the usual approximation property,

JinE {Jlo = "o + kv = v" | < O]l reaga (18)

5Short Version: We then integrate by parts and use three Young inequalities with € = 8 in each to get,

2/0 (L(s), w(s)) ds = 2(L(L), u(t)) — 2(L(0), ) —2/0 (L), u(s)) ds

—-1/2

< 2lley LI (()tXf)H% 2ullz_0.x) + 2000 P Ll 0.6:x1) 08 | x

+ 2005 Ll 0.0 106 2 o 0,85,

—1/2

1/2 ¢ —1 2
||so/u|\x+16||soo LI o.x) + 8llen LI .nx + 3 Lot/ “ull_oux)-

The proof is then completed by using a standard kick-back argument.



for all v € HP™(Q). For the time discretization we choose N € N, define the time
step k = T/N and set I, = (t,_1,t,) with ¢, = nk. Note that although we could
anticipate an adaptive solver and allow the time steps and X" to vary with time by
using the same approach as in [12], we don’t because we are concerned only with an a
priori error analysis and we want to keep the exposition simple.

We recall the Lo(£2) and elliptic projections, Py and Px, defined by
(Pov—v,x)=0 and a(Pxv—v,x)=0 (19)
each for all x € X", and we note from (I8) that
v — Pyvllo < CRPHH ||| o1 (q) and |v — Pxv||x < CRP||v||gri1q)-  (20)

Our other notation is either standard and/or well known in this context. We define
the limits,

vE =limo(t, +e), the jumps, [v], :==vf —v,,

n el0

and the temporally local and global space-time forms

((., ))n — /In(’ ) dt and ((.’ )) — EN: ((.’ ))n

n=1

with the obvious extensions to a((-, ))n and <<-, >>n locally, and to a((-, )) and <<-, >>
globally. The fully discrete finite element space is built from the space of temporally
discontinuous piecewise polynomials of degree r > 0 which have target space X":

V= Po(L,; X" and V= {'v € Lo(0,T;X):v|, € Vn}.

. 24N,
For convenience below we set VX :=V;, ¢ and V* := V#tNe,
n

The fully discrete approximation of the problem (IH]), with (I8) and (I7), is then: for
n=1,...,N in turn, find (U, W, Z;,...)|;, € V) such that,

(eW.9), + (e[W],_,, 95 1) +a(U,e0), +b(W,9), +> a(Z,.5,9),
+ i a((Zq + Tqu - ﬁqW, Eq))n + i a(Tq [[Zq]]nfl 75;,7#1)

+a(U—-W,0€), +a([U],_;. 0o 1) = (L,9) (21)
for all (0,¢,&1,...) € VX and where we define
U, = Pxu and W, = Rw, (22)

from ([I9), and Z,, = O for each ¢. The discrete analogue of the first part of Theo-
rem 2.1l now follows, for which Remark remains relevant. The stability estimate is
deferred to later (in Theorem [.6]) where we need it for a discrete dual problem.
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Theorem 3.1 (dissipation) There ezists a unique solution to ([2II) such that,

No

tn
1/2 _
102 W |2+ U ||X+Z||Tl/2z 2 / bW W) dt+2 5 11Z,) 00
q=1

Ny

1/2
S (W W1, 2+ e 0T, I+ 3 172 12,0, ||%<>
m=1 q=1

tn
= [10"*Wy IIg + oo Uy HX+ZHT”2Z oHX+2/ (L, W) dt

for everyn € {1,2,...,N}.

Proof. Given this result we see that zero initial data, W, = U, = Z_, = 0 (for
each ¢), and load, L = 0, would imply only a trivial discrete solution. It follows that
a discrete solution exists and is unique for any given set of these data. It remains only
to prove the stated equality and for this we first note the identity

. 1 _ 1
(W W), +([W],,_,, oW, ) = 5!\91/2Wm!\3—§|191/2w allot HQW W1, 113
along with the analogues for a(U, ¢oU) and G(Zq,Tqu). Choosing (9,¢,&,,...) =

2(W,U, Z,,...)in [2I) and noting that the terms involving a((Zq, BqW))m cancel out
results in

||91/2W_||(2) —le* W[} + 0o Unllx — llo Uil
Ny
+ Z (17222 5 = 132 ) + 24 W W), +2Y (2,2
q=1
Ny
1/2
102 WLy 5+ 6™ 0T 5 + X 17372 12l 5 = 2L, W),
q=1
and the proof is completed by summing over m =1, ... ,n[ﬁlﬁ] 7BEEE

This discrete energy balance is consistent with that given in Theorem 2.1 for the exact
solution, and we also see clearly the numerical dissipation introduced by the jump
terms.

Summing over all time levels, we see that the global formulation of (2II) is to find
(U,W,Z,,...) € V* such that,

S (U,W,Zy,...),(9,(,&,...) =ZL(9,(E,...) v(0,¢,&,...) eV (23)

where the linear form is defined by

Z((9,¢.&1,-.) = Wy, 095) + a(Uy , oly ) + (L. 9) (24)
6Short Version: Next choose (9,¢,&,,...) = 2(W,U, Z,,...) in ), note that the terms involving
a(Z,,8,W), cancel out and then sum over m =1,...,n.
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and the bilinear form by,

A (U,W,Z,...),8.¢,&,...) = (eW,9) +a(U, po9) + b(W,9)

N, N,
+a(U = W, pC) + Z a(Z,, 8,9) + Z (2, + 7,2, ~ B,W &)
q=1 q=1
N-1 Ny
+> <([[W]]n ,007) + a([U],, 0060) + D al[Z,], %E;,Z))
n=1 q=1
Ny
+ (W5, 098) + a(Uy, 00C ) + D alZo, mado). (25)
q=1

Noting that (U, W, Zy,...) can, on recalling (22)), be replaced by (u,w, z,...) in (23]
we obtain the following Galerkin orthogonality relationship

A (w,w, z1,..)— (U, W, Zy,..),(9,¢,€,..))=0  Y(O,(,&,..)€V*. (26)

In the next section we address the convergence of this scheme.

4 A priori error estimates

To give a priori error bounds for the discrete approximation, (1)), or (23)), of (I5), (16)
and (I7) we make some mostly-standard assumptions regarding regularity and data.
The important ones are captured in the following block.

Assumptions 4.1 (technical assumptions) For the error analysis in this section
we restrict to the specific case of piecewise linear polynomial approximation in space
and time. As already mentioned we assume that the material coefficients are constant in
space and time, that the body is a synchronous linear viscoelastic solid with 0 < ¢o < 1,
that the domain ) is a convex polytope that is exactly represented by the finite element
mesh, and also that Ty = @ so that X = H}(Q). We further assume regularity of
data and domain sufficient to guarantee that the system ([I3)), (I6), (I7) has a unique
solution w € W3 (I; X N H3(Q)) and we assume elliptic regularity such that for every
L € Ly(Q2) the solution, q € X to the elasticity problem a(q,v) = (£,v) for allv € X
satisfies ||q|| g2y < Cel|€]lo-

As a consequence of these assumptions and the Riesz representation theorem we may
define a linear elasticity analogue of the inverse Laplacian as G: Ly(€2) — X by the
relationship a(G€,v) = (£,v) for all v € X as well as its discrete analogue G, : Ly(2) —
X" given by a(Gpl,v) = (£,v) for all v € X"

Theorem 4.2 (e.g. [27, Chap. 2]) The map G: Ly(Q2) — X defined above is self-
adjoint and positive definite on Ly(). Also, G: Ly(Q) — X" is self-adjoint and
positive semi-definite on Lo(QQ). Furthermore, there are positive constants, C, C,
such that

1(G = Gn)ello < CR?|[£lo (27)
(Gnae, &) < Ol x[[€]o, (28)
1211 < |(£.Gr0)| + C.h7|1€]l5 (29)

12



for all £, 3¢ € Ly(2).

Proof. For arbitrary £ € Lo(§2) we have (G€,3) = a(G€,Gx) = (£,Gx), as well
as (GL,£) = ||GL||% = 0 with G€ = 0 if and only if £ = 0. Furthermore, by the
same reasoning (Gn€, %) = a(Gn€,Gr) = (£,Gy3) and (Grl,£) = ||Grl||% = 0 for all
L€ Ly(0).

Next, by standard energy and approximation error estimates, followed by the Aubin-

Nitsche duality technique we get |[(G — Gi)€lo < Ch*||GE| g2y and ([27) then follows
from elliptic regularity.

Notice now that ||Gn€||% = (Gnl,£) < ||Grl|x||€||x: which gives ||Gre||x < C|€||o
because (0.v) o]
,U v

1€]|x- = sup < [l€llo sup -

vex\{o} lv]lx vex\{o} lvllx

and therefore |(Gp3e, £)| < ||3¢]| x/[|Grl||x < C||5¢]|x]|£]|o as claimed in ([28)). Lastly, for

([29) we notice the isometry [|GL||x = ||£||x: for all £ € Ly(Q) from the Riesz theorem.

Therefore, for every £ € Lo(£2)

< Clielo

1el%: = 1G5 = (£,G€) = (£,Gnt) + (€,GL — Gi¥)

and, from (27), [|€]% < |(£, Gr€)| + Ch2||€])2 which is (20). Qs

To handle the time discretization errors we introduce, piecewise for each n, the projec-

tion Pyl : C(I,) — P1(1,,) defined by

n

(Pr)- =v-  and /t " (t) — Pyo(t) di = 0. (30)

We will need the following estimates of the approximation error associated with P; as

well as the error associated with the piecewise constant approximation of a function
1 [tin

v € Lyi(1,) by its average value v := 3 [," v(s)ds. HEI]

Lemma 4.3 Fort € I,,, for each n, we have that,

(Pro)(t) = v(t,) — w /t " (s = tar)ils) ds,
(I — Po(t) = /t "5 — t)ii(s) ds — (t"k; ) /t " (s =t 1)2i(s) ds.

Moreover, |(I = Pr)o(t)| < C(q)k* V?||6]| 1,1,y and [|(1 = Pr)vl| L, < C@)R?|[5]] 1,1,
for Hélder conjugates p,q € [1,00].

Proof. We first write (Pv)(t) = v(t,) + (t, —t)1 on I,, and determine 1) € R. Noting

"Short Version: The proofs are standard and are omitted.
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that v(¢ )+ j; s)ds we get,

/I _ () dr,
/[v /()ds}—[<t>+<tn—t>w}dt,

/t /tv dsdt—w/ — tdt,
/t /t dt (s ds—wu 7

tn
]{32
/ s —tn_1)0(s)ds — %
from which v = —5% ftnil(s — t,-1)0(s) ds which establishes the first claim. Next we

see that

o(t) = Pro(t) = [U(tn)—l—/t:?}(s) ds| - {U(tn)_W/t” (5 = tu1)i(s) ds].

tn—1

:/t:ij(s)ds—l-w/t:il(s_tn D)(s) ds,

; - /t:(s — t)ii(s) ds

e i) = [ i) ]

- [Cemniwas- g [T i

which is the second claim. Therefore, for 1 < p,q < oo with p~t + ¢! =1,

() — Pro(t)] < /tn(s—t)i)(s) ds — (t”k; ) /t (5 — tn1)%i(s) ds

tn 1/q tn 1/p
< (/ (s —1t)? ds) (/ [6(s)|P ds)
t t
P tn 1/q tn 1/p
+ (tn — 1) / (s —t,_1)*ds / |6(s)|P ds :
k2 th—1 tn—1
L+l 1/q to—t [ k2t 1/q
(q+1> TR (2q+1> LT

< Clg) (KD g CE0/) ], )

Y

which, after noting that (¢ + 1)/¢ = 2 — 1/p and (2¢ + 1)/q = 3 — 1/p proves the
third claim for p, g € (1,00). The cases p = 1, 0o follow from the first line of the above
argument and completes the proof of the third claim. The fourth claim follows easily
by using the third claim to estimate the L,(I,,) norm of (I — Pr)v. OO

14



Lemma 4.4 For the average value of v € Li(1,,) defined by

1 [t 1 [t
V= —/ v(s)ds we have v(t) —v = —/ / 0(n) dnds
k: tn—1 k: tn—1 s

and |v(t) — o] < [0l 1) -

Proof. We have

1 1 tn s )
=o(t) — - ds v(t) — = 0(n) dnds,
k th—1 Jt
/ / n) dnds
th—1 s

as required. The estimate then follows immediately. B

i

Lemma 4.5 If (Y,(-,-)), with induced norm | - ||y, is either Ly(2) or one of its
Hilbert subspaces, then for any p € [1,00] we have ||v — ||, (1.v) < k|01, 1.v) and
I = Pr)oll vy < 2K 9] 1, (1:v)

Proof. We begin with the second claim because it is a less tedious argument. For
K(t,s):=(s—t)y — k™ 2(t, —t)(s — tn_1)* we have from Lemma [L.3] that

v(t) — (Pro)( / K(t,s)v(s)ds

for t € I,,. Therefore, for such t,

(T - Pryo Hy—</ K (t, ) dn/ K(99(6) de )

_ / / K (t, ) K (t,€)(8(n), 8(€)) dnde,

< ( / K () ||ft><s>||yds,)2,

= (= Po)lly <26Y95(5) 1, (10v)

for 1 < p, ¢ < oo because, clearly, || K| (1,1, < 2k. Taking the L,(I,) norm on both
sides then proves the second claim of the lemma.

For the first claim we use Lemma [£.4] to write

lo(t) - o]}3 = / / / / )) dide dsudss

tn max{s1,t} pmax{sa,t}
<w/ I/ o)y )l e s

in{s1,t} min{so,t}

— o) - ol < / 15(6) |y de.

8Short Version:
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The first claim then follows from this. 7BEEEE5

il

The next step is to introduce a discrete dual backward problem and establish strong
stability estimates for its solution. We then use this dual problem to obtain an error
representation formula and the error bound will follow from that, the dual stability
estimates and approximation results. The discrete dual backward problem is: find
(U W, Z1,...) € V= such that,

(WU, 2, ...),(0,(,&1,...) =9((9,(,&1,...)) v(0,¢,&,...) eV (31)

where the linear form (with data Wy, Uy, and g to be chosen later) is defined by

G((9,¢.&1,-..)) = Wy, oCy) + allly, pody) + (. ) (32)

and the bilinear form is defined by,

(WU, 21,0, (9,8 &, ) = — (V. ¢) — a(Ud, o) +b(¢ W)

a(W - U, o) — % a( 2, 8,C) + % a(2, - T Zq + BV, &)

—Z([[W]]WQC +a([U],, , p0,) +i ([ HnaTqE«;n)>

q=1

N‘P
+ Wy, o€y) + allly, 009%) + > alZ, . 7oy n)- (33)
q=1

If we define X — X' maps A and B* using the bilinear forms so that (Ax, 8) = a(x, 0)
and (B*x,0) = b(0,x) each for all 8,x € X then this corresponds to a discrete
approximation to a backward problem which in ‘strong form’, and with W = U, looks
like oW + oAU — B*W + Zq B,AZ, = —g and Tqu — 2, = B,V for each q.

Integrating by parts in time and using,
' N-1
Z / (€ W) dr+ 3 (0 1¢h W) + (o6 W)
tn—1

- Z [ om0 YL )+ 056

for all W and ¢ such that W|;, € Wl([,; X) and ¢|;, € W} (I,; X) for each n €
{1,..., N}, with similar results for the terms involving a(U, ¢o9) and a(Z,, 7,&,), gives
that

(WU, 21, ), (0,C,6,..)) = ((9,¢,6,.. ), WU, Z1,..)).  (34)

Let IT,, 1L, Iy, ..., Iy, : H'(I; X) — V be projections, as yet unspecified. Then,
on choosing (0,¢,&,...) = (U, W, Zy,...)— (Il,u, 1, w,I112,...) in B1), and using

9Short Version:
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(B4) and the Galerkin orthogonality in (2]), we obtain the error representation formula,

9((9,¢,&,...) =9(U - Lu, W —Il,w, Z; — l12,...)),
=" (W, U, Z4,...),(U-Tu, W —Il,w, Z; —zq,...)),
= (U - l,u, W —l,w, Z, —1z,...), WU, Z,...)),
= ((u— 1w, w-1I,w, z —z,...), WU, Z,...). (35)

The terms (u — Il,u, w — I, w, z; — II121,...) on the right can be bounded by ap-
proximation results and then once the terms involving (W,U, Z;,...) are bounded by
the data in ¢, and suitable choices for those data are made, we will obtain an a priori
estimate for U — II,u and W — Il,w. The estimates for u — U and w — W then
follow from more approximation estimates and the triangle inequality.

We begin by determining an analogue of Theorem [3.1] and derive stability estimates for
the discrete dual problem where the final values of the dual internal variables are zero.
In this and below it is to be understood that the temporal norms of time derivatives
are ‘broken’ so that | W] .y = (32, W% s )1/1!7 with the ‘max{. ..}’ modification
for p = oo.

Theorem 4.6 (discrete dual stability) Let Assumptions [/.1] hold and then, with
Z,(T) =0 for each q, there exists a unique solution to ([B1l) that satisfies

T Ne
||Q”2VV+||0+||901/2?/1+||X+Z||Tl/2Z+ ||x+2/ bW, W) dt+22||zq”%g(tn,T;X)
N Ny
1/2
s (ngwm B el uunm||§+z|v;/2uzqnm|@)
m=n-+1 g=1

T
= I WIE + et U +2 [ (o W)
tn

for everyn =0,1,..., N — 1. If in addition g = 0 and h < crk for a positive constant
cr then

1/2 1/2
”QUQW”LOO(I L) T HQWWHLP rxn + o / U”%w(ln + [l0g / UHLOO (I;L())
Ny
5 1/2
+ DI 20 R ) < CTH2(1+ ) (10 WR I+ llet U 1% )
q=1

for a constant C independent of T', h and k and where we can choose p = o0 if yvg =0
in (I4) and p =2 if yg > 0.

Proof. Notice that if the data, Wy, Uy and g, are zero in the discrete dual problem
then the first claim of the theorem provides uniqueness of solution, and existence then

follows. To prove this equality, in analogy to the proof of Theorem [3.11 we choose
in @) (9,¢,&,...) = UW,2Z,...)on (t,,T), and zero on (0,t,), for an arbitrary

17



n=0,1,...,N —1, to get (with the notational convenience that ftT =)

T T T
| Gt v owg) + aiphs) == [ (@0 Wyt = [ althamyde
tn tn tn

T T T
- / bW, W) dt + / aW, poU) dt — / a(Ud, pold) dt
tn tn tn

N@ T N(p T
- / a(Z,, BV) dt+ ) / a(Zy, 2,) — a(1,2,, 2,) + a(B WV, 2,) dt
q=1"1tn g=1"tn

S ((uwum,gwm>+a<uunm,gooum>+Za<uzqﬂmquq,m>)

Ne

+ (Wa, oW + alty, ody) + Y alZ . 72, )-

q=1

Noting that [1}@]

N-1

N t
m 1d _ _ _
= [ e IR = S (Wi - Wi o) + e W
m=n-+1 tnL—l m=n-+1
N N—-1

N
1 _ 1 _
=5 S N PWaB 5 S I WL - Y OV oW,

m=n-+1 m=n+1 m=n+1

N-1 N
1 _
=5 2 MWl =5 D e Wills + Wi, o)

m=n+1

DO | =

N
1
+5 > [(Wm,ngH(Wﬂt,@W;)—2<W;,@Wm)}

m=n+1

which leads eventually to

N tm ' N—-1
-y / (@ W)dt— 3 (DM, W) + (W5, W)
m=n+1" tm-1 m=n+1

N
1 1 1 _
= Sl PWEIE = Sl Wilis +5 D 11e"2 DV, IIE + (W W),

m=n-+1

10Short Version: and noting that
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along with the analogues for a(U, pold) and a(Z,, 7,2,), then gives,

No

T T

| wwa= [ BV W)+ 3 1200
1

+ 310 WEIE + Sl U e + ZHTWZ Wk

1 1/2
Sl PRI = Sk "2 1 - Z 7222wl

N
1
ty 2 (H@lﬂuwn |ro+Hso”?uuumn?x+Zur;/2[[zqﬂmn?x>
m=n-+1 q=1

and the proof — of the first part — is completed by setting each Z;N =Z y=0.

R E)
Next, in (BI) we choose ¢|;, = (¢, — t)GuW to obtain

2 tn .
(oW, GuW) = W/‘uw4w%wyw@

2 [in
) (tn — t)(pold, W) dt—zkz/ 1)(By 24, W) dL.

n—1

Short Version: along with the analogues for a(U, pold) and a(Z,,7,2,), then gives the first part of
the theorem once we set Z"y = Z. = 0.
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Recalling that 37 = 47, and using (29) and then (28) now gives,
oWk < CLh?([ 0 PWF + (oW, GWV),
) 9 [in )
< O W + / (b — DGV, W) di
tn—

_% (t — ) (pld, W) dt — Zk2/ t)(5,2,, W) dt,

. 2 [l : :
< CLR2|| W2 + —2/ (tn — 1) (’YM(Qghwaw) + vE(W,W)) dt

et dt—zsz 0 (BaZe W) it

. 2Cy ;
< e Wi+ 2520 [ = 010 Wl Wl
tn—l

Q’YE tn .
s [ = 0IWlcdt oW
tn—1

2@5/2 tn 1/2 1/94 A
+ 1/%2/ (tn = O)llp” Ul x dt [ W]x:
Nw 1/2
/k/ Dl Zollx dt Jlo W x,

< C*hQHQl/QWHo + Cul| 0P| (1o 102 W | x0

Clq)ypk=/P

LY WL, ix) [0 Wl|x

%o 1/2 .
; (;) 12Ul Nl
Ne o 1/2 .
Ly (;) 17222,y W,
q=1

because, from Holder’s inequality

25 (" it < 2 ([ —irar)
o2)2 tn_l(n—)H [B% S 22 tn_l\n—| VI, (1)

2'7E ( k,rJrl

o2k2 \r+1
. Q’YE]C1+1/T_2
= 01/2(7n+1)1/r

C(p)yek™"/?
< THWHLP(M

1/r
) IWI|L, (1.:x)

”W”Lp(ln§X)
for 1 < p < oo. Using Young’s inequality four times in the form ab < a?/8 + 2b* then
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gives,

10" W% < Ch2 0" PW + Cyael| 0 Wl 1w (Lo 10 W] x
C(q)ypk=/P
ol/2

1/2
®o 1/2 -
" (?) et Ul e iy 0250
1/2

No 0 12 /N, )
+ (Z j’) (Z Hqu/QZqH%OO(In;X)> 10"*W||x,
q=1 q=1

: 1 -
< CB2 (|0 PWIIG + Cllo WL (1,:2.0(0) + §1\91/2WH§(,

IWIIL, rix) |02 W] x

_ 1 '
+ Cyik 2/p||W||%p(In;X) + gHQlﬂWHg(/

1/2 1 A
+ Clloe " Ul i) + gle Wil

Ny

1 .
+ CZ ||qu/2zq||%oo(fn;X) + gHQl/QWH%(’a

q=1

which is, | ]

HQWWH%« < C’Y%:k_g/p”w”%p(ln;)() + ChZHQl/zwﬂg + C”QWWH%M(%LQ(Q))
/ i
1/2
+ Clleg u”%oo(ln;X) + CZ ”qu/zzqnioo(In;X)

q=1

for every p € [1,00]. If there is no stiffness term in the Rayleigh damping then vg = 0
and this estimate is sufficient for our needs, but if vg # 0 then we need to eliminate
the £~/ term on the right. To do this we take p = 2 and obtain,

N
|0 W2 < CVRR 2 IWIE, i) + Ok D W20 W10

n=1
N N N N,
1/2
+ Ck E 16" *WII3... (1L + Ck E 2 U7 1x) + Ck E E 1702 2413 (1)
n=1 n=1 n=1 g=1

because fln 12 dt = k. From this we have,

HQl/zWH%Q(I;X/) <CT lfg}fg\, {hz”Ql/QWH%OO(In;LQ(Q)) + ”Ql/QW”%OO(In;LQ(Q))

No

T
1/2
+ ||<P0/ u”%oo(ln;X) +Z||7—(11/2Zq”%oo(ln;X)} ‘f‘CVE/ bW, W) dt
0

q=1

12Short Version: after recalling that 8, = (¢,7,)"/?, using (3) and then (B8)) with several applications
of Holder's and Young's inequalities,
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or, more compactly, [] in the general case,

I *WIR, rx) < CT*7 max {h2||@1/2W||%ooun;L2<n>> + 10 PWIL L (1izae)

N, T
1/2
+ [l /U||%oo(1n;x>+Z||qu/22qlliw(1n;x>} +07E/ bW, W) dt
0

q=1

with p = 2 when vz > 0 and p = oo when vz = 0. Noting now that on each I,, we
have W|r, = k' (t, — )W, | + k~'(t — t,_1)W, and so on, we can obtain,

koYW 1o (1220 + 107 W b (a0 < 110/*Wi Lo
+12WE Lo + (102 WL, llo,

with similar results for & and W in the X norm, and these imply,
T
1/2 ;
o / u”%w(f,l;X) + ||Ql/2W||%oo(I;L2(Q)) + ||Ql/2W||%p(1;x') < CVE/ bW, W)
0
+CT*? max { (1457202 (II@”QWIHS + [l 2Wiallf + Nl DA, ||3>

1/2 1/2 1/2
+ oo 2t % + e U % + Nles U], 1%

+ Z (Il 25 + Iy 22l + 1 1240, 1 ) }

Returning to (3I)) with, this time, 9|7, = ¢ (t, — t)Guld and 9 = 0 on I\ I,, we get,
Ko tn .
S = [ e = oow.tt i
2 tn—1
which gives [|U||o < [|[W| 1. (ru:L()) 00 I, and, therefore, | 14)
o0 Ul L rns1a0) < C(||91/ZW,T||0 + 1AW llo + [0 DV, ||0)~
In a similar way, with &,|;, = (t, — t)GrZ, in BI) and zero elsewhere we get,
N(P tn . . th tn .
> / (tn — t)a(ry 24, GrZg) dt =) / (tn — )a(Z, + BV, Gr2,) dt
q=1 tn—1 q:l tn—1
and therefore, for each ¢,

. 9 [in .
a2 2,15 = —/ (ta — O)a(r, V22, + 7.2 8,0, 712G, 2,) dt
t

kQ n—1
2 tn .
== (tn — ) (7, P2, + 7, 2B W, 7} 2,) dt,
tn—1

<N 22+ 7, P B L (oo 173 Z4 o

13Short Version:
4 Short Version:
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[] In an obvious way, and recalling that 3, = (¢,7,)"/?, this implies,

1/2
1720 < Iy 2ot + (£4) 1" Wl ity

and so,
1 &
2 Z ||qu/22q||0 Z ||7'_1/2Z ||Loo(ln Ly@) T Z ( ) ||Ql/2W||LOO(In,L2(Q))
q=1
Nso
_ ©(0) — o
= Z 7, 1/2Zq||%oo(ln;L2(Q)) + 0 ||Ql/2W||%oo(1n;L2(Q))-
qg=1

[1}@] and, therefore, on I, (using i(a + b+ ¢)? < a® 4+ b* + ¢2),

N, N,
1 13 . 13 B B B
= InPZ I <D (I 228 B+ Ir 22l + i 2 120, 1)
q=1 q=1

©(0)
(O (MWl + N Wi B + 1 DL IR).

Assembling these recent estimates gives,

1/2 1/2
10 *WI3 _ ripacy + 1072WI3, ey + s U ) + 106 U3 i
N, ‘ T
+ Y 22 ) < CVE/ bOW, W) dt
q=1 0

1<n<N

£ T max { (145720 (II@”QWIIIS W + 12 P, ||§>
1/2, 1+ 1/2 1/2 9
+||<P U, ||X+ ||90 1||X+||<P [[u]]nHX

+ Z (/2 25l + lImg 2 2 W + 1y 240, 1 ) }

and on recalling the first claim of the theorem now we obtain,

1/2 1/2
HQUQW”%OO(I;LQ + HQUzW”Lp r.xn t o / u”%m(ln, + [l / UHLOO (I;L2(9))
Ny
: 1/2
+ DI 20 R ) < CTHP(1+ ) (0 W + et Ut 1% )
q=1

15Short Version:

g2 2415 < Ny /224 + 7 2B 1 o (rszacn 74 24 o

16Short Version:

- ¢(0) — o
‘Z Iy Z4ll5 < Z 17 2 Z4ll7 12y + THQWWHLUH;LJQD

=4

q=1 q=1
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for a constant C' independent of T, h and k. This concludes the proof. | ] LN

For the linear elasticity operator we can introduce the map A: X — Ly(Q2) which is
well defined for every v € H?(Q2) N H} () by (Av,9) = —a(v,d) for all 9 € X. The
discrete version of this is then A, : X" — X" and defined by (Apv,9) = —a(v, ) for
all 9 € X". We note that for any ¥ € X" and v € H}(2) N H?(),

(ApPxv,9) = —a(Pxv,9) = —a(v,9) = (Av, )
and therefore || A, Pxvllo < [[Avo. H@]We can now give the error bound.

Theorem 4.7 (a priori error bound) Let Assumptions [{.1] hold and in addition
assume that h < crk for a positive constant cy. Then

0" (w = W)y llo + llpy* (w = Uyl x < CTV2 P 0(w) (h+ kP + k7' /2h2)
for a constant C', dependent on data, but independent of T', h and k and where
Z(u) = lullwimze) + [l gmee) + lullwy gao)
+ ||u||Wf’(I;H2(Q)) + |lwllws 1 m30))-
In this bound we can take p = oo if yg = 0 in ([{4) and p =2 if yg > 0.

Proof. From the error representation formula, (33]), (34)) and (B3] we have,

(OW5(W — Tw)y) + algoldi, (U — au)y) + (. W — ,w)
=9((U - Tl,u, W —Il,w, Z; — I12z,...))
= (u—Tu,w-—T,w, z —z,...), WU, Z,...)),
=" (WU, Z,...), (u—Tu,w—1,w, 2z —Iz,...)),

17Short Version: Assembling these estimates and recalling the first claim of the theorem then completes
the proof.
18Short Version:
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and so

(Wi, (W — IL,w)y) + aleoldsr, (U — u)y) + (g, W — IL,w)
—((QW, w — [I,w) — a(U, po(w — wa))) + b(w — ,w, W)

Ne

a((W —U, wo(u — Huu))) — Z a((ﬁqu, w — wa))

q=1

2

([[W]]n,@(’w yw), ) + Wy, o(w — IL,w)y)

T
—_

a([U,,, po(u = Thyu),) + ally, po(u — Ilu)y)

[]:

Ny
a((Zq + BW, 24 — quq)) — Z a((Tqu, Zg — quq))
q=1

q=1
N-1 Ny Ny
a( Tq(zg — gzg),, ) + Z G(Z;Na Tq(2Zg — Hgzg) y)
n=1 g=1 qg=1
13
=2 ¢

1

J
with obvious notation. Recalling Px in (I9) and Py in (B0), we choose
u — Il,u = (u — Pxu) + (Pxu — P;Pxu),
w — [,w = (w — Pxw) + (Pxw — P Pxw),
zq — gz = (2 — Pxzg) + (Pxz, — P1Pxz)

H@]and then, with either (p,r) = (2,2) or (p,r) = (00,1) in the following Holder
inqualities, we take the error representation term-by-term to get first that,

& = —((QW, w — PX'w)) — ((QW, Pxw — PIPX'w)) = —((QW, (I — PX)w)),
= |&1] < [[0"*(I = Px)l|e,axll0" W1, r:x1,

and then second that,

&y = — (( o, w — PX'w)) — a((@OM,PXw - PIPXw)),
— Z/ a(d — U, po(I — P;)Pxw)dt,

where we introduced the average of U by virtue of the definition ([B0) of P;. Now, from
Lemma 4.5, with ¢ € I,,,

aUl — U(t), po(I — P;)Pxw(t) (‘po /t / n) dnds, (I — P))Aw(t ))

< 00 Kllsog Ul o a0 | (T = Pr) Aw (8)]Jo,
< 200K

196" U £ (1120 | AW || 24 (11: 22052

9Short Version: 11, =11, =11, =1l for I — 1 = (I — Px )+ (I — P;)Px
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where we recalled that for 9 € X" we have a(9, Pxw) = —(9, Aw) and also noted
that

a(P,Pxw,9) = a (wa(tn) - w /tnnl(s — t 1) Pxis(s) ds, 0) ,
— a(Pxw(ty),9) — w /tn:(s 1 1)a(Pxai(s), 9) ds,
2(tn — t)

= a(w(t,), 9) - = /t (5 — tn_1)a(tis(s), 9) ds,

= —(Aw(t,),9) + % /tn (s — tn_1)(Aw(s),¥) ds,
_ (Aw(tn) - W/t (5 — tn_1)Adib(s) ds,t?) ,

= —(P]Aw, ’l9)
[1}@] Therefore

621 < 200" 1l Ul poc 122000 | A% | 14 (1:1200)-
Next we have
=y (w — Pxw, oW) + v (oI — Pr)Pxw, W — W)
+ ’yEa(('w — Pxw, W)) + *yEa(((I — P)Pxw, W — W)),

= 'YM((w — Pxw, QW)) + 'YM((Q(I — Pr)Pxw, W — W))
+ypa((I — Pr)Pxw, W — W),

and so | ]
& = "yM((’w — Pxw, oW)) + v (oI — Pr)Pxw, W — W)

— (I = Pr)Aw, W — W) '

< C(I = Px)wl| L, Lo 10" Wl oo (1210 ()
+ C(VMH(] = Pr)Pxw|r.r;x) + el — PI)A’U’HLT(I;X)) W =Wl a:x1)
< O = Px)w|| 1, rizap [0 Wl Lo 1500
+ Ok (yar 2, 1) + £ 8% 1, 1) )01,
Arguing similarly as for & we have,

64| = a(W = W, (I — P)Pxu))| < K| 0"*W|1, x| Ade| 2, (1,3,
Ny
18] < CHNTa 2yl oo 1202 | AW | L (102,

q=1

20Short Version: a(P;Pxw, ) = —(P;Aw,9).
21Short Version:
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(because

Es=-> > / a(Z, — Z,, B,(I — P;)Pxw)dt,

q=1 n=1"1tn-1

No
<D 20K P 2 Lo | A% 1, 12200
q=1

by Holder’s inequality.)] ] and also,

Ne
|10 + &1 = Z a(Z, + B — 7424, 24 — Px2,)
q=1
Ny, Ny
+ a2, + BW, Pxz, — PiPxz,) — Y a(7,2,, Pxz, — PiPxz,)|,
q=1 q=1
Ny N 4,
= Z Z/ CI,(Zq + BqW, (I — P])szq) dt s
q=1 n=1 tn—1
Ny N
< Z Z (HZq — 2yl (I = Pr)zgl . x)
qg=1 n=1

_'_ ”/BCI<W - W)”Lp(lnyX/)”([ - PI>AZCI”LT(I7L;X)> )
< Qk‘?’z (TJI/QHT;/QZqHLw(I;X)||5qHL1(I;X)
1/2
Pq A s
+(2) kuLpa;mHAquw;m),
q
N
(Z Tq1|’2q,‘%1(I;X)>
qg=1

5 (19O 1o 4,
.. 112
ok (T ) 10 Wl [ S 21A% R 1

q=1

1/2 1/2

No
< o (z !\T;/qu!\%OO(I;X))

q=1
1/2

(because ¢'(0) = — Zf]\;ﬂ ©q/Tq), and so, | ]

1/2 1/2

Ny
|&10 + | < CK (Z ||T(11/2Zq||%oo(l;X)>

q=1

Ny

(z nzqnam)
q=1

1/2

Ne
+ CE 0" * W1, 1:x7) (Z ”A’étIH%T(I;X))

g=1

22Short Version:
23Short Version:
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Using now (B0) and the Cauchy-Schwarz inequality for sums we get

8+ 8 =3 (DM, ow — Pxw);) + Wy, o(w — Pxuw)y)

n=1

=

~ (WL, . o Pxw — PrPxw);) + (Wi, o(Pxw — Py Pxw)y),

1

n
-1

2

== (W], o(w — Pxw),) + Wy — [W]y, o(w — Pxw)y),

n=1

(V1. o(w = Pxw),) + Wy, o(w — Pxw)y),

||
Mz

i
I

and so, | ]

1/2 N 1/2
|66 + &7 < (ZHQW} Px)u nl\o> <”Q1/2WJJ§”(2)+Z”Q1/2[[W]]an) :

n=1
while, again from (30), we have

N-1

G+ & ==Y alpo U], (u— Pxu),) + alpldy, (u — Pxu)y)

n=1

N-1
Z a (,00 [[Z/[]] Px’u, — P[qu);) + CL((,DQZ/[K;, (Px’u, — P[qu)]_v),
n=1

and

Ny N-1
&1z + 13 = —ZZCL(Tq [Z], . (¢ = Px2q),) + a(7,Z, y, (24 — PxZq) )
g=1 n=1
Ny N—1
- Z Z a(rq [Z4],,, (I = Pr)Px zq),,) + a(74Z, . (I = Pr)Pxzq) y),
q=1 n=1

=0.

24Short Version:
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[] Putting all of these together and taking g = 0 gives,

(W3, (W — Iw)y) + alolly, (U — Mu)y)
< |10"2(I = Px)a|z, %)l * Wiz, a:x7)
+ CR 0 U Loar:22@) | AT 1, 11 0)
+ O = Px)w| 1y a1 0" Wl Lo (11220
+ R (ar [, 16) + 78l 8|2, 130 ) W a1

+ CE*| 0" P W1, (1) | A 1, (1)
Ne

+ > OB 172 24 L1 La(o | AW | 2, 12 0)

q=1

Ny
+CE (Z ||7'ql/22q||%00(1;x)>
qg=1

1/2 1/2

Ny

(z uzqn;m)
q=1

1/2

No
+ CE oW1, 1) (Z HAqu%T(I;X)>

g=1

N 1/2 N 1/2
+C (Z lo'*(1 - Px)’lln|!§> (HQ“QWM%Z lo'2 W1, HS) :

n=1 n=1

25Short Version: (g)g = 609 = g?lg = 6013 = 0.
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Therefore (keeping the places and indents for easy checking),

(Wx, (W —TL,w) ) + aleoldy, (U — ,u)y)

< <”Ql/2([ - PX)“H%T(I;X)
+ Ck6”Aﬁ”%1(I;L2(Q))
+ CI(I - PX)wH%,l(I;Lg(Q))

2
+ Ck° (“VMH’U'HLT(I;X) + ‘VEHA"L"?HLAI;XO
+ CEYAG]T, 1.x)

Ny
+ Z CkGHAwH%l(I;LQ(Q))
q=1
Ne
+Ck° Z 124117, . x)
q=1
Ne
+Ck° Z 1AZ,11%, 1.x)
q=1
N 1/2
F3let - Pl
n=1

X <|’Ql/2w|’%p(1;X/)

+ ||90(1J/2a||%00(1;L2(Q))
+ Hgl/sz%w(l;Lg(Q))

+ HQl/zW”%p(I;X/)
+ ||Ql/2w||%p(I;X/)

No
* (Z HT;/QZqHqu;LQ(m))

g=1

2

Ne

+ Z |’T;/2Zq"%m(1;X)

q=1
+ |l Ql/zw”%p(l;xq

N 1/2
+1PWRIE+ D 162 DM, H%) :

n=1
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which when better organized is,[]

(oW, (W —TLaw)y) + a(poldy, (U — Iu)y)

N
¢ (H(I = Px)all7, ) + 1 = Px)allL, 1oy + D I = Px)ag s

n=1

+ kG”AﬁHil(I;Lg(Q)) + kGHﬁH%T(I;X) + k6|’Au’\%vg(1;X)

N, Ny 1/2
S e+ 310 o
q=1 q=1
1/2
(HQl/zW”Lp 1x) + 1w / Z/{HLOO(I L) T ”Ql/QW”%OO(I;LQ(Q))

N, 1/2
+ Z ”71/22 17 rx) + 10" *WE Il + Z 16" WV, Ho)

q=1 n=1

and we can obtain ||(I —Px )| 1, .x) < Chl|%| 1, (1,m2(0)), for r € [1, 0c], for the spatial
errors using standard arguments.

Specifically, to deal with the spatial errors we now consider the auxiliary problem of
finding x € X NH?*(Q) such that —Ax = o(I — Px ). Then a(v,x) = (o(I — Px ), v)
and so by standard arguments ||(I — Px)u|x < Chlw| g2 and |[(I — Px)ullo <
Ch?|| || gr2(0)-

The second of these comes from the following argument:

loY2(1 = Px)all§ = a((I = Px)is,x) = a((I - Px)a, (I - Px)x),
= [lo"2(1 = Px)all§ < (I = Px)ulx[I( = Px)xlx.
< CR?Jli] 2oy || x N mr2()
< CR|Ja]| 2oyl 0" (1 — Px )ailfo,
[]Now from (8) we have z, = (¢ *u) for (¢ ) (¢q/T)Y? exp(—t/7,) and so using
Holder’s inequality for convolutions, qu”Lr(I y < Byl L,y because |||,y < By

From (@) we then obtain first that || 2|z, .y < 2(04/7q)"?||2|| 1,7,y and then secondly
that |[Zg]|L, ) < Cllwllwy .-

Using Theorem we now conclude that,
(oW, (W = TLyw)y) + a(peldy, (U — Iu)y)
1/2
< OTVP(1+ eq)(a) (h+ 1+ T202) (110 + o Ui )
[ﬂ@]and then choosing Wy = (W — I,w)y and Uy, = (U — T, u)y gives

|0V2(W — IL,w)yllo+ley > (U — M)yl x
< CTV*P(1 4 er)%(u) (h+ K2 + k~'/20h?) .

26Short Version:
27Short Version:
28Short Version:
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The proof is then completed by using the triangle inequality and more approximation

error bounds for [|0"/2(w — Myw)yllo + lles/*(w — Myw) v x. S

The kinetic plus energy error is estimated by terms of order O (h+ k% + k='/2h?) in
Theorem EET) which, because h < crk, is of size O(h + k%) and since we can allow
k ~ h for g € (0,1] (as h — 0, because h = h'"%h? < h? ~ k), we may have errors of
size O(h + h*?) = O(h) for v < 1. We illustrate and discuss this later at the end of
Section

The O(k?) superconvergence in time in the bound O (h + k3 4+ k~'/2h?) is expected for
temporally piecewise linear approximations and was reported in [I, Thm. 2.3, Rem. 2.6]
for parabolic problems. The O(h) term is very standard and arises from error bounds
for the elliptic projection. The O(k~2h2) is more unusual in that it is not seen in
error bounds for finite-difference-in-time methods. It arises here because the term &
in the proof of Theorem [ contains a sum of squared L4({2) spatial errors over all N
time levels with no compensating weight of the time step & to Kkill the growth. Hence
the sum of N ~ k™! terms of size O(h?) is controlled by a bound of order O(k~'/2h2).

The bound in Theorem 7 is only optimal if we regard the left hand norms as in-
separable. Otherwise, experience tells us that we could expect ||o"/?(w — W)y|lo =
O (R + K + k'/2h%) and ||gy*(u — U)yllx = O (h + k* + k~'/2h%) — although the
first of these these is not proven here.

Furthermore, we can expect that using piecewise polynomials of degree p > 1 in space
would (regularity permitting) result in a bound of size O (h? + k% + k~'/2hP*1) in The-
orem 71 We can also see that while higher degree temporal DG polynomial approxi-
mation would improve the O(k?®) term, it would not affect the factor of k=1/2.

5 Implementation and results

The implementation given below is restricted to piecewise linears in time in order
to illustrate Theorem A7 Unlike Li and Wiberg’s method in [I7], we do not need
an iterative solution but instead eliminate the displacements so the linear block-solve
is for just the velocities. Only the main steps are outlined, the full details are in
Appendix [Al [11@] The formulation includes the case where a traction is imposed on
I'y but, to remain consistent with Theorem .7 we revert to I'y = @ for the numerical
results.

On a given time interval, I,,, we choose a piecewise linear temporal basis 01,05: I,, - R
and, in (m]), write U(t) = Ulel (t) + U292(t), W(t) = W101 (t) + ngg(t) and, for each
q, Z,(t) = Z,10:(t) + Z,202(t) where U;, W;, Z,; € X" for each q and for j = 1,2.

Then, defining,
° M — e 01 (1)01(t)  Ox()0(t) i@t
N /tn_l ( 01()0o(t) O5(t)0:(1) )

and

A= [ (Gt Som ) (o )

tn—1

29Short Version: Only the main steps are outlined.
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we can choose ¥ = 6;(t)v in [2I) and extract the discrete momentum equation,
(i ) (e ) s )
(g Yewewos [T (00 (00 + @000 )

for all v € X". Next, choosing ¢ = 6;(t)v in ) gives the following discrete enforce-
ment of w = w as,

(o) =2 () o (o)

and, with this, the momentum equations simplify to,

A({owire) ) +romm e, b)) )

+ZM< gz Z; ) ( ’;) ,'v)+(g(t),'v)pN>dt

- ( Z;Eij ) (oW, 1, v) — MA™! ( Z;Eﬁjﬁ ) ool 1 ).

In a similar way, by choosing &, = v6;(t) in (2I]) we obtain,

Z 1 W1 _ 01(t _1)
A+M & = G,M VA "

e (o) = (s )+ n (G )
which can be substituted into the momentum equations to result in a two-by-two block
system for W7 and Wo.
To make progress we choose the specific forms 01( ) =1 and 6,(¢t) = (¢, —
then obtain easily that A = (; ?) and M = (g g) Moreover A=t = ( ;
M-t =1( ¢ —12) and, further, M™'A = 3 (~ 2—3) MA=l = E( 9% A-TM =%

and MA™IM = (12 1;) After a significant amount of routine calculation we arrive at

a specific form of the momentum equations as,

o+ 37k~ 5io/6 + 2vpk! 327, + k) (57, + 2Kk)
(o )+ (orsm S ) (5o
=Ai(2w_wﬁ)(umwwummmm)ﬁ+(g)@w;bm

k(9 aaus v)—%%dﬂT T RN iz ). (36)
3 Poln_1s e q~q'q 37_(1_'_]{: qn—1s

Once W; and W, are obtained from this we update U; and U, with

k k
U = kW, + §W2 +U,_, and U,=—-kEW; — §W2,

12 [( 300 + 675k~ 200 + 3ypk ) %d 52 ( 6(37, + k) 3(47,+ k) )
q
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and then obtain Z,; and Z, 5 from

Zg1\ 67, + k 374 Wi _ 31, — k
( Z,, > = Kol ( 67, k—2m )\ Wy ) TR Ean | gy |

We now give the results of some computations designed specifically to illustrate the
convergence rates of the algorithm derived above.

To verify that the observed convergence rates agree with those stated in Theorem (1]
we manufacture an exact solution and choose the data consistent with that solution.
For this we take € := (0,1)?, the unit square, with T'= 127 and we consider an exact
solution in the form,

Uz

u=a(x)T(t) for  a(z):= ( o > = 16(" —2)(y" ~ v) ( 1 >

where T (t) =t + Bcos(t) for a constant B (taken as B = 0 or B = 1 below). Then
w = w7 (t) and we see that u satisfies the requirements of Theorem .7l As mentioned
earlier, we consider the material to be isotropic, homogeneous and synchronous and
then, on using (2) with (4]) and the assumption of Rayleigh damping as in (I4) we can
obtain the loads once the coefficients are defined. For these we take p =1, A = 1 and
i = 1, with Rayleigh damping given by vy = 2, vg = 1, and three-term, N, = 2,
viscoelasticity given by (¢1,7) = (0.35,0.1) and (¢, 72) = (0.15,0.05) for all but the
first example below. In the discrete scheme we used an N, x N,, mesh of isosceles
triangles with piecewise linear elements and a uniform time step of k = T/N;, for

N; € N. We set h:NlTyl

In Examples I, II, III and IV below (based on Examples B [0, 1] and in Ap-
pendix [B]) [1}@] the errors, ‘e’, are reported in the kinetic energy norm, KEe, ||0'/2e.,(T)||o|
for e,(T) := w(T) — Wy, the elastic strain energy norm, ESe, ||cp(1)/2eu(T)||X for
e.(T) := u(T) — Uy, the total energy norm, TEe, (||0"/?e,,(T)||2 + ||<,oé/2eu(T)||?X)1/2,
as well as the H'(Q2) norm for both e, (T) and e, (T).

These results were first computed in a 64 bit bare metal Mint 18.1 (‘Serena’) FEniCS
installation (see Logg et al. in [I9] and fenicsproject.org), with dolfin version 2016.2.0,
on a Dell xps15z laptop with 2 x 4096MB 1333MHz DDR dual channel RAM and 2nd
Gen Intel Core i7-2620M (2.7GHz, 4threads, 4MB cache). They were then repeated
on a multi-core and larger memory machine in order to get to larger values of Ng,.

This collection of results was a bit patchwork. In the end they were all recomputed
as described later in the ‘updated results section’. In particular, there exists a custom
image: pull first,

docker pull variationalform/fem:dgcgwave,
(see https://hub.docker.com/r/variationalform/fem) and then run with
docker run -ti variationalform/fem:dgcgwave.

The command cd fenics followed by ./bigrun.sh -J 3 | tee runmeout.txt will,
for a suite of twelve test cases, produce the error results up to N, = int(2*2) in the
results directory. Examples 5,10,11 and 12 (resp.) of those correspond to examples

30Short Version:
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10° 10' 102 10°
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xy

Figure 1: Errors for Example I, the dashed lines indicate rates of N_P for p =1/2,1, 2.
In this example B = 0 and there are no viscoelastic terms — the Galerkin errors are
due only to the spatial approximation.

I, 11, 1T and IV (resp.) below. Use -J 7 to go up to N,, = int(27/2) and so on (but it
will take longer). []

In Example I we set B = 0 and NV; = 4 and switch the viscoelasticity off by setting
wo = 1, the Galerkin errors are therefore due only to the spatial approximation and
are shown in Figure [l In each of Examples II, IIT and IV we choose B = 1 with
the coefficients given earlier. For these examples we choose the time step k& ~ h9,

specifically
T

max {1, int (%) } ’
for ¢ = 2/3, 1/3 and 1/6, and show the results in Figure @ for Example II, Figure
for Example III and Figure @ for Example IV. In each case h ~ h'™% < cpk and
so the conditions of Theorem (A7 are satisfied. Indeed, the order of convergence as
predicted by the Theorem becomes h + k3 + k~Y2h? = h + h3¢ + h279/2 which is O(h)
for ¢ = 2/3 and ¢ = 1/3, but O(h'/?) for ¢ = 1/6. In Figures [ and B we can sce clearly
that the spatial error in the H'"?(Q) norm is O(h'*?) for p = 0 and p = 1. This is
expected (although the p = 1 case is not proven here) but we also see from Figure
that when ¢ = 1/3 the O(h) term stems from the k3 = h% part of the estimate and

31Short Version: These results were computed using a 65Gb Intel Xeon E5-2640 v4 CPU (2.40GHz).
We used the 2017.1.0 FEniCS (see Logg et al. in [I9] and [fenicsproject.org) docker image started with

docker run -ti ... quay.io/fenicsproject/stable:2017.1.0

(... indicates that superfluous details are omitted) on 20 December 2018. A custom image built for
this paper can be pulled in docker with

docker pull variationalform/fem:dgcgwave,

(see https://hub.docker.com/r/variationalform/fem) and then run with

docker run -ti variationalform/fem:dgcgwave.

The command cd fenics followed by ./bigrun.sh -J 3 | tee runmeout.txt will, for a suite of
twelve test cases, produce the error results up to Ny = int(23/2) in the results directory. Examples
5,10,11 and 12 (resp.) of those correspond to examples |, II, Il and IV (resp.) below. Use -J 7 to go up
to N, = int(27/2) and so on (but it will take longer).
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Figure 2: Errors for Example II, the dashed lines indicate rates of NP for p=1/2,1,2
and k ~ h?/3.

so the expected O(h?) error associated with the kinetic energy error (the Ly(Q2) error
in ) does not appear. Furthermore, the O(h'/?) error for ¢ = 1/6 is beginning to
asymptotically show in Figure [ for all except the dominant elastic strain energy error
in w. The curves for these H'(Q2) type errors in displacement appear indistinguishable
in each of Figures [, @l and Bl This indicates that those errors are dominated by the
O(h) spatial error component for these values of N,, and not by the O(h?) associated
with the O(k%) term.

6 Conclusions

We have extended the formulation and a priori error analysis given in [12] from the
acoustic wave equation to a viscodynamic system incorporating Rayleigh damping.
The elastic term in the Rayleigh damping introduces a multiplicative 7'/ growth in
the constant but otherwise the error bound is consistent with that obtained in [12],
with a constant that grows a priori with T'/2 and also with the norms in %(u) (which
could of course be simplified at the expense of introducing more powers of T'). However,
Gronwall’s inequality is not used and so we can expect that this bound is of high enough
quality to afford confidence in long-time integration.

The results of some numerical experiments are given in Figure [Il for Example I, Figure
for Example II, Figure B for Example III and Figure @ for Example IV and these
demonstrate that the a priori estimate given in Theorem M7 is optimal. They also
demonstrate that the Lo(£2) kinetic energy errors alone can converge at a rate faster
than that predicted by the theorem.
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Figure 3: Errors for Example I11, the dashed lines indicate rates of NP for p =1/2,1,2
and k ~ h'/3.
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Implementation: the details

In this section we give full details of the scheme described in Section

On a given time interval, I,,, we choose a piecewise linear temporal basis 01,605: I,, - R
and, in (2I)), write U (t) = U160, (t) + Uab5(t), W (t) = W10, (t) + Waby(t) and, for each
q, Z,(t) = Z,10:(t) + Z,202(t) where U;, W;, Z,; € X" for each ¢ and for j = 1,2.
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We note that it is possible to choose a different temporal basis for each of these but at
the moment there seems little point in doing so. Then, defining,

" 0)00(t) B2(1)0u(2)
M= / ( 0(1)0a(t) 0(1)0 (1) ) "

a= [ (oo st ) = (o o)
we can choose ¥ = 6;(t)v in [2I)) and extract the discrete momentum equation,
a(fmo (e yem (s )+ Som ()
= (e Y ewsors [0 (g0) (000 + (a0 )

for all v € X". Moreover, for use below, we also notice that we can choose differing
test functions, v, in each row of this block system. Next, choosing ¢ = 6;(¢)v in (2]])
gives the following discrete enforcement of @ = w as,

(o ) = (o ) = (6 ) et

With these, we get,
a<¢oUhv>) L (a«oowl,v)) 4 ( elun_l))
=AM +A U, ,,v),
<“(‘P0U2””) a0 W, v) oot ) ) “PoUn1:v)

and so,

A ) () em (G )= om ()
(
(

and

tn—1

n—1)
becomes
A(((woy ) (e Y (e )

+ZM( ) - /t:nl(zlgg)<(f(t),v)+(g(t),v)rN>dt
(s ) ow o -t (G0 ) o)
Furthermore, by coercivity, we can simplify
(o) ) =aom (o) ) on () ) watim)
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U1 —1 ( Wl ) —1 ( Hl(tn—l)U_fl )
=AM +A " .
( U, ) W, Os(tn-1)U,

In a similar way, by choosing &, = v6;(t) in (2I)) we obtain,

OJ(ZqJ, 'U) . G(Wl, 'U) 01 (tnfl)
(T + M) < a(Zyz,v) ) = M < a(Wa,v) ) 77 Zun-1) 02 (tn-1)
which, again by virtue of the coercivity, simplifies to,

e ()= () -z (i)

To make progress we choose the specific forms 01( ) =1 and 6y(t) = (¢, — t)/k and
then obtain easily that A = (2 1) and M = (g g’) Moreover A= = (_; g) and
M- = L¢3 and, further, M-IA = £(2 ) MA- = £(99), AtM = E(8 )
and MA™!M = ’“—2(12 1?) For the boundary conditions notice that W; = W (t,,) and
Wy = W (t,—1) — W(t,). Compare it to [I7], which is different.

Therefore,

)

GO (o )5 (5 (o)
i <2 (Gs) Catwer )

6
Pk )( %;:

v)

v)

Bq 6 CL(Zq 1,V
" Z (3 ) a(Zq 2,V

or, slightly simpler,

Gs) (owan )+ (1 5) Coowarnr)
uk(53) (awom ) +2¢(3a) Ciwirn) )
S ()= [ (o) (00 0.0 )
4 ( ’ ) (oW, v) — k ( ’ ) a(poU 1, ).
Also,
(o )=t ) =2 (aies )
becomes



which is,
k
U1 = le + §W2 + Unifl and U2 = —le — —WQ. (37)
Recalling from earlier that,
Z‘]al o Wl _ Hl(tn—l)
(1,A+ M) ( Z,, ) = 5,M ( W, ) + 7441 ( Ou(tn 1)

we can now calculate,

. 2 3r,+2k 3k
A M 1 — q
AN = i, T 12 ( —67, — 3k 6Tq—|—6k>’

and conclude that

Zg1\ 67, + K 37, 127} B 37, — k
( Z, ) = kdqﬂq( 67, k- 21, W, +2dy74Z, Ik (38)

for dy = (67, 4 4k7, + k*)~'. The adjustment to the momentum equation follows by
observing that,

6 3 a(Zy1,v) \ 6 3 31, — k _
(s e) Gz ) =2 (5 ) (7 0 )i

+ d k2ﬁ2 6 3 a(gTqWQ ‘l_ (67—(1 + k)Wl, 'v)
e\ 3 2 a((k — 27,) Wy — 67,W7,v)

or, on simplifying,

6 3 a(Zq,h’U) - 67, + k _
(5 3) (ot ) = ot (520 ) otz
g pepe 6B +RW, 4347, + k)W, v)
P\ a(3(2m, + k)W 4 (57, + 2k)Wa,v) )

Finally then we collect results and summarise the solution algorithm. The momentum
equation with these substitutions is,

(o) (lmany ) =2 (7 5) (e
la) Cwen ) o) (i)

S (] 2:;1: )

N /tt ( 6(t, — t)/k > +lglt) )y ) di+ ( 2 > (eWoi,0)
ok ( g ) a(poU; | v) — ;%dqﬁqn] ( g:ziz > W(Z5, 1),
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We then update with (37) and (38)).
Let’s collect like terms together, first step,

6 + 6ypk 0+ 3ypmk (oW1, v)
6+ 3vmk 3+ 2ymk (oWs, v)

42 3po + 6ypk~? 2p0 + 3ypk ™! a(Wy,v)
o + 3vek™ 5p/6 + 2vpk! a(Ws, v)

e (3 ) (i)
- / ( o 0k ) ((£(0),0) + (gt), 0)ry ) dt + ( 0 ) (W, 1.0)
_k(g)a@d%1ﬂﬁ—§§%%&%(§212>a@%nhw.

Second step,

N,
300 4+ 6vek™t 200 + 3vpk~t z 6(3 k) 3(4r, + k
12 wo + 67 Yo + 3VE +qu53 (37, + k) 347, + k)
q=1 3

0o + 3vek™ 5pe/6 + 2ypk! 27, + k) (57, + 2k)

" a(Wi,v) N 6 + 6vak 0+ 3yuik (oW1, v)
G(WQ,’U) 6+3’7Mk’ 3+2’YM]€ (QWQ,'U)

- /tt_ ( 2@” — )k ) ((f(t),'v) + (g(t),v)rN) dt + ( 2 ) (oW, _1,v)

No
6 _ 67, + K _
- k ( 3 ) a(QOOUn—lﬁ’U) - ZlmgdqﬁqTq ( 37_Z + k’ ) a(Zq,n—hv)’
q:

B Numerical results

In this section we provide full details of the results quoted in Section [B, as well as of
some simpler example computations.

The algorithm has been implemented in the FEniCS environment, see Logg et al. in
[T9] and fenicsproject.org. The codes was developed in a virtual box installation of 64
bit Linux Mint 17.3 using the FEniCS environment with dolfin version 1.6.0.

The actual results were computed in a 64 bit bare metal Mint 18.1 (‘Serena’) FEn-
iCS installation with dolfin version 2016.2.0, on a Dell xps15z laptop with 2 x 4096MB
1333MHz DDR dual channel RAM and 2nd Gen Intel Core i7-2620M (2.7GHz, 4threads,
4MB cache).

B.1 Convergence tests

To verify that the observed convergence rates agree with those stated in Theorem [4.7]
we need to manufacture an exact solution and choose set the data consistent with that
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solution. We start by defining 2 := (0,1)2, the unit square, and consider the exact
solution to be of the form,

w=u(x)T(t) for  ax):= ( " ) = 16(z" ~ 2)(s" ~ ) ( 1 )

U2

and where 7 (t) =t + Bcos(t) for a constant B. Then w = w7 (t) and we see that u
satisfies the requirements of Theorem (4.7

We consider the material to be isotropic, homogeneous and synchronous (as discussed in
the introduction) then, on using (2) with () and the assumption of Rayleigh damping
as in (I4]), we obtain (with x-dependence suppressed),

— /0 os(t —s) <)\V ~u(s)d;; + 2,u€ij(u(s))> ds,

— ()\V T ()05 4 2pei (@) T (1) +yeAV - @T"(t)ds; + Q’YEM%'(U)T'@))
- /O t ) (w -aT ()05 + zﬂgij(fa)"r(s)) ds,

_ (AV ad + 2N5ij(ﬁ)) (T(t) + T (t) — /Ot ws(t — )T (s) ds) .

From the strong form of the problem we therefore need the body forces to be,

( jﬁ; ) = (7" +7T")ou~ V- De(a) (T@) +eT () — /O ot = 5)T(s) ds> .
Noting that

en (@) = 16(2z — 1)(y* — y)
ep() = 16(2y — 1)(2* — 7)
1

)= 22 (@~ a)(2y — 1) + (22— Dy~ v))

we get the divergence of 0;; = Djjrer (@) = AV - ud;; + 2ue;;(w) to be given by,

L 200 +20)(y — ) — (A + 1)(1 — 22)(1 — 2y) + 2u(z — 2?)
V- De(u) =16 ( 20+ 2p1)(x — 1) — (A )2 — 1)(2y — 1) + 2y — o). )

The data are T'= 127w, p = 1, A = 1 and p = 1 for all twelve of the following examples.

S

512(

In examples 1,2,3,4 we set vy; = g = 0 and switch the viscoelasticity off by setting
po = 1. These examples are then repeated in examples 5,6,7,8 but with v, = 2 and
ve = 1, and these are then repeated in examples 9,10,11,12 but with N, = 2 and
(p1,7) = (0.35,0.1) and (g2, 2) = (0.15,0.05).

In each example we use an N, x N, mesh of isoceles triangles with piecewise linear
elements in space-time. The number of time steps varies according to the example.

Remark B.1 The original runs used the option -W 5 (bicgstab). FEzamples 11 (for
Nxy values 362, 512) and 6 (for -Nxy 724) showed some poor numerical results. The
command line was changed to =W 3 (gmres with ilu) for Example 11 so that the quoted
data are for the runs:
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time ./solver.py -v 20 -r 1 -R 4 -X 11 -U 1 -W 3 --Nxy 362 \
-C ’-W 3 not -W 5’ | tee —a newresults362.txt

time ./solver.py -v 20 -r 1 -R 4 -X 11 -U 1 -W 3 --Nxy 512 \
-C ’-W 3 not -W 5’ | tee —a newresults512.txt

(The -C option is a new feature on a modified FEniCS code).

For Example 6 (with -Nxy 724) the run was terminated early. It took over 160 hours
to get just 25% through the time stepping. Instead Example 6 was run as:

time ./solver.py -v 20 -r 1 -R 4 -X 6 -U 1 -W 5 --Nxy 724 \
-C ’-W 5 with both tols 1le-10’ | tee -a \
~/Dropbox/AccessAndShare/output724.txt

with (after 6.5 days) the eventual output stored in newresultrs724.txt but with the
following additions to the FEniCS solver:

prm = solver.parameters

prm[’linear_solver’] = ’bicgstab’ # appears best for memory

# new - testing for bad 724 result: successful so retain for the future
prm[’krylov_solver’] [’absolute_tolerance’] = 1le-10 # default 1e-9 7
prm[’krylov_solver’] [’relative_tolerance’] le-10 # default 1le-7 7

in the elif Wmethod == 5: clause. This has been retained as a permanent edit. It is
possible that this will correct the Fxample 11 anomaly also.

The next runs for -Nxy 1024 were carried out using docker on heron12. The docker
image was pulled on 3 Oct 2017 with

docker pull quay.io/fenicsproject/stable:latest

and the run was executed with (for example 6, as discussed below):

mpirun -np 10 ./solver.py -v 20 -i 100 -r 1 \
-R4 -X6-U1-WO0 --Nxy 1024]|

because any other choice for =W ... to compare with those above caused an MPI or
PetSc crash (no idea why). The results are in extra_runs. Here the -i 100 option
caused an update to be written every 1% of time stepping progress.

Example 6, as just described above for -Nxy 724 began time stepping around 03/09/2017
at 07:23:04 and finished around 08/09/2017 at 04:08:42 (these are taken from the
output file newresults724.txt). That’s just under five days without the Initial Con-
dition calculations.

On the other hand, Example 6 with -Nxy 1024 began time stepping on 24/10/2017 at
13:58:10 and finished on 26/10/2017 at 20:16:27. That’s about 2%, days, or twice
as fast as the non-MPI -Nxy 724 run.

-Nxy 1448 was run for examples 1 to 12. It began on Sun Oct 29 15:47:56 UTC 2017
and finished around 20/11/2017 at 22:14:58. It was run with command lines of the
form (for =X 12 backwards to -X 1):
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mpirun -np 10 ./solver.py -v 20 -i 100 -r 1 \
-R 4 -X12 -U 1 -W 0 --Nxy 1448

This from the email exchange with Asif regarding the Heron cluster.
Hi Simon,

Please find below the detail specification of the servers and their total cost.]

1 x PowerEdge R730xd 2 x PowerEdge FX2s

2 x E5-2640v4 RAM 12 x FC430 quarter width server

8 x 16GB 2 x Eb - 2640 v4

2 x SSD 200GB (RAID 1) 8 x 8GB

12 x 2TB (RAID 10) 1 x SSD 200GB

RAID 0, 1, 5, 6 supported Dual Port 1GbE

Dual Port 10GbE + Dual Port 1GbE In FX2 chassis { 2 x 2000Watt PSU Chassis

2 x 750W PSU Chassis Rackmount chassis with rails

Rackmount chassis with rails 5 year 9x5 NBD

5 year 9x5 NBD iDRAC 8 Enterprise on each FC430 leading to CMC controll

IDRAC8 Enterprise 00Bs controller

ex VAT £39,671.85
inc VAT £47,606.22

If you require any further information please let me know.

Kind Regards,
Asif

Thanks Asif,
Was it one of each? I may be reading it incorrectly ..
Simon

Hi Simon,

R730xd is the data/head node and we purchased one of it.

PowerEdge FX2s are the blade enclosures and we purchased two of those.
Each FX2s can have eight blade servers in it

but we evenly distributed the twelve FC430

blade servers between the two chassis.

Each blade has two E5-2640 v4 processors and 64GB RAM.

If you require any further information please let me know.

Kind Regards,
Asif

This needs to be filed somewhere for grant use. Here is my summary:

inc VAT £47,606.22 worth of gear in the heron cluster.

One PowerEdge R730xd head node with 2 x E5-2640v4 processors, 8 x 16GB RAM
and 2 x SSD 200GB (RAID 1), 12 x 2TB (RAID 10) with RAID 0, 1, 5, 6 supported
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Ny TEe KEe ESe |le.(T)|ar) llew(T)| @
Nxy En L2w SEu Hlu Hlw
2 | 1.236e402 3.448e-01 1.236e+02 9.359e+01 2.483e+-00

3 | 8.659e+01 1.668e-01 8.659e+01 6.618e+01 1.755e+00

41 6.603e+01 9.653e-02 6.603e+-01 5.063e+01 1.343e+00

6 | 4.454e+01 4.376e-02 4.454e+01 3.423e+01 9.080e-01

8 | 3.354e+01 2.478e-02 3.354e+01 2.580e+01 6.843e-01

11 | 2.446e+01 1.316e-02 2.446e+01 1.882e+-01 4.991e-01
16 | 1.684e+01 6.236e-03 1.684e+01 1.296e+-01 3.437e-01
23 | 1.172e+01 3.021e-03 1.172e+4-01 9.022e+-00 2.393e-01
32 | 8.427e+00 1.562e-03 8.427e+-00 6.487e+4-00 1.721e-01
45 1 5.994e+00 7.899e-04  5.994e+00 4.614e+00 1.224e-01
64 | 4.215e+00 3.906e-04 4.215e+4-00 3.244e4-00 8.606e-02
91 | 2.964e+00 1.932e-04 2.964e+4-00 2.282e+-00 6.053e-02
128 | 2.107e4+-00 9.765e-05 2.107e4-00 1.622e+00 4.303e-02
181 | 1.490e+00 4.884e-05 1.490e+-00 1.147e+00 3.043e-02
256 | 1.054e+00 2.441e-05 1.054e+00 8.112e-01 2.152e-02
362 | 7.452e-01 1.221e-05  7.452e-01 5.736e-01 1.522e-02
512 | 5.269e-01 6.103e-06  5.269e-01 4.056e-01 1.076e-02
724 | 3.726e-01 3.052e-06  3.726e-01 2.868e-01 7.608e-03
1024 | 2.634e-01 1.526e-06  2.634e-01 2.028e-01 5.379e-03
1448 | 1.863e-01 7.631e-07  1.863e-01 1.434e-01 3.804e-03

Two PowerEdge FX2s blade enclosures with six FC430 blade servers in each (up

Table 1: Results for Example 1.

to a max of eight). each blade has 2 x E5 - 2640 v4 processors,
64Gb = 8 x 8GB RAM and 1 x SSD 200GB

Example 1 Here we switch off the Rayleigh damping and viscoelasticity and choose
B =0, so that ou = 0. For the implementation we need the integrals of the load against
the temporal basis functions. For our choice of manufactured solution here, these are

given by

tn
6/ tdt — 6k3tn,1/2,
tn—1

We take Ny = 4 time steps so that k = 1/4 and show the results are in Figure [3 and

Table 1.

Example 2 We choose B =1 so that the exact solution is

Hence,

Uy
U2

wq
Wa

( 16(2?
-\ 16(z — 2*)(y — )

—z)(y* —

) (t + B cos(t)).

tn .
and 6/ w dt = (3t, — 2k)k.
tn—1




error plots for example 1
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Figure 5: Errors for Example 1, the dashed lines indicate rates of NP for p=1,2,3.

and

_— 16(2% — 2)(y* — ) o8
oi= =08 ( 1oy ) ) o)

the assumption of homogeneous essential boundary conditions is still satisfied and, on
USINg

05 = AV - 'LL(;Z']‘ + Q,LM':Z](’U')
with

Ji = 0i; — 04
we get that

(1) =emeo) (12— 5)
+16(t + Beos(1)) ( (A+2M)Ey v?) — (A + p)(1 = 22)(1 - 2y) + 2p(x — ?) )

200+ 2p)(x — 2%) = (A + ) (20 — 1)(2y — 1) + 2u(y — v?)

So, this time, for the implementation, the integrals of the load against the temporal
basis functions are given for the contributions from the o;;; terms by,

tn
6/ t + cos(t) dt = 6kt,_1/ + 63(sin(tn) - sin(tn_k)),

tn—1

6 /t" (t, — t)(t + B cos(t))

k

dt = (3t, — 2k)k + %(cos(t 1) — cos(t,) — ksin(t,_ 1))

and for the contributions from ou by
tn
6@/ —Bcos(t) dt = 6BQ< sin(t,—1) — sin(tn)>,
tn—1

GQ/t ", — t)(;B cos(t)) ,, _ 6Be <k sin(t,_1) + cos(tn) — cos(tn,l))

ko
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Nyy TEe KEe ESe |leu(T)|la) llew(T)| @)
Nxy En L2w SEu Hlu Hlw
2 | 1.269e+02 3.147e-01 1.269e+02 9.608e+01 2.561e+00

3 | 8.888e+01 1.434e-01 8.888e+01 6.794e+01 1.789e+-00

41 6.778e+01 8.002e-02 6.778e+01 5.197e+01 1.360e+00

6 | 4.572¢+01 3.510e-02 4.572e+01 3.514e+01 9.140e-01

8 | 3.443e+01 1.947e-02 3.443e+01 2.648e+01 6.871e-01

11 | 2.510e4+01 1.020e-02 2.510e+01 1.932e+01 5.003e-01
16 | 1.728e4+01 4.826e-03 1.728e+01 1.330e+01 3.442e-01
23 | 1.203e+01  2.392e-03 1.203e+01 9.261e+00 2.395e-01
32 | 8.651e+00 1.283e-03 8.651e+4-00 6.659e+-00 1.721e-01
45 | 6.153e+00 6.704e-04 6.153e+00 4.736e+00 1.224e-01
64 | 4.326e+00 3.375e-04 4.326e+-00 3.330e+-00 8.607e-02
91 | 3.043e+00 1.678e-04 3.043e+00 2.342e+-00 6.053e-02
128 | 2.163e+00 8.526e-05 2.163e+00 1.665e+00 4.303e-02
181 | 1.530e4-00 4.298e-05 1.530e+00 1.178e+00 3.043e-02
256 | 1.082e+00 2.165e-05 1.082e+00 8.327e-01 2.152e-02
362 | 7.649e-01 1.091e-05  7.649e-01 5.888e-01 1.522e-02
512 | 5.408e-01 5.485e-06  5.408e-01 4.163e-01 1.076e-02
724 | 3.825e-01 2.755e-06  3.825e-01 2.944e-01 7.608e-03
1024 | 2.704e-01 1.382e-06  2.704e-01 2.082e-01 5.379e-03
1448 | 1.912e-01 6.933e-07  1.912e-01 1.472e-01 3.804e-03

Table 2: Results for Example 2.
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Figure 6: Errors for Example 2, the dashed lines indicate rates of NP for p=1,2,3.
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Ny TEe KEe ESe |le.(T)|ar) llew(T)| @
Nxy En L2w SEu Hlu Hlw
2| 1.269e402 2.997e-01 1.269e+02 9.608e+01 2.633e+-00

3 | 8.888e+01 1.210e-01 8.888e+01 6.794e+01 1.867e+00

4 16.778¢+01 6.166e-02 6.778e+01 5.198e+-01 1.429e+-00

6 | 4.572e+01 3.158e-02 4.572e+01 3.514e+01 9.652e-01

8 | 3.443e+01 2.614e-02 3.443e+01 2.648e+01 7.281e-01

11 | 2.510e+01 2.318e-02 2.510e+01 1.932e+-01 5.334e-01
16 | 1.728e+01 1.900e-02 1.728e+01 1.330e+4-01 3.695e-01
23 | 1.203e+01 1.454e-02 1.203e+01 9.261e+-00 2.583e-01
32 | 8.651e+00 1.148e-02 8.651e+-00 6.659e+-00 1.874e-01
45 1 6.153e+00 8.570e-03  6.153e+00 4.736e+00 1.342e-01
64 | 4.326e+00 6.424e-03 4.326e+-00 3.330e+-00 9.553e-02
91 | 3.043e+00 4.673e-03 3.043e+00 2.342e+00 6.792e-02
128 | 2.163e+00 3.459e-03  2.163e+4-00 1.665e+-00 4.896e-02
181 | 1.530e+00 2.522e-03  1.530e+-00 1.178e+00 3.508e-02
256 | 1.082e+00 1.881e-03 1.082e+00 8.327e-01 2.525e-02
362 | 7.649e-01 1.415e-03  7.649e-01 5.888e-01 1.824e-02
512 | 5.408e-01 1.062e-03  5.408e-01 4.163e-01 1.318e-02
724 | 3.825e-01 7.942e-04  3.825e-01 2.944e-01 9.545e-03
1024 | 2.704e-01 5.926e-04  2.704e-01 2.082e-01 6.927e-03
1448 | 1.912e-01 4.359e-04  1.912e-01 1.472e-01 5.019e-03

We take k ~ h*/ as described earlier for Example I1.

Table 3: Results for Example 3.

The results are in Figurel0l and Table 2.

Example 3 This is precisely the same as in Example [d except here we take k ~ h'/3

as described earlier for Example I1I. The results are in Figure[7] and Table[3.

Example 4 Repeat of Example [3 but with we take k ~ hY® as described earlier for

Ezample IV. The results are in Figure 8 and Table[{].

Example 5 This is a repeat of Fxampledl but with vy = 2 and vg = 1. The results

are in Figure[d and Table[3.

Example 6 This is a repeat of Example[d but with vy = 2 and vg = 1. The results

are in Figure [I0 and Table [4.

Example 7 This is a repeat of Example (3 but with vy = 2 and vg = 1. The results

are in Figure[11 and Table[7.

Example 8 This is a repeat of Example [4] but with vy = 2 and vg = 1. The results

are in Figure[I2 and Table[8.
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Figure 7: Errors for Example 3, the dashed lines indicate rates of NP for p =1,2,3.

error plots for example 3

100

errors (u-U and w-W)
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Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 1.269e+02 2.924e-01 1.269e+02 9.609e+01 2.686e+-00

3 | 8.888e+01 1.167e-01 8.888e+01 6.795e+01 1.952e4-00

4 16.778e+01 7.896e-02 6.778e+01 5.198e+01 1.530e+-00

6 | 4.572¢+01 8.017e-02 4.572e+01 3.514e+01 1.087e+4-00

8 | 3.443e+01 7.940e-02 3.443e+01 2.648e+01 8.533e-01

11 | 2.510e4+01 7.665e-02 2.510e+01 1.932e+-01 6.655e-01
16 | 1.728e4+01 7.227e-02 1.728e+01 1.330e+01 5.158e-01
23 | 1.203e+01 6.373e-02 1.203e+01 9.262e+00 4.065e-01
32 | 8.651e+00 5.575e-02 8.651e+4-00 6.659e+-00 3.323e-01
45 | 6.153e+00 4.879e-02 6.153e+00 4.736e+00 2.766e-01
64 | 4.327e+00 4.278e-02 4.326e+-00 3.331e+00 2.344e-01
91 | 3.043e+00 3.763e-02 3.043e+-00 2.342e+-00 2.023e-01
128 | 2.164e+00 3.221e-02 2.163e+-00 1.665e+00 1.724e-01
181 | 1.530e4-00 2.775e-02 1.530e+00 1.178e+00 1.487e-01
256 | 1.082e+00 2.406e-02 1.082e+00 8.327e-01 1.296e-01
362 | 7.653e-01 2.044e-02  7.650e-01 5.889e-01 1.112e-01
512 | 5.412e-01 1.750e-02  5.409e-01 4.164e-01 9.636e-02
724 | 3.828e-01 1.509e-02  3.825e-01 2.945e-01 8.417e-02
1024 | 2.708e-01 1.280e-02  2.705e-01 2.082e-01 7.256e-02
1448 | 1.916e-01 1.095e-02  1.913e-01 1.472e-01 6.307e-02

Table 4: Results for Example 4.
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Figure 8: Errors for Example 4, the dashed lines indicate rates of NP for p = 1,2, 3.
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Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 1.236e+02 3.448e-01 1.236e+02 9.360e+01 2.483e+-00

3 | 8.659e+01 1.668e-01 8.659e+01 6.618e+01 1.755e+00

4 16.603e+01 9.653e-02 6.603e+01 5.063e+01 1.343e+00

6 | 4.454e+01 4.376e-02 4.454e+01 3.423e+01 9.080e-01

8 | 3.354e+01 2.478e-02 3.354e+01 2.580e+01 6.843e-01

11 | 2.446e+01 1.316e-02 2.446e+01 1.882e+-01 4.991e-01
16 | 1.684e4+01 6.236e-03 1.684e+01 1.296e+01 3.437e-01
23 | 1.172e+01 3.021e-03 1.172e+01 9.022e+00 2.393e-01
32 | 8.427e+00 1.562¢-03 8.427e+-00 6.487e+4-00 1.721e-01
45 | 5.994e+00 7.899e-04 5.994e+00 4.614e+4-00 1.224e-01
64 | 4.215e+00 3.906e-04 4.215e+4-00 3.244e+4-00 8.606e-02
91 | 2.964e+00 1.932e-04 2.964e+-00 2.282e+00 6.053e-02
128 | 2.107e4+00 9.765e-05 2.107e+4-00 1.622e+00 4.303e-02
181 | 1.490e4-00 4.884e-05 1.490e+00 1.147e+00 3.043e-02
256 | 1.054e+00 2.441e-05 1.054e+00 8.112e-01 2.152e-02
362 | 7.452e-01 1.221e-05  7.452e-01 5.736e-01 1.522e-02
512 | 5.269e-01 6.104e-06  5.269e-01 4.056e-01 1.076e-02
724 | 3.726e-01 3.052e-06  3.726e-01 2.868e-01 7.608e-03
1024 | 2.634e-01 1.526e-06  2.634e-01 2.028e-01 5.379e-03
1448 | 1.863e-01 7.632¢-07  1.863e-01 1.434e-01 3.804e-03

Table 5: Results for Example 5.
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error plots for example 5
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Figure 9: Errors for Example 5, the dashed lines indicate rates of NP for p=1,2,3.

Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2| 1.269e402 3.390e-01 1.269e+02 9.609e+01 2.493e+-00

3 | 8.888e+01 1.621e-01 8.888e+01 6.794e+01 1.760e+00

41 6.778e+01 9.293e-02 6.778e+01 5.198e+01 1.346e+00

6 | 4.572e+01 4.162e-02 4.572e+01 3.514e+01 9.090e-01

8 | 3.443e+01 2.333e-02 3.443e+01 2.648e+01 6.848e-01

11 | 2.510e4+01 1.226e-02 2.510e+01 1.932e+-01 4.994e-01
16 | 1.728e4+01 5.727e-03 1.728e+01 1.330e+01 3.438e-01
23 | 1.203e+01 2.734e-03 1.203e+01 9.261e+00 2.393e-01
32 | 8.651e+00 1.395e-03 8.651e+4-00 6.659e+-00 1.721e-01
45 | 6.153e+00 6.961e-04 6.153e+00 4.736e+00 1.224e-01
64 | 4.326e+00 3.397e-04 4.326e+-00 3.330e+-00 8.606e-02
91 | 3.043e+00 1.658e-04 3.043e+00 2.342e+-00 6.053e-02
128 | 2.163e+00 8.276e-05 2.163e+00 1.665e+00 4.303e-02
181 | 1.530e4-00 4.090e-05 1.530e+00 1.178e+00 3.043e-02
256 | 1.082e+00 2.022e-05 1.082e+00 8.327e-01 2.152e-02
362 | 7.649e-01 1.001e-05  7.649e-01 5.888e-01 1.522e-02
512 | 5.408e-01 4.956e-06  5.408e-01 4.163e-01 1.076e-02
724 | 3.825e-01 2.457e-06  3.825e-01 2.944e-01 7.608e-03
1024 | 2.704e-01 1.219e-06  2.704e-01 2.082e-01 5.379e-03
1448 | 1.912e-01 6.052e-07  1.912e-01 1.472e-01 3.804e-03

Table 6: Results for Example 6.
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error plots for example 6
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Figure 10: Errors for Example 6, the dashed lines indicate rates of NP for p = 1,2, 3.

Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 1.269e+02 3.329e-01 1.269e+02 9.609e+01 2.507e+4-00

3 | 8.888e+01 1.528e-01 8.888e+01 6.794e+01 1.773e+00

41 6.778e+01 8.314e-02 6.778e+01 5.198e+01 1.356e+00

6 | 4.572¢+01 3.338e-02 4.572e+01 3.514e+01 9.160e-01

8 | 3.443e+01 1.681e-02 3.443e+01 2.648e+01 6.900e-01

11 | 2.510e4+01 8.028e-03 2.510e+01 1.932e+-01 5.033e-01
16 | 1.728e4+01 4.660e-03 1.728e+01 1.330e+01 3.466e-01
23 | 1.203e+01 3.778e-03 1.203e+01 9.261e+00 2.413e-01
32 | 8.651e+00 3.354e-03 8.651e+4-00 6.659e+-00 1.736e-01
45 | 6.153e+00 2.780e-03 6.153e+00 4.736e+00 1.235e-01
64 | 4.326e+00 2.272e-03 4.326e+00 3.330e+-00 8.697e-02
91 | 3.043e+00 1.776e-03 3.043e+-00 2.342e+-00 6.123e-02
128 | 2.163e+00 1.388e-03 2.163e+-00 1.665e+00 4.360e-02
181 | 1.530e4+-00 1.051e-03 1.530e+00 1.178e+00 3.087e-02
256 | 1.082e+00 7.979e-04 1.082e+00 8.327e-01 2.186e-02
362 | 7.649e-01 6.026e-04  7.649e-01 5.888e-01 1.549e-02
512 | 5.408e-01 4.509e-04  5.408e-01 4.163e-01 1.097e-02
724 | 3.825e-01 3.360e-04  3.825e-01 2.944e-01 7.778e-03
1024 | 2.704e-01 2.503e-04  2.704e-01 2.082e-01 5.513e-03
1448 | 1.912e-01 1.847e-04  1.912e-01 1.472e-01 3.907e-03

Table 7: Results for Example 7.
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Figure 11: Errors for Example 7, the dashed lines indicate rates of NP for p = 1,2, 3.

error plots for example 7

100

errors (u-U and w-W)

—¥—TEe
—O—KEe
cedyerr ESe

H‘(SZ) errorin u
—&—H'(Q) error inw

cell size, N

Il
102

Xy

Il
10°

Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 1.269e+02 3.288e-01 1.269e+02 9.609e+01 2.517e+400

3 | 8.888e+01 1.450e-01 8.888e+01 6.794e+01 1.787e+00

41 6.778e+01 7.458e-02 6.778e+01 5.198e+01 1.371e+4-00

6 | 4.572e+01 2.774e-02 4.572e+01 3.514e+01 9.315e-01

8 | 3.443e+01 1.811e-02 3.443e+01 2.648e+01 7.049e-01

11 | 2.510e4+01 1.759e-02 2.510e+01 1.932e+-01 5.182e-01
16 | 1.728e4+01 1.878e-02 1.728e+01 1.330e+01 3.631e-01
23 | 1.203e+01 1.785e-02 1.203e+01 9.261e+00 2.584e-01
32 | 8.651e+00 1.630e-02 8.651e+-00 6.659e+-00 1.911e-01
45 | 6.153e+00 1.470e-02 6.153e+00 4.736e+00 1.419e-01
64 | 4.326e+00 1.318e-02 4.326e+-00 3.330e+-00 1.066e-01
91 | 3.043e+00 1.180e-02 3.043e+00 2.342e+-00 8.208e-02
128 | 2.163e+00 1.027e-02 2.163e+00 1.665e+00 6.441e-02
181 | 1.530e4-00 8.990e-03 1.530e+00 1.178e+00 5.169e-02
256 | 1.082e+00 7.915e-03 1.082e+00 8.327e-01 4.255e-02
362 | 7.650e-01 6.842e-03  7.649e-01 5.889%e-01 3.517e-02
512 | 5.409e-01 5.960e-03  5.408e-01 4.163e-01 2.964e-02
724 | 3.825e-01 5.228e-03  3.825e-01 2.944e-01 2.539e-02
1024 | 2.705e-01 4.523e-03  2.704e-01 2.082e-01 2.165e-02
1448 | 1.913e-01 3.943e-03  1.912e-01 1.472e-01 1.868e-02

Table 8: Results for Example 8.
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error plots for example 8
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Figure 12: Errors for Example 8, the dashed lines indicate rates of NP for p=1,2,3.

B.2 Including viscoelasticity

Sage Math (89 at, p...)

t,s,tau = var(’t s tau’); assume(tau>0);
IT = integrate(exp(-((t-s)/tau))/tau* (A*s+B*cos(s)),s,0,t);
II; latex(II)

(((tau™4 + tau”2)*A - Bxtau)*e”(-t/tau)/(tau”2 + 1) ...
+ ((t*tau"3 - tau"4 + t*tau - tau"2)*A + (tau"2*sin(t) ...
+ tauxcos(t))*B)/(tau”2 + 1))/tau ...
\frac{
\frac{{\left ({\left (\tau"{4} + \tau"{2}\right)} A ...
- B \tau\right)} e"{\left(-\frac{t}{\taur\right)}}
{\tau~{2} + 1} ...
+ \frac{{\left(t \tau"{3} - \tau"{4} + t \tau - \tau"{2}\right)} A ...
+ {\left(\tau~{2} \sin\left(t\right) + \tau \cos\left(t\right)\right)} B}
{\tau~{2} + 1}
H\tau}

In BTEX 2¢ this is,

((7'4 + TQ)A = BT)e(fé) N (tm2 — 4+ t7 — 72)A + (7%sin (t) + T cos (t)) B
7241 7241

o6



Simplifying
(T2(r2 + 1)A — Br)e V" + AT3(t — 7) + A7(t — 7) + B7(7sin(t) + cos(t))

(2 + 1)
_ (T(P+ 1)A = B)e T+ AT2(t — 7) + A(t — 7) 4+ B(7sin(t) + cos(t))
RS
~7(rP4+ D) Ae™m — Be ™ + A(t? + 1)(t — 7) + B(7sin(t) + cos(t))
D
C7(r?+ 1) Ae” + At 4+ 1)(t — 7) + B(7sin(t) + cos(t) — e "/7)
)
/e B(7sin(t) + cos(t) —et/7)
= At — 74717 + 1 1)

Next step is F; and F,. For the ‘A’ part of F}

t,s,tau,tl1,t2 = var(°’t s tau t1 t2’); assume(tau>0);
IIT = integrate(A*(t-tauttauxexp(-t/tau)),t,tl,t2);
III; latex(III)

-1/2*%(2*xtau~2*e~ (t1/tau)
- (2*%tau”2 - (£t17°2 - t272 - 2x(t1 - t2)*tau)*e” (t1/tau)
)Yxe” (t2/tau)
)xAxe”~ (-t1/tau - t2/tau)

“\frac{1}{2} \, {\left(
2\, \tau"{2} e~ {\frac{t_{1}}{\tau}} - {\left(
2\, \tau™{2} - {\left(t_{1}"{2} - t_{2}"{2}
-2\, {\left(t_{1} - t_{2M\right)} \tau\right)} e {\frac{t_{1}}{\tau}}
\right)} e {\frac{t_{2}}{\tau}}
\right)} A e "{\left(-\frac{t_{1}}{\tau} - \frac{t_{2}}{\taul\right)}

This is,

1
- 527

e
=

3

S CE GE R IO t2>r)e%)e%)Ae<—%—%>

A
- —5<272 o2 (BB -2 —t)r) et ) e?) el
A tq t1 s .
= -3 <2¢2e?e(‘?1‘72> _ <272 (B =2 —2(t —t)7) 7) a_t
A ~ .
= =2 (2T - (27T - (BB -2(0 - 1))
A . y
= -3 <2726* (27’ e + (63—t —2(ta— tl)T)))
=" 5t
- -2 (27 e —27% T — (b —t)(ta + 1) — 2 (6 —t1)7)>
4 1
= —ATQ(e 72 _6 T )‘I‘A(tg—tl) <§(t2+t1)—7)

And for the ‘B’ part of F}
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t,s,tau,tl1,t2 = var(°’t s tau t1 t2’); assume(tau>0);
IV = integrate(B*(tau*sin(t)+cos(t)-exp(-t/tau) )/(tau"2+1),t,t1,t2);
IV; latex(IV)

(tauxe” (t1/tau) + ((tau*(cos(tl) - cos(t2)) - sin(tl) ...
+ sin(t2))*e”(t1/tau) - tau)*e”(t2/tau))*Bxe” (-t1/tau - t2/tau)/(tau"2 + 1)

\frac{{\left(

\tau e "{\frac{t_{1}}{\tau}} + {\left(
{\left (\tau {\left(\cos\left(t_{1}\right)
- \cos\left (t_{2H\right)\right)} - \sin\left (t_{1}\right)
+ \sin\left (t_{2}\right)\right)} e {\frac{t_{1}}{\tau}} - \tau

\right)} e {\frac{t_{2}}{\tau}}

\right)} B e"{\left(-\frac{t_{1}}{\tau} - \frac{t_{2}}{\tau}\right)}}
{\tau~{2} + 1}

This is
<7'et71 + ((T(COS (t1) — cos (t2)) — sin (¢1) + sin (752))621 - 7')6%2)36(_%_%)
T24+1

B Be(=#-%) (7'et71 + <(7’(cos (t1) — cos (t2)) — sin (t1) + sin (752))et?1 - T)et%)
B T2+ 1
B B(Te’tT2 + ((T(COS (t1) — cos (t3)) — sin (¢1) + sin (152))61%1 — 7') e’%)
n T2+ 1
B B <7'e’t72 — e~ + T cos (t1) — 7 cos (tg) — sin (t1) + sin (t2)>
N T2+1
B B <T(6_t72 - e‘tTl) + 7(cos (t1) — cos (t2)) — sin (t1) + sin (tg))
B T2+ 1

Now for the ‘A’ part of F3,

t,s,tau,t1,t2 = var(’t s tau tl1 t2’); assume(tau>0); assume(t2>t1)
V = integrate(A*(t2-t)/(t2-t1)*(t-tauttau*xexp(-t/tau)),t,t1,t2);
V; latex(V)

1/6x((6x(t1 - t2)*xtau"2 + 6*tau”3 - (2*xt173 - 3*t172%t2
- 3%(t172 - 2*%t1*t2)*tau)*e”(t1/tau))*e” (-t1/tau)
- (Bxtau”3 + (t273 - 3*t272*xtau)*e” (t2/tau))*e” (-t2/tau) )*A/(t1 - t2)

\frac{{\left(
{\left(6 \, {\left(t_{1} - t_{2F\right)} \tau"{2} + 6 \, \tau"{3}
- \left(2 \, t_{1}°{3} - 3\, t_{1}°{2} t_{2} - 3\, {\left(t_{1}"{2}
- 2\, t_{1} t_{2X\right)} \tau\right)} e {\frac{t_{1}}{\tau}}
\right)} e"{\left(-\frac{t_{1}}{\taur\right)}
- {\left(6 \, \tau {3} + {\left(t_{2}°{3} - 3 \, t_{2}°{2} \tau
\right)} e {\frac{t_{2}}{\tau}}
\right)} e"{\left(-\frac{t_{2}}{\taul\right)}\right)} A}

{6 \, {\left(t_{1} - t_{2}\right)}}
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In IATEX 2 this s,

((G(tl —ta)r? 4673 — (263 — 3435 — 3 (¢ 72t1t2)7)et71)e<7?) - (673 + (43 73t57)et72)e(’t72)>14

6 (t1 — t2)

Lastly, for the ‘B’ part of F,

t,s,tau,tl1,t2 = var(°’t s tau tl1 t2’); assume(tau>0); assume(t2>tl)
VI = integrate(B*(t2-t)/(t2-t1)*(tauxsin(t)+cos(t)-exp(-t/tau) )/(tau"2+1),t,t1,t2);
VI; latex(VI)

-(((t1 - t2)*tau + tau"2 - ((tilxcos(tl) - t2*cos(tl) - sin(tl))*tau
- tl*sin(t1l) + t2*sin(tl) - cos(tl))*e”~(t1/tau))*e”(-t1/tau)
- (tau"2 + (tauxsin(t2) + cos(t2))*e”(t2/tau))*e” (-t2/tau))*B
/((tau~2 + 1)*(t1 - t2))

-\frac{
N\left ({\left ({\left (t_{1} - t_{2M\right)} \tau + \tau~{2}
- {\left({
\left(t_{1} \cos\left (t_{1}\right)
- t_{2} \cos\left(t_{1}\right) - \sin\left(t_{1}\right)
\right)} \tau
- t_{1} \sin\left(t_{1F\right) + t_{2} \sin\left(t_{1}\right)
- \cos\left(t_{1}\right)\right)} e {\frac{t_{1}}{\tau}}
\right)} e"{\left(-\frac{t_{1}}{\taut\right)?}
- {\left(
\tau~{2} + {\left(\tau \sin\left(t_{2}\right)
+ \cos\left (t_{2}\right)\right)} e {\frac{t_{2}}{\taul}}
\right)} e"{\left(-\frac{t_{2}}{\taul\right)}\right)} B}
{{\left (\tau~{2} + 1\right) H\left (t_{1} - t_{2}\right)1}}

and in IXTEX 2¢ this is,

t t
((t1 —to)7 + 72 — ((t1 cos (t1) — tgcos (t1) — sin (£1))7 — t1 sin (t1) + to sin (t1) — cos (tl))e?1>e(771)

B=L1(72 +1)(t1 — t2)
t t
(TQ + (v sin (t2) + cos (tz))e%)e(*%)

+ B1(12 4+ 1)(t1 — t2)

2 (e<7171> — e<7172>) + 7sin(t1) + cos(t1) — 7sin(te) — cos(ta)

B=1(72 4 1)(t2 — t1)

t
T cos(ty1) —sin (t1) — 76(771)
B-1(r2 +1)

or, bigger,
72 (6(77) - e(f%)> + 7sin(t1) 4 cos(t;) — 7sin(te) — cos(ts)
B~ 12+ 1)(ta — t1)

T cos(ty) —sin (t1) — re(=%)
B-Y(12+1)

Example 9 This is a repeat of Example [d, retaining vy = 2 and yg = 1, but now
also with N, = 2 with (1, 7) = (0.35,0.1) and (@2, 72) = (0.15,0.05). The results are
in Figure[13 and Table[d
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Nyy TEe KEe ESe |leu(T)|la) llew(T)| @)
Nxy En L2w SEu Hlu Hlw
2 | 8.743e+01 3.448e-01 8.742e+01 9.361e+01 2.483e+-00

3 16.123e+01 1.668e-01 6.123e+01 6.619e+01 1.755e+-00

4 | 4.669e+01 9.653e-02 4.669e+01 5.064e+01 1.343e+00

6 | 3.150e+01 4.376e-02 3.150e+01 3.423e+01 9.080e-01

8 | 2.372e+01 2.478e-02 2.372e+01 2.580e+01 6.843e-01

11 | 1.729e4+01 1.316e-02 1.729e+01 1.882e+-01 4.991e-01
16 | 1.191e4+01 6.236e-03 1.191e+01 1.296e+01 3.437e-01
23 | 8.288e+00 3.021e-03 8.288e+-00 9.022e+00 2.393e-01
32 | 5.959e+00 1.562¢-03 5.959e+-00 6.487e+4-00 1.721e-01
45 | 4.238e+00 7.899e-04 4.238e+00 4.614e+4-00 1.224e-01
64 | 2.980e+00 3.906e-04 2.980e+-00 3.244e+-00 8.606e-02
91 | 2.096e+00 1.932e-04 2.096e+-00 2.282e+00 6.053e-02
128 | 1.490e4+-00 9.765e-05 1.490e+-00 1.622e+00 4.303e-02
181 | 1.054e400 4.884e-05 1.054e+00 1.147e+00 3.043e-02
256 | 7.451e-01 2.441e-05  7.451e-01 8.112e-01 2.152e-02
362 | 5.269e-01 1.221e-05  5.269e-01 5.736e-01 1.522e-02
512 | 3.725e-01 6.102e-06  3.725e-01 4.056e-01 1.076e-02
724 | 2.635e-01 3.051e-06  2.635e-01 2.868e-01 7.608e-03
1024 | 1.863e-01 1.525e-06  1.863e-01 2.028e-01 5.379e-03
1448 | 1.317e-01 7.618e-07 1.317e-01 1.434e-01 3.804e-03

Table 9: Results for Example 9.

error plots for example 9
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Figure 13: Errors for Example 9, the dashed lines indicate rates of NP for p = 1,2, 3.
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Ny TEe KEe ESe |le.(T)|ar) llew(T)| @
Nxy En L2w SEu Hlu Hlw
2 | 8.974e+01 3.426e-01 8.974e+01 9.610e+01 2.486e+-00

3| 6.285e4+01 1.652e-01 6.285e+01 6.794e+01 1.757e+00

41 4.793e+01 9.525e-02 4.793e+01 5.198e+-01 1.344e+00

6 | 3.233e+01 4.297e-02 3.233e+01 3.514e+01 9.083e-01

8 | 2.435e+01 2.423e-02 2.435e+01 2.648e+01 6.845e-01

11| 1.775e+01 1.281e-02 1.775e+01 1.932e+-01 4.992e-01
16 | 1.222e+01  6.029e-03 1.222e+01 1.330e+4-01 3.438e-01
23 | 8.508e+00 2.901e-03 8.508e+-00 9.261e+-00 2.393e-01
32 ] 6.117e+00 1.490e-03 6.117e+4-00 6.659e+-00 1.721e-01
45 | 4.350e+00 7.489e-04 4.350e+00 4.736e+00 1.224e-01
64 | 3.059e+00 3.680e-04  3.059e+4-00 3.330e+-00 8.606e-02
91 | 2.152e+00 1.808e-04 2.152e+4-00 2.342e+00 6.053e-02
128 | 1.530e4+-00 9.087e-05 1.530e+-00 1.665e+-00 4.303e-02
181 | 1.082e4+00 4.519e-05 1.082e4-00 1.178e+00 3.043e-02
256 | 7.649e-01 2.247e-05  7.649e-01 8.327e-01 2.152e-02
362 | 5.409e-01 1.118e-05  5.409e-01 5.888e-01 1.522e-02
512 | 3.824e-01 5.564e-06  3.824e-01 4.163e-01 1.076e-02
724 | 2.704e-01 2.774e-06  2.704e-01 2.944e-01 7.608e-03
1024 | 1.912e-01 1.380e-06  1.912e-01 2.082e-01 5.379e-03
1448 | 1.352e-01 6.865e-07  1.352e-01 1.472e-01 3.804e-03

Table 10: Results for Example 10.

Example 10 This is a repeat of Example @, retaining vy = 2 and yg = 1, but now
also with N, = 2 with (1, 71) = (0.35,0.1) and (@2, 72) = (0.15,0.05). The results are
in Figure[14 and Table 1.

Example 11 This is a repeat of Example[7, retaining yar = 2 and yg = 1, but now
also with N, = 2 with (1, 7) = (0.35,0.1) and (@2, ™) = (0.15,0.05). The results are
in Figure 13 and Table[11l.

Example 12 This is a repeat of Example[8, retaining vy = 2 and yg = 1, but now
also with N, = 2 with (1, 7) = (0.35,0.1) and (@2, ™) = (0.15,0.05). The results are
in Figure[10 and Table[12.

B.3 Updated numerical results

To harmonise all results the entire run was re-executed. These are the preliminary
notes.

Note: 9 Jan 2019. Run terminated during example 6 (100 minutes for 1%) in order to
get 5 for the paper.

Make sure the notes in the earlier section for the report version are also updated.

On the heronll machine, 20 Dec 2018,
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error plots for example 10
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Figure 14: Errors for Example 10, the dashed lines indicate rates of NP for p = 1,2, 3.

Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 8.974e+01 3.384e-01 8.974e+01 9.610e+01 2.495e+-00

3| 6.285e+01 1.589e-01 6.285e+01 6.794e+01 1.764e4-00

41 4.793e+01 8.879e-02 4.793e+01 5.198e+01 1.350e+-00

6 | 3.233e+01 3.752e-02 3.233e+01 3.514e+01 9.118e-01

8 | 2.435e+01 1.973e-02 2.435e+01 2.648e+01 6.869¢-01

11 | 1.775e401 9.313e-03 1.775e+01 1.932e+-01 5.009e-01
16 | 1.222e401 3.818e-03 1.222e+01 1.330e+01 3.449e-01
23 | 8.508¢+00 1.952e-03 8.508e+-00 9.261e+00 2.400e-01
32| 6.117e+00 1.512e-03 6.117e+400 6.659e+-00 1.726e-01
45 | 4.350e+00 1.283e-03  4.350e+00 4.736e+00 1.228e-01
64 | 3.059e+00 1.096e-03 3.059e+-00 3.330e+-00 8.634e-02
91 | 2.152e+00 8.811e-04 2.152e+4-00 2.342e+-00 6.074e-02
128 | 1.530e+00 7.014e-04 1.530e+-00 1.665e+00 4.320e-02
181 | 1.082e4-00 5.365e-04 1.082e+00 1.178e+00 3.056e-02
256 | 7.649e-01 4.098e-04  7.649¢-01 8.327e-01 2.161e-02
362 | 5.409e-01 3.105e-04  5.409e-01 5.888e-01 1.529e-02
512 | 3.824e-01 2.325e-04  3.824e-01 4.163e-01 1.082e-02
724 | 2.704e-01 1.733e-04  2.704e-01 2.944e-01 7.654e-03
1024 | 1.912e-01 1.291e-04  1.912e-01 2.082e-01 5.415e-03
1448 | 1.352e-01 9.520e-05  1.352e-01 1.472e-01 3.832e-03

Table 11: Results for Example 11.
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Figure 15: Errors for Example 11, the dashed lines indicate rates of NP for p = 1,2, 3.

error plots for example 11
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Nyy TEe KEe ESe |leu(T)|la) llew(T)| o)
Nxy En L2w SEu Hlu Hlw
2 | 8.974e4+01 3.353e-01 8.974e+01 9.610e+01 2.501e+00

3| 6.285e+01 1.532e-01 6.285e+01 6.794e+01 1.772e4-00

41 4.793e+01 8.221e-02 4.793e+01 5.198e+01 1.357e+00

6 | 3.233e+01 3.111e-02 3.233e+01 3.514e+01 9.194e-01

8 | 2.435e+01 1.548e-02 2.435e+01 2.648e+01 6.938e-01

11 | 1.775e401 9.697e-03 1.775e+01 1.932e+-01 5.074e-01
16 | 1.222e401 9.888e-03 1.222e+01 1.330e+01 3.516e-01
23 | 8.508e+00 9.820e-03 8.508e+-00 9.261e+00 2.468e-01
32 | 6.117e+00 9.182¢-03 6.117e+4-00 6.659e+-00 1.793e-01
45 | 4.350e+00 8.386e-03 4.350e+00 4.736e+00 1.296e-01
64 | 3.059e+00 7.556e-03 3.059e+-00 3.330e+-00 9.364e-02
91 | 2.152e+00 6.762e-03  2.152e+4-00 2.342e+-00 6.858e-02
128 | 1.530e+00 5.859e-03 1.530e+-00 1.665e+00 5.112e-02
181 | 1.082e4-00 5.103e-03 1.082e+00 1.178e+00 3.866e-02
256 | 7.649e-01 4.469e-03  7.649¢-01 8.327e-01 2.993e-02
362 | 5.409e-01 3.838e-03  5.409e-01 5.888e-01 2.344e-02
512 | 3.824e-01 3.323e-03  3.824e-01 4.163e-01 1.880e-02
724 | 2.705e-01 2.898e-03  2.704e-01 2.944e-01 1.545e-02
1024 | 1.912e-01 2.492e-03  1.912e-01 2.082e-01 1.276e-02
1448 | 1.352e-01 2.161e-03  1.352e-01 1.472e-01 1.074e-02

Table 12: Results for Example 12.
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error plots for example 12
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Figure 16: Errors for Example 12, the dashed lines indicate rates of N, F for p=1,2,3.

screen -S dgcgwave
C-AC

created the screen session and then from

https://quay.io/repository/fenicsproject/stable?tag=latest&tab=tags

the 2017.1.0 FEniCS container was pulled with (you can substitute in your own UID
GID if needed)

heronll code_v02/fenics), docker run -ti --env HOST_UID=xyz --env HOST_GID=uvw --name dgcgwave \
? -v /home/icsrsss/fenics_docker/shared:/home/fenics/shared quay.io/fenicsproject/stable:2017.1.0

It wasnt already there so after this, and about 10 minutes,

Unable to find image ’quay.io/fenicsproject/stable:2017.1.0° locally
2017.1.0: Pulling from fenicsproject/stable

the container was running. This pull was at 15:22 GMT 20 Dec 2018. The following
command will therefore recreate this container.

docker run -ti --env HOST_UID=xyz --env HOST_GID=uvw \
--name dgcgwave \
-v /home/icsrsss/fenics_docker/shared:/home/fenics/shared \
quay.io/fenicsproject/stable:2017.1.0

A few errors were corrected in the solver.py script. First print commands without
brackets had them added (to be compatible with python3). These were:

- line 108 to print(’Command Line: using: ’)
- lines 196-200 to print(...)
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Also,

%d changed to %f for T = in usage()
several other small bug fixes related to the command line args

The re-run of all twelve examples then began at
20 Dec 2018 at 16:30
with the run command:

./bigrun_np.sh -J 21 | tee runmeout_np.txt

The bigrun_np.sh script was also altered so as not to use mpi for ‘small’ problems,

because it results in a crash. Each example takes just over 8 hours — should be finished
by the end of Dec 24th.

In the above we have used the non-latest version of FEniCS. The latest appears to
require python3. This was one reason to alter the brackets above, but that wasn’t
enough.

This didn’t work: we obtained the latest version with

docker run -ti --env HOST_UID=xyz --env HOST_GID=uvw --name fenics_dg \
-v /home/icsrsss/fenics_docker/shared:/home/fenics/shared quay.io/fenicsproject/stable

which then pulls everything over:

Unable to find image ’quay.io/fenicsproject/stable:latest’ locally
latest: Pulling from fenicsproject/stable

This pull took place at 12:43 GMT 20 Dec 2018. The code wouldn’t run and these
quick fixes were implemented:

#!/bin/python3 in solver.py

line 108 to print(’Command Line: using: ’)

lines 196-200 to print(...)

line 37,38 comment: #set_log_level(0) #set_log_active(False)

These were not enough. There were some difficulties with the mesh, but not time to
investigate further. Hence the pull of the 2017.1.0 container which we know works on
our architectures.

This is how the docker hub image was created and used.

# run the required version of FEniCS in docker with a shared folder
docker run -ti --name dgcgwave \

-v /..absolute_path.../dgcgwave/code_v02/fenics:/home/fenics/shared \
quay.io/fenicsproject/stable:2017.1.0
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# copy source codes from shared folder to another inside the container.
fenics@7£85088e2a09:~$ cp -r shared fenics

fenics@7£85088e2a09:~$ 1s

WELCOME demo fenics fenics.env.conf 1local shared

# make sure the permissions are set on the ’executables’
chmod u+x bigrun* solver.py

# update and install bc

sudo apt-get update

sudo apt-get install bc

# check that the code runs, and then exit the container
./bigrun_np.sh -J 2 | tee runmeout_np.txt

exit

# from above we see the unique hash in the prompt...
fenics@7£85088e2a09:~$ 1s

# now commit the container to freeze its state

docker commit 7£85088

# and obtain a new hash
sha256:628f9736f9452411180be3fa016alcbf10abb4deded24801ec4d64683bc7fca2

# There are now two methods to distribute the container.

# Method #1: create a docker hub account and then use the new hash:
docker login

docker tag 628f9736 variationalform/fem:dgcgwave

docker push variationalform/fem:dgcgwave

# A downloader can now write:

docker pull variationalform/fem:dgcgwave
docker run -ti variationalform/fem:dgcgwave
cd fenics

./bigrun_np.sh -J 4 | tee runmeout_np.txt

# Method #2: distribute a tar archive (I haven’t tried this)
docker save 628f9736 > dgcgwave_fenics_docker.tar

docker load < dgcgwave_fenics_docker.tar

docker run -ti 628f9736
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